2차원 모형을 이용한 수리해석(Ⅱ) : 배수위 흐름해석

김응석¹, 이승현^{1*} ¹선문대학교 건축사회환경학부

Hydraulic Analysis Using a Two-Dimensional Model(I): Bridge Backwater Analysis

Eung-seok, Kim¹, Seung-hyun, Lee^{1*}

¹Department of Architecture, Architectural Eng. & Civil Eng., Sunmoon University

요 약 본 연구는 연구(I)의 교각의 기하학적 형태에 따른 수리특성을 바탕으로 배수위 영향구간을 분석하고자 2차원 모형 (RMA-2)과 1차원 모형(HEC-RAS)을 적용하였다. 교각형상은 교각 설치전을 포함하여 총 6개(사각형, 마름모, 팔각형, 타원 형, 원형)로 구분하였으며 배수위 영향구간 분석결과 HEC-RAS의 경우 배수위 영향구간이 약 150m~200m, RMA-2모형의 경우 모든 교각형상에서 약 50m의 배수위 영향구간을 보였다. RMA-2모형의 결과는 HEC-RAS의 결과와 직접적인 비교에는 어려움이 있었으나 타원형의 수리특성이 설치전과 유사한 결과를 보이고 있어 교각 설치시 타원형이 가장 안정적인 교각이 라 판단되며, 향후 신설교량설치 및 교각형상 선정시 도움을 줄 수 있을 것으로 판단된다.

Abstract This study has analyzed the backwater effect by the bridge pier on the basis of the result on hydraulic characteristics with pier shapes in study(I), using a two-dimensional model(RMA-2) and an one-dimensional model(HEC-RAS). The pier shapes are classified into total six types such as square, rhombus, octagon, oval, round, and no-piers. The result of the backwater effect analysis showed that the backwater length is about 150 and 50m from HEC-RAS and RMA-2, respectively for all pier types. Although it is difficult to directly compare between results from the two models, the oval shape pier has shown similar results to the no-pier situation before the bridge construction in hydraulic characteristics. This analysis can help to select pier types in the new bridge construction for the future.

Keywords : Piers shape, Backwater Impact section

1. 서론

대부분의 자연하천의 경우는 상류상태 조건이므로, 교각단면에서의 단면축소로 인해 상류방향으로 배수곡 선을 형성하게 된다. 교각에 의한 배수영향으로 인해 교 각상류의 수면은 상당한 구간까지 상승하게 되어 홍수시 범람의 위험을 초래할 경우가 있으므로 교량에 의한 수 면상승고와 유량사이의 관계는 실질적으로 매우 중요하다. 교량설치에 의한 수리해석 중 홍수위에 관한 문헌을 살펴보면, [1]은 제작된 만곡수로 실험에 의하여 교각 구 조물이 배수위 상승에 미치는 여항을 통하여 알아보고, 고정상과 이동상에서의 그 결과를 비교하였으며, 교각의 수를 달리했을 경우 배수위 상승의 변화 양상을 분석하 였다. 분석결과 고정상일 때 교각이 설치된 직전 단면에 서 배수위 상승량이 가장 크고, 이동상일 때는 교각이 설 치된 단면에서 배수위 상승량이 가장 크게 나타났다. [2]

Received April 3, 2015 Accepted August 6, 2015 Revised May 20, 2015 Published August 31, 2015

^{*}Corresponding Author : Seung-hyun, Lee(Sunmoon Univ.) Tel:+82-41-530-2328 email: shlee02@sunmoon.ac.kr

은 수로의 만곡부에 교각을 설치하여 교각의 수와 유량 을 변화시킴에 따라 수위변화를 측정하여 계산치와 비 교·분석하여 검증하였다. [3]은 수리모형실험과 비교를 통하여 수치모형을 검증하고, 2차원 모형인 RMA-2 모 형을 이용하여 교량 구조물에 의한 홍수위 상승효과에 대한 분석을 수행하였으며 40°의 배치조건에서 최대 13.9%의 수위상승을 보였다. [4]은 교각군의 수리적인 특성에 관한 기초 자료를 마련하고 이들 교각군에 의한 홍수위 상승 효과에 대한 분석을 수행하였으며, 유속이 빨라지고 교각의 차단율이 20%이상부터 급격한 수위가 상승하는 것을 확인하였다. [5]은 하천의 지형이 복잡하 고 지류 합류부 및 여러 수리구조물이 위치한 공주대교 상·하류구간에 대하여 흐름특성과 하상변동 양상을 분 석하였다.

