종방향으로 보강된 팔각단면 쉘기둥의 축방향 압축강도 평가

최병호^{1*}, 김정원² ¹한밭대학교 건설환경공학과, ²한밭대학교 일반대학원 토목공학과

Compressive Strength Evaluation of Longitudinally Stiffened Octangular-Section Modular Shell Towers

Byung Ho Choi^{1*}, Jung Won Kim² ¹Department of Civil Engineering, Hanbat National University ²Department of Civil Engineering, Graduate School, Hanbat National University

요 약 본 논문은 팔각단면 모듈러 타워의 공칭압축강도의 산정에 관한 것이다. 종방향으로 보강된 팔각단면 타워모듈의 압축강도 성능을 3차원 유한요소해석으로 평가하고, 유로코드를 응용해서 산정한 공칭강도와의 비교 분석을 통해 적정 내하 력 산정방식에 대해 검토하였다. 수치해석적으로 평가된 압축강도는 공칭압축강도에 비해 상당히 높게 나타나고 있으므로, 해당 범위의 팔각단면 타워모듈에 대한 적용성을 보여주나 다소 과도하게 보수적인 면에 대해서는 후속 연구를 통해 보완될 필요성이 있다.

Abstract This paper examined the uniaxial compressive strength of longitudinally-stiffened octangular modular section towers. Through a series of comparative studies, the 3-dimensional finite element analysis results were considerably larger than the nominal strength values based on Eurocode. Therefore, the design strength equations are simply applicable to the design of the octangular-section tower module, but a more rational method will be needed to properly predict the capacity.

Keywords : Compressive Strength; Longitudinal Stiffener; Polygonal Section; Stiffened Plate; Ultimate Strength; Wind Turbine Tower.

1. 서론

최근까지도 풍력발전용 타워구조는 대부분 강재 튜브 형식, 즉 원형강관을 주로 사용해 오고 있다. 대용량화가 가속화되어감에 따라 기존의 원형강관 형식을 적용하게 되면 운송 중 제약과 더불어 가설 어려움이 초래되어 비 용이 상승되는 단점이 있다. 유럽 및 미국 등 선진 국외 에서도 대형 풍력타워의 요구직경을 충족시키면서 운송 에 용이한 조립식 풍력타워의 필요성이 제기된 바 있으 며, 이에 모듈러 공법이 대안으로 제시되고 있다. 대형 풍력타워에서는 타워의 단면을 여러 개의 세그 먼트로 나누고 길이방향으로 쪼개어 운반한 뒤 현장에서 조립하여 시공하는 방식의 모듈러 공법이 시범적으로 적 용되고 있다. 이에 따라 운송 및 현장 여건에 맞춰 소요 작업이 이뤄질 수 있도록 조정이 가능해진다.

풍력발전은 유럽지역에서 가장 활발히 활용되고 있기 때문에 풍력발전타워구조는 주로 유로코드[1,2,3]를 기 준으로 하여 인증되어 오고 있다. 따라서 본 연구에서는 유로코드를 준용하여 설계된 모듈러 풍력타워에 적용할 팔각형 단면 모듈에 대해 검토하였다. 이 과정에서 다각 형 단면의 유효단면 산정 과정이 매우 복잡한테다 다소 높은 강성을 요구하는 특성이 파악되었으며, 해석적으로

본 연구는 국토교통기술촉진연구사업의 연구비지원(과제번호 12기술혁신E09)에 의해 수행되었으며, 이에 감사드립니다. *Corresponding Author : Choi, Byung-Ho(Hanbat National Univ.) Tel: +82-42-821-1105 Email: bhchoi@hanbat.ac.kr Received December 15, 2015 Revised January 4, 2016 Accepted January 5, 2016 Published January 31, 2016 평가할 필요성이 제기되었다.

일반적으로 풍력타워구조와 같은 기둥의 극한강도 설 계기준은 전체단면이 동시에 제작되고 모서리가 직각인 경우를 주요 대상으로 하고 있다. 본 논문의 모듈러 타워 처럼 다각형 단면 형상을 갖으며 둘레방향으로 조립식 단면을 구성한 구조의 적용에 관한 관련 지침[4,5]이나 연구가 미비한 형편이다. 따라서 본 연구에서는 유로코 드(Eurocode)에 기반하여 팔각형 단면 모듈을 예비설계 한 후에 3차원 유한요소해석 모델을 수립하고 비선형 수 치해석을 실시하였다. 이로부터 팔각단면 타워모듈의 극 한 압축강도 성능을 평가하고 공칭설계강도와의 비교 분 석을 통해 적정 내하력 산정방식에 대해 분석하였다.

