우리나라 실정에 맞는 탄소중립형 하수처리시스템 제안

김원재 한국건설기술연구원 국토보전연구본부 환경자원재생연구센터 e-mail:wjkim1@kict.re.kr

Proposal of a Carbon-neutral Wastewater Treatment System suitable for the Situation in Korea

Weon-Jae Kim

Environmental Resource Research Center, Dept. of Land, Water and Environment Research, Korea Institute of Civil Engineering and Building Technology

요 약

본 논문에서는 기존 하수처리시스템의 한계를 검토하고, 우리나라 실정에 맞는 탄소중립형 하수처리시스템을 제안하고 자 하였다. 이를 위해 탄소중립형 하수처리시스템의 필요조건(안)을 수처리효율, 친환경성, 비용 절감, 에너지효율 제고, 영양물질 회수 및 에너지 회수의 측면에서 검토하고, 이와 같은 필요조건을 충족하는 대표적인 핵심공정을 제안하고, 각 공정의 개요와 전체 구성도를 제시하였다.

1. 서론

물, 에너지 및 탄소는 서로 뗼 수 없을 정도로 밀접히 연결되어 'Water - Energy - Carbon Nexus'를 이루고 있어서, 도시 물순환 부문의 온실가스(GHG) 배출 및 저감을 위한 여러기회를 제공한다. 특히, 하수처리공정은 많은 에너지를 소비하는 대표적인 공공인프라라고 할 수 있다. 본 논문에서는 현재 도입·운영되고 있는 하수처리공정에 대해 고찰하고, 이를 바탕으로 우리나라의 실정에 맞는 탄소중립형 하수처리시스템을 제안하고자 하였다.

2. 탄소중립형 하수처리시스템 제안

2.1 기존 하수처리시스템의 문제점 검토

기존의 하수처리시스템은 비용 손실, 낮은 에너지효율, 다 량의 온실가스 배출, 낮은 수처리효율 등의 한계를 갖고 있다 고 할 수 있다. 한편, 우리나라 실정에 맞는 탄소중립형 하수 처리시스템은 비용 절감, 에너지효율 제고, 서비스 성능 제고, 수처리효율 제고, 에너지 회수 및 영양물질 회수 등의 특성을 갖고 있어야 한다.

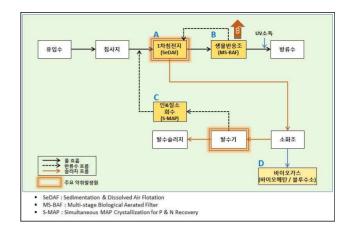
기존 하수처리시스템의 근간을 이루고 있는 활성슬러지공

법(Activated sludge process)은 1910년대에 영국의 Edward Ardern과 W.T. Lockett에 의해 발견된 후 1916년 Worcester 에 최초로 적용된 것으로 알려져 있다. 이후 1930년 말 무렵에는 전 세계에 일반화되었다.

기존 하수처리시스템(활성슬러지공법 중심)이 매우 성공적 이었음에도 불구하고 여러 시대적 한계를 갖고 있다고 할 수 있다. 첫째, 주처리공정(Main stream)의 역할이 BOD 제거 중 심이기 때문에 자원회수(C & N & P)에 대한 고려가 미흡하 고, 에너지효율 제고가 부족하고(폭기에 50 - 90%의 에너지 사용 등), 10시간 이상의 긴 HRT를 갖는다. 둘째, 대규모 연 속교반반응조(CSTR)가 핵심적인 역할을 하기 때문에 최종 처리수질 제고에 한계가 있고(마개흐름형반응조(PFR) 대비 수 배 더 긴 HRT가 요구됨), 강화되는 수질기준 대응에도 어 려움이 따른다. 따라서, 필요시 고도처리(3차처리)를 추가하 여 대응해야만 한다. 셋째, 슬러지 처리계통(Side stream)과 의 연계 고려가 미흡하여, 슬러지 발생량이 과다하고, 복잡한 슬러지 처리계통을 갖고, 성상별 후속처리가 복잡해지고, 다 양한 반류수 발생지점이 혼재하는 문제가 발생한다. 넷째, 악 취(친환경성)에 대한 고려가 미흡하다. 다섯째, 혐기성 소화 공정(자원 & 에너지 회수공정)과의 연계 고려가 미흡하다. 여 섯째, 온실가스(CO₂, N₂O 및 CH₂)에 대한 고려가 미흡하다. 일곱째, 하수처리시설 내 온실가스 발생을 최소화하기 위한 방안이 미흡하고, 소화공정 바이오가스 내 CO2 및 CH4 회수 방안에 대한 고려 또한 미흡하다. 여덟째, 경제성(소요부지, 시설비, 운전 유지관리비)에 대한 고려도 여실히 미진한 실정이다.