기존 문헌조사 결과 RMA-2 모형을 이용한 만곡부 및 소류력, 수리특성분석 등과 같은 연구는 활발히 진행 되어 왔으며, 교각의 배치 및 위치에 따른 수리특성 분석 이 주를 이루고 있으나 교각 형상에 따른 수리특성 분석, 특히 교각 형상에 의한 홍수위 상승 즉, 배수위 분석에 관한 연구는 체계적으로 이루어지지 못하였다. 따라서 본 연구에서는 연구(I)의 교각형상에 따른 수리특성을 바탕으로 배수위 영향구간을 분석하고자 한다.

2. 연구방법

2.1 배수위 흐름

배수위란 상류의 하천 수위가 합류점의 본류수위 및 수공구조물 조위영향 등으로 인해 물의 흐름에 변화가 생겨 수면 변화가 상류에 미치는 영향을 의미한다. 배수 위 발생조건은 앞에서 언급한 바와 같이 크게 3가지로 구분할 수 있다. 첫 번째는 하천본류, 두 번째는 댐과 저 수지와 같은 수공구조물, 세 번째는 조위영향 등으로 구 분할 수 있다.

이러한 배수위는 하천 상류에 수위를 상승시켜 제방 의 월류 및 홍수시 큰 피해를 가져올 수 있다. 따라서 이 러한 배수위 영향의 영향구간을 파악하는 것은 홍수 예 방에 도움이 될 것으로 판단된다. Fig. 1은 배수위 발생 조건을 나타내었다.

Fig. 1. Backwater Conditions

2.2 배수위 영향구간

본 연구에서는 연구(I)의 수리특성 결과를 바탕으로 배수위 영향구간을 분석하였다. 분석은 1차원 해석 모형 인 HEC-RAS모형과 2차원 해석 모형인 RMA-2모형을 이용하였으며, 교각의 설치전과 각 교각 형상에 따른 배 수위 영향구간을 분석하였다. 교각의 형상은 연구(I)과 동일하게 사각형, 마름모형, 파각형, 타원형, 원형으로 구분하여 분석하였다.

HEC-RAS모형의 경우 직접적으로 교량의 교각형상 을 표현할 수 없기 때문에 [6]에서 제공하는 교각형상계 수를 이용하여 분석하였다. 또한, RMA-2모형의 경우 거 리에 따른 해석이 아닌 사용자가 원하는 지점에서의 수 리특성 등을 확인 할 수 있는 모형으로 배수위 영향구간 을 파악하기 위해 위성사진과 비교하여 거리를 측정하였 다. 최종적으로 HEC-RAS모형과 RMA-2모형의 배수위 영향구간을 비교 분석하였다.

3. 적용 및 결과

3.1 대상유역

본 연구에서는 금강의 제2지류로서 본류인 석성천 지 방1급 하천구간으로 유입되는 덕포천을 대상으로 수리 특성 및 배수위 영향을 분석하였다. 덕포천은 유역면적 은 19.31km², 유로연장 8.59km인 지방하천이며 수지형 형상을 이루고 있다. 하상의 구성물질은 대부분이 모래, 상류에서 자갈과 모래로 되어있으며 호남고속철도교를 대상적용지점으로 분석을 수행하였다. 호남고속철도교 는 합류부지점으로부터 140m 떨어진 구간에 설치되어 있다. Fig. 2은 덕포천의 HEC-RAS모형의 구축 및 교량 의 단일교각 단면을 나타내었다. Fig. 3는 덕포천의 RMA-2모형 및 위치를 나타내었다.

Fig. 2. River Cross-Section of the Bridge in HEC-RAS

Fig. 3. Analysis sections in RMA-2

3.2 1, 2차원 모형을 이용한 배수위 영향구간 비교분석

본 연구에서는 교각형상에 따른 배수위 영향구간을 분석하기 위해 HEC-RAS 모형을 이용하였으며, RMA-2 모형 적용시와 마찬가지로 동일한 경계조건을 이용하여 모형을 수행하였다. 또한, RMA-2모형과의 결과와 비교 분석 하기 위해 교각 설치전의 교각지점의 수리특성을 비교한 후 교각설치에 따른 수리특성 및 배수위 영향구 간을 검토하였다. 배수위 영향구간은 교각설치전과 기하학적 교각형태 에 따른 수위차를 계산함으로써 영향구간을 확인하였으 며, HEC-RAS모형을 이용한 배수위 영향구간 분석결과 사각형, 마름모형, 팔각형 교각형상일 때 최대 약 200m 의 배수위 영향구간으로 나타났다. 타원형 및 원형의 경 우 약 150m의 배수위 영향구간으로 나타났다. 교각이 설치된 148m에서부터 수위가 0.03m 상승하였으며, 상 류방향으로 점차 수위차가 작아지는 것을 확인하였다. 이러한 결과는 Momentum 교각형상계수에 의해 차이를 보이는 것으로 분석되었으며 Momentum 교각형상계수 가 작을수록 배수위 영향구간이 작아지는 것을 알 수 있 었다.