2. 팔각단면 모듈의 단면설계

2.1 개요 및 특징

본 논문의 팔각단면 쉘타워구조는 높이 120m, 발전 용량 10Mw급에 대한 것으로써 단면 외접원의 지름이 8m이상인 대단면이어서 복수의 모듈 부재를 이음패널 로써 맞대어 서로 연결해서 구성되는 방식적 특징을 갖 는다(Fig. 1). 모듈 부재간의 패널 이음부를 중심으로 한 보강판 구조가 형성된다. 이 보강된 판을 둘레방향으로 연속적으로 연결하면 모듈러 풍력타워의 각 높이별 단면 을 형성하는 팔각단면 모듈을 이루게 된다.

Fig. 1. Fabrication Process of Modular Tower

즉, Fig. 2에서 보이듯이 팔각단면 한 면이 되는 모서 리 사이 폭(B)의 중앙부에 T-형단면 종방향 보강재를 배 치한 바와 같다. 각각의 팔각단면 모듈을 높이방향으로 적층하면 모듈러 타워 구조를 형성해 나간다.

각각의 모듈부재는 절곡 등 냉간성형 방식으로 제작 되므로, 이들을 이어 붙여 형성한 팔각단면 모듈은 둥근 모서리를 갖는 단면이 된다. 냉간성형 단면의 유효폭 산 정 방안[2]을 적용하면 절곡부 사이의 폭 b에서 저감폭 gr을 차감하여 각진 모서리의 등가유효폭이 산정된다 (Fig. 3(a)).이를 근거로 하여 Fig. 3(b)와 같이 등가유효 폭 bp와 보강부 유효길이 cp를 갖는 각진 보강판 단면을 한 면으로 하는 팔각형 단면을 상정하였다.

(a) Sectional Shape (b) T-shape stiffener Fig. 2. Octangular Section Module

Fig. 3. Effective Section Concept

2.2 공칭 압축강도의 산정

본 논문에서 팔각단면 모듈의 공칭압축강도는 유로코 드[1,2,3]와 고전적인 평판의 좌굴이론[6]을 근간으로 해 서 본 절에 정한 방식에 따라 일관되게 산정하였다. 이에 따라, 팔각단면 모듈의 공칭강도는 아래 식 (1)과 같이 해당 강재의 항복강도에 유효단면적을 곱해서 정하도록 한다. 이 때, 다각형 단면 모듈의 총 유효단면적(Aeff)은 다각형 한 면을 구성하는 각 보강판 단면의 유효단면적 (Ac,eff)을 각형 수(np)에 따라 합한 값이 되며 이는 식 (2) 에 해당된다.

$$N_{cr,d} = f_y A_{eff} \tag{1}$$

$$A_{eff} = A_{c,eff} n_p \tag{2}$$

Fig. 4. Effective Area of a Polygon Side (Ac,eff)

각 보강판 단면의 유효단면적(A_{c,eff})은 아래 식 (3)과 같이 보강재와 주변 패널부로 구성되는 보강부(A_{c,eff,loc}) 와 그 외 모서리부(b_{edge})로 나뉜다.

$$A_{c,eff} = \rho_c A_{c,eff,loc} + \sum b_{edge,eff} t$$
(3)

여기서 주목할 만한 사실은 보강부의 유효단면적 A_{c.eff,loc}는 저감계수 ρ_c에 의해 보정된다는 점이다. ρ_c는 유효보강부의 기둥좌굴모드 특성과 보강된 판의 직교이 방성판좌굴모드 특성을 복합적으로 고려하는 계수이다. 보강부의 유효단면적 A_{c.eff,loc}는 보강재 주변에 위치한 각 국부패널(b_i)의 유효단면적(ρ_ib_i)과 유효보강재단면 (A_{sl.eff})의 합으로 구성되며, 아래 식 (4)와 같다.

$$A_{c,eff,loc} = A_{sl,eff} + \sum_{i}^{n} \rho_i b_i t \tag{4}$$

보강판을 구성하는 국부패널의 유효단면은 보강판의 각 국부패널에서 국부판좌굴의 영향을 고려한 국부판좌 굴저감계수 ρ_i에 따라 저감해서 정해지며, Fig. 5의 음영 부분이 이에 해당된다. Fig. 5에서 볼 수 있듯이, 국부판 좌굴저감계수 ρ_i는 모서리부 패널(b_{edge})에도 해당 영역 에 따라 일관성 있게 적용한다.