2.2 탄소중립형 하수처리시스템 제안

본 논문에서 제안하고 있는 탄소중립형 하수처리시스템의 필요조건으로 아래 표 1의 6가지 요소를 고려하였다.


[표 1] 탄소중립형 하수처리시스템의 필요조건(안)

수처리효율	• 방류수 & 친수용수 수질기준 동시 충족 • 고도처리(SS, T-P, T-N, TOC) 수준 이상 달성	
친환경성	• 악취 민원 해소 : 1차침전지 및 슬러지 처리계통 대상 • 수처리시설 지하화 불필요	
비용 절감	공정 단순화 : 시설비 및 유지관리비 절감 슬러지 처리계통 단순단일화 HRT 단축 : 주처리공정 총 4시간 이내 소요부지 감축	
에너지효율 제고	• 산소전달 및 이용 효율(용적산소섭취율) 극대화 • 총에너지 소비 50% 이상 절감 : 폭기시설, 펌프 등	
영양물질 회수	• 유입수 내 C 70% 이상, 반류수 내 N & P 90% 이상	
에너지 회수	• 바이오가스 회수 : CO₂ & CH₄ 95% 이상 • 바이오메탄, 블루수소 추출	

본 논문에서 제안하고 있는 탄소중립형 하수처리시스템의 핵심공정은 아래의 표 2와 같고, 그 구성은 그림 1과 같다.

[표 2] 탄소중립형 하수처리시스템 핵심공정의 개요(안)

기존 공정	탄소중립형 하수처리시스템	핵심 기능
1차침전지	(SeDAF)	• 1차침전, 생슬러지 및 슬러지 탈수여액 농축 • 입자성 및 콜로이드성 BOD의 응집/침전/ 부상 처리 • 유입수 내 T-P 처리 • 다단생물여과공정 역세배수 내 탈리슬러지 처리 • 반류수 내 T-P & SS 부하 저감 • 탄소(C) 회수율 제고 • 악취 저감
생물반응조	다단 생물여과조 (MS-BAF)	 용존성 BOD 처리 T-N 처리: NH₃-N 질산화 및 NO₃-N 탈질 잔류 T-P 및 잔류 탁도 추가 처리 폭기량 저감 CO₂ 배출량 저감 무반송
인 & 질소 회수	동시회수 결정화조 (S-MAP)	 NH₃-N 90% 이상 회수 PO₄-P 90% 이상 회수 반류수 내 영양물질부하 획기적 저감
혐기성 소화조	및 에너지화	 고순도(95% 이상) 바이오메탄 회수 고순도(95% 이상) CO₂ 회수 에너지(전기, 열) 전환 및 블루수소 추출

[그림 1] 우리나라 실정에 맞는 탄소중립형 하수처리시스템의 구성(안)

참고문헌

- [1] 장여주, 정진홍, 임현만, 김원재, "파일럿 플랜트 규모에서 일체형 침전부상공정(SeDAF)의 설계인자 및 운전특성에 대한 실증적 평가", 상하수도학회지, Vol. 35(1), pp.1-14, 2021.
- [2] 장여주, 정진홍, 김원재, "하수처리시설에서 인 고도처리를 위한 일체형 침전부상공정(SeDAF)의 응집제 주입농도 자동제어기법 검토", 상하수도학회지, Vol. 34(6), pp.411-423, 2020.
- [3] 김원재, "우리나라 공공하수처리시설 및 가축분뇨공공처리시설의 인(P) 유입부하량에 대한 총량평가", 상하수도학회지, Vol. 32(4), pp. 325-335, 2018.
- [4] 박나리, 장향연, 임현만, 안광호, 김원재, "하수처리시설에서 인 회수공정의 도입 가능성에 대한 실증적 검토", 대한환경공학회지, Vol. 39(1), pp. 40-49, 2017.