RMA-2모형을 이용한 배수위 영향구간 분석에는 어 려움이 있다. 이러한 이유는 RMA-2모형의 경우 정확한 거리에 따른 수리특성이 분석되는 것이 아닌 분석하고자 하는 지점에서의 수리특성의 결과를 보여주기 때문에 HEC-RAS 모형의 결과와 직접적인 결과 비교는 어려움 이 있다. 그러나 대상지역의 위성사진의 거리를 이용하 면 HEC-RAS 및 RMA-2모형의 결과를 직접적으로 비 교할 수 있다. 따라서 비교분석 결과를 Table 1과 같이 나타내었다. RMA-2를 이용하여 배수위 영향구간을 분 석한 결과를 Fig. 4와 같이 나타내었으며 모든 교각 형 상에서 교각 설치지점을 기준으로 약 50m의 배수위 구 간을 보였다. HEC-RAS의 배수위 영향구간과는 상이한 결과를 보였다. 이러한 이유는 HEC-RAS의 경우 1차원 해석모형으로 모형의 모의 결과물은 한 구간내의 모든점 에서 동일하게 계산되며, RMA-2모형의 경우 2차원 해 석모형으로 횡방향 흐름까지 고려가 되기 때문에 결과에 서의 차이를 보이는 것으로 판단된다. 또한, [7]의 경우 용치에 의한 배수위 증가량을 분석하였으며, 100년 빈도 홍수량일 때 13cm 정도까지 증가하였다고 분석하였다. 이에 따라 본 연구에서는 단일 교각에서 3cm의 수위 상 승을 합리적인 결과라 판단된다.

Fig. 4. Comparison of Backwater Effect Lengths with Pier Shapes

4. 결론

본 연구에서는 연구(I)의 HEC-RAS 및 RMA-2모형 의 수리특성을 바탕으로 배수위 영향구간을 분석하였다. 배수위 영향구간 분석결과 사각형, 마름모형, 팔각형 교 각형상일 때 최대 약 200m의, 타원형 및 원형의 경우 약 150m의 배수위 영향구간으로 나타났다. 교각 설치지점 에서 0.03m 상승하였으며, 상류방향으로 점차 수위차가 작아지는 것을 확인하였다. 이러한 결과는 Momentum 교각형상계수의 차이 때문이며 교각형상계수가 작을수 록 배수위 영향구간이 작아지는 것을 알 수 있었다. 또 한, RMA-2모형의 경우 정확한 거리에 따른 수리특성이 분석되는 것이 아닌 분석하고자 하는 지점에서의 수리특 성의 결과를 보여주기 때문에 HEC-RAS 모형의 결과와

직접적인 결과 비교는 어려움이 있다. 따라서 대상지역 의 위성사진의 거리를 이용하여 HEC-RAS 및 RMA-2 모형의 결과를 비교분석 하였으며 분석결과 모든 교각 형상에서 교각 설치지점을 기준으로 약 50m의 배수위 구간을 보였다. HEC-RAS의 경우 1차원 모형으로 한 구 간내의 모든 점에서 동일하게 계산되며, RMA-2모형의 경우 2차원 해석모형으로 횡방향 흐름까지 고려가 되기 때문에 결과에서의 차이를 보이는 것으로 판단된다.

종합적인 결과 HEC-RAS 및 RMA-2모형을 이용한 수리특성 분석결과 두 모형에서의 수리특성은 전체적으 로 비슷한 결과를 보였으나 배수위 영향구간 분석시 상 이한 결과를 보였다. 이러한 이유는 모형의 분석절차 및 해석방법의 차이로 직접적인 비교에는 어려움이 있다고 판단된다. 그러나 두 모형 모두 타원형의 수리특성이 설