Fig. 5. Effective Area due to Local Panel Buckling

Table 1. Dimensions of Tower Module Section

Section	R	В	b	bp	t	b _p /t	а
	(m)	(mm)	(mm)	(mm)	(mm)	(mm)	(m)
Poly01-01	8.53	3262	1631	1592	22	72	10
Poly01-02	8.53	3262	1631	1592	22	72	10
Poly01-03	8.53	3262	1631	1594	21	76	10
Poly01-04	8.53	3262	1631	1594	21	76	10
Poly01-05	8.53	3262	1631	1596	20	80	10
Poly01-06	8.53	3262	1631	1597	19	84	10
Poly01-07	8.09	3097	1549	1516	18	84	10
Poly01-08	7.66	2932	1466	1434	17	84	10
Poly01-09	7.23	2766	1383	1353	16	85	10
Poly01-10	6.80	2601	1300	1271	15	85	10
Poly01-11	6.36	2436	1218	1189	14	85	10
Poly01-12	5.93	2270	1135	1110	12	92	10
Poly01-13	5.50	2105	1052	1028	11	93	10
Poly02-01	9.30	3559	1631	1597	19	84	20
Poly02-02	9.30	3559	1631	1599	18	89	20
Poly02-03	9.30	3559	1631	1601	17	94	20
Poly02-04	8.83	3379	1631	1604	15	107	20
Poly02-05	7.89	3018	1631	1606	14	115	20
Poly02-06	6.94	2657	1631	1610	12	134	20
Poly02-07	6.00	2296	1549	1532	9	170	20

3. 수치해석 모델링

3.1 타워모듈 해석모델

Table 1과 같이 타워모듈 단면이 예비 설계되었다. 각 타워모듈 단면의 공칭강도는 앞장에서 소개된 방식으로 유로코드를 응용하여 유효단면적을 계산하여 정해졌다. 이와 같이 설계된 제원을 기준으로 하여 해석대상 모델 을 선정하였다. 총 120m의 높이를 구성하는 각 타워모 듈 높이(10m 또는 20m)에 따라 두 가지 타입으로써 정 해졌으며, 각 해석모델 단면의 외접원 직경이 최대 8.53m에서 최소 5.5m 및 최대 9.3m에서 최소 6.0m인 대형단면을 형성하고 있다. 강재 판두께는 9mm에서 22mm의 범위에 놓여있다. 타워모듈 압축강도 해석 모 델은 Table 1에 표현된 바와 같이 각 기호로 구분되어 있다.

3.2 초기변형 및 재료특성

비선형해석을 위한 해석모델의 초기변형은 고유치 좌 굴해석을 수행한 후 얻은 가장 취약한 좌굴모드 형상을 해석모델에 도입하여 구성하였다. 본 해석모델의 범위에 서는 절곡부 사이 국부패널의 판좌굴모드가 주로 제 1 좌굴모드로 나타나므로, 이를 고려하여 초기변형을 가정 하였다. 유로코드[3]에서 제시하는 평판부재의 면외변형은 네 변지지 사이 길이나 폭 중에 작은 변의 1/200 이내가 되 도록 제한되어 있다. 따라서 본 규정을 적용하여 본 해석 모델의 초기변형은 국부패널의 폭(b)을 기준하여 b/200 이 최대 면외변형이 되도록 고려하였다.

재료특성[7]은 국내 설계기준을 반영하여 항복강도가 460MPa급인 강재의 완전탄소성 재료모형을 적용하였 다. 이에 따라, 탄성계수는 205,000 MPa이고 포와송비 는 0.3이다.

3.3 유한요소모델링

Fig. 6은 팔각단면 타워모듈의 유한요소해석 모형을 나타낸다. 타워모듈과 이음패널의 유한요소망은 4절점 판요소인 S4R을 이용하여 구성하였다. 각 타워모듈의 높이는 10m 또는 20m이고 양 끝단에 다이아프램이 설 치되는데 이로 인한 해당 단면의 상대변위 구속효과를 MPC요소(Kinematic coupling)[8,9]를 적용하여 구현하 였다. 유한요소해석 범용 프로그램인 ABAQUS[10]를 이용하여 비선형해석을 실시하였으며, 이 때 증분해석은 뉴턴법(Newton method)과 정점에 도달한 이후의 거동 추적 알고리즘인 Riks를 적용하여 수행하였다. 해석모델 의 경계조건은 하단에서 단순지지 조건으로써 변위를 구 속하였다. 하중은 상단에서 팔각모듈의 단면에 축방향으 로 균일한 압축응력을 재하하였다.

Fig. 6. Finite Element Modeling

4. 결과 분석

4.1 타워모듈의 압축강도 평가

Table 3은 본 유한요소해석으로부터 평가된 압축강도

(N_{FEM})를 공칭압축강도(N_{er,d})와 비교하고 있다. 여기에 제시된 공칭압축강도는 앞서 제시된 방식에 따라 각각의 팔각단면 타워모듈에 대해 산정된 유효단면적(A_{eff})에 근 거하며, 이는 Table 2에 나타낸 바와 같다. 여기서 팔각 단면 모듈 중에 유효단면적(A_{eff})과 공칭압축강도가 평가 되지 못한 사례도 포함되어 있다. 이는 주로 *ξ*계수의 허 용범위를 벗어나는 경우에 해당된다.

Table 2. Effective Section Area of Each Tower Module

Section	ρ	χ_c	ξ	ρ	A_{eff} (mm ²)
Poly01-01	0.69	0.43	0.06	0.46	2.62E+05
Poly01-02	0.69	0.43	0.06	0.46	2.62E+05
Poly01-03	0.68	0.43	0.01	0.44	2.37E+05
Poly01-04	0.68	0.43	0.01	0.44	2.37E+05
Poly01-05	0.67	0.44	-	-	-
Poly01-06	0.67	0.45	-	-	-
Poly01-07	0.68	0.45	-	-	-
Poly01-08	0.69	0.45	-	-	-
Poly01-09	0.71	0.46	0.01	0.46	1.53E+05
Poly01-10	0.72	0.46	0.06	0.49	1.42E+05
Poly01-11	0.74	0.46	0.11	0.52	1.30E+05
Poly01-12	0.74	0.48	0.07	0.51	1.01E+05
Poly01-13	0.75	0.48	0.13	0.54	9.07E+04
Poly02-01	0.84	0.49	0.48	0.75	3.60E+05
Poly02-02	0.83	0.50	0.40	0.71	3.21E+05
Poly02-03	0.82	0.50	0.32	0.67	2.83E+05
Poly02-04	0.79	0.51	0.16	0.59	2.16E+05
Poly02-05	0.78	0.51	0.07	0.55	1.87E+05
Poly02-06	0.74	0.52	-	-	-

Table 3. Comparative Study on Analysis Results

Section	A _{c,eff} (×10 ⁴ mm)	A _{eff} (×10 ⁵ mm)	Ag (×10 ⁵ mm)	Ner (×10 ⁵ kN)		Diff. (%)
Poly01-01	3.28	2.62	4.12	2.01	1.21	66%
Poly01-02	3.28	2.62	4.12	2.01	1.21	66%
Poly01-03	2.96	2.37	3.94	1.91	1.09	75%
Poly01-04	2.96	2.37	3.94	1.91	1.09	75%
Poly01-05	-	-	3.75	1.76	-	-
Poly01-06	-	-	3.57	1.63	-	-
Poly01-07	-	-	3.26	1.50	-	-
Poly01-08	-	-	2.97	1.36	-	-
Poly01-09	1.92	1.53	2.69	1.23	0.71	73%
Poly01-10	1.77	1.42	2.42	1.15	0.65	77%
Poly01-11	1.63	1.30	2.17	1.00	0.60	67%
Poly01-12	1.26	1.01	1.79	0.79	0.46	72%
Poly01-13	1.13	9.07	1.56	0.70	0.42	67%
Poly02-01	4.50	3.60	4.78	2.24	1.66	35%
Poly02-02	4.01	3.21	4.53	2.08	1.48	41%
Poly02-03	3.54	2.83	4.29	1.92	1.30	48%
Poly02-04	2.70	2.16	3.79	1.63	0.99	65%
Poly02-05	2.34	1.87	3.53	1.46	0.86	70%
Poly02-06	-	-	3.03	1.17	-	-