Table	Ie I. Backwater Effect Analysis with Fier Snapes										
		HEC-RAS Model Results					RMA-2 Model Results				
	Water	Water	Water	Water	Watar	Water	Water	Water	Water	Water	Water
	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface
	elevation	elevation	elevation	elevation	elevation	elevation	elevation	elevation	elevation	elevation	elevation
Distance	before	increment	increment for	increment for	increment for	increment	increment	increment	increment	increment	increment for
(m)	bridge	for		Octagonal	Oval	for	for	for	for	for	
	constructio	Square	Lozenge	shaped	shaped	Circular	Square	Lozenge	Octagonal	Oval	Circular
	n (FL)	shaped	shaped	pier	pier	shaped	shaped	shaped	shaped	shaped	shaped
	(EL.m)	pier	pier	(m)	(m)	pier	pier	pier	pier	pier	pier
1.000	10.50	(m)	(m)	0.00	0.00	(m)	(m)	(m)	(m)	(m)	(m)
1,000	12.56	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
990	12.55	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
980	12.57	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
978	12.57	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
900	12.54	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
800	12.52	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
775	12.52	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
700	12.46	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
600	12.41	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
500	12.41	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
400	12.42	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
350	12.42	0.01	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00
300	12.34	0.02	0.02	0.02	0.02	0.02	0.00	0.00	0.00	0.00	0.00
299	12.34	0.02	0.02	0.02	0.02	0.02	0.00	0.00	0.00	0.00	0.00
200	12.32	0.02	0.02	0.02	0.02	0.02	0.01	0.01	0.01	0.01	0.01
190	12.32	0.02	0.02	0.02	0.02	0.02	0.01	0.01	0.01	0.01	0.01
180	12.32	0.02	0.02	0.02	0.02	0.02	0.01	0.01	0.01	0.01	0.01
170	12.31	0.03	0.03	0.03	0.03	0.03	0.01	0.01	0.01	0.01	0.01
160	12.31	0.03	0.03	0.03	0.03	0.03	0.01	0.01	0.01	0.01	0.01
150	12.31	0.03	0.03	0.03	0.03	0.03	0.01	0.01	0.01	0.01	0.01
148	12.31	0.03	0.03	0.03	0.03	0.03	0.01	0.01	0.01	0.01	0.01
144						Bridge					
140	12.31	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
130	12.3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
120	12.3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
110	12.3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
100	12.3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0	12.32	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

치전과 유사한 결과를 보이고 있어 교각 설치시 타원형 이 가장 안정적인 교각이라 판단된다. 향후 실설교량설 치 및 교각형상 선정시 RMA-2 모형 및 HEC-RAS 모형 의 결과를 산정하여 비교분석한 후 적절한 교각을 선정 하여야 할 것이다. 또한, HEC-RAS의 단면과 단면의 간 격을 세밀하게 구분하여 분석한다면 RMA-2모형과 유 사한 결과를 보일 것으로 판단된다. 본 연구의 결과는 향 후 홍수위 및 수리특성을 분석하는데 도움을 주리라 판 단된다.

References

- Cha, Y.K., Kim, Y.H., Lee, M.S., Analysis of Water Surface Level Variation due to Piers in a Curved Channel, Journal of the New Material Technology, Vol.9, pp.41-53.2000.
- [2] Kim, Y.H., Computation of Backwater due to Piers in Bend of Mobile Bed Channels, Kyung Bok College, Vol.4, pp.579-600.2000.
- [3] Koh, S.H., Yoon, B.M., Yu, K.K. Evaluation of Water-Surface Rising due to Bridge Piers by using RMA-2 Model, Korean Society of Civil Engineers, Vol. 2005, No. 10, pp.238-241.2005.
- [4] Kim, C.h., Yoon, B.m., Yu, K.k. An Experimental Study on the Backwater Effect due to Bridge Piers, 2006 Korean Society of Civil Engineers, Vol. 2006, No. 10, pp.2654-2657.2006.
- [5] Shin, K.S., Jeong, S.M., Lee, J.H., Song, P. Flow Characteristics and Riverbed Changes Simulation for the Upstream and Downstream Sections of Gongju Bridge, Korean Society of Hazard Mitigation, Vol. 8, No. 2, pp.119-127.2008.
- [6] USACE-HEC, Hydrologic Modeling HEC-RAS User's Manual, 2006.
- [7] Kim, Y.H., Influent of Flood Stage by Dragon Teeth Constructed in Rivers, Kyung Bok College, pp.155-174.2001

김 응 석(Eung-Seok Kim)

[정회원]

- 199 과 • 199 공 • • 200 공 •
- 1995년 2월 : 동국대학교 토목공학 과 (공학사)
 - 1997년 2월 : 고려대학교 토목환경 공학 (공학석사)
 - 2002년 2월 : 고려대학교 토목환경 공학 (공학박사)
 - •2004년 3월 ~ 현재 : 선문대학교 건축사회환경학부 부교수

<관심분야> 수자원시스템, 상하수도 관망시스템

이 승 현(Seung-Hyun Lee)

[정회원]

- 1988년 8월 : 서울대학교 토목공학
 과 (공학사)
- 1991년 2월 : 서울대학교 토목공학 과 (공학석사)
- 1997년 2월 : 서울대학교 토목공학 과 (공학박사)
- •2000년 3월 ~ 현재 : 선문대학교 건축사회환경학부 교수

<관심분야> 토질역학, 기초공학