유한요소해석으로부터 평가된 압축강도(N_{FEM})는 Table 3 에 제시된 공칭압축강도(N_{cr,d})에 비해 상당히 높게 나타 나고 있다. 이에 따라, 본 논문에 제시된 공칭압축강도 산정방식은 해당 범위의 팔각단면 타워모듈에 대해 적용 가능함을 보여주고 있으나, 다소 과도하게 보수적인 결 과들도 나타나고 있어 추후 보완할 필요성도 보여준다. 특히 해석모텔 중에 유효단면이 적절하지 않게 평가된 사례에서도 총단면적(A_g)에 따라 일관성 있는 유사한 수 준 이상의 강도 성능을 나타내고 있으므로, 이 부분에 대 해서도 개선이 요구된다.

Fig. 7은 대표적인 극한파괴모드를 보여준다. 최대압 축력에 도달할 때 보강부와 모서리부 사이 국부판의 면 외방향 좌굴거동으로 인해 한계상태에 도달하는 것을 알 수 있다. 보강부에서 국부판좌굴모드의 고정점이 형성되 며 이를 기점으로 유효판좌굴길이가 형성되는 것을 볼 수 있다. 이러한 고정점의 형성 여부는 본 팔각단면 모듈 의 압축강도에 영향을 끼칠 것이므로, 패널 이음부의 적 정 길이를 정할 때 중요한 판단 근거가 되어야 할 것으 로 사료된다.

Fig. 7. Ultimate Failure Modes

4.2 설계파라미터 영향 분석

주요 설계파라미터에 따른 의존성이나 영향을 살펴보 기 위해 해석결과 압축강도의 추이를 분석하였다. Fig. 8 은 해석적으로 평가된 압축강도의 공칭압축강도에 대한 강도비를 판두께(thickness), 판두께(thickness), 좌굴저 감계수 ρ_c와 ρ_{loc} 및 탄성좌굴응력비계수 ξ에 따라 나타 내고 있다. 여기서 ρ_c와 ρ_{loc}에 따른 압축강도비는 파라 미터 값이 높을수록 다소 저하되는 추세를 보인다. 특히 해석모듈의 높이가 큰 사례(a=20m)에서 이러한 경향이 보다 두드러졌다.

(c) Strength Ratio along ρ_{loc}

Fig. 8. Strength Variation along Design Parameters

5. 결론

본 논문에서는 팔각단면 모듈러 타워의 공칭압축강 도 산정 방식을 제시하고 비선형 유한요소해석 결과와 비교 분석을 통해 공칭 내하력 산정방식에 대해 검토하 였다. 본 논문에 제시된 팔각단면 타워모듈의 공칭압축 강도 산정방식의 해당 범위에서 적용성을 확인하였으나 추후 보완할 사안도 알 수 있었다.

수치해석으로 평가된 압축강도의 공칭압축강도에 대 한 강도비는 판 두께나 유효단면적이 증가함에 따라 다 소 저하되는 추세를 보인다. 특히 해석모듈 높이가 큰 사 례(a=20m)에서 이러한 경향이 두드러졌다. 해석모델 중 에 적절치 않게 평가된 사례들도 일관성 있는 강도 성능 을 나타내고 있으므로 향후 이들에 관한 개선이 요구된다.

References

- CEN, "Eurocode 3 Design of Steel Structures", EN 1993-1-1, European committee for standardization, 2006.
- [2] CEN, "Eurocode 3 Design of Steel Structures", EN 1993-1-3, European committee for standardization. 2006.
- [3] CEN, "Eurocode 3 Design of Steel Structures", EN 1993-1-5, European committee for standardization. 2006.
- [4] AASHTO LRFD Bridge Design Specifications American Association of State Highway and Transportation Officials, Inc., Washington, D.C. 2007.
- [5] Korea Road and Transportation Association, Desige Specifications for Roadway Bridges, 2012.
- [6] Stephen P. Timoshenko & James M. Gere, Theory of Elastic Stability, Mineola, N.Y Dover Publications, Second Edition, 2009.
- [7] S. Y. Choi, P. G. Lee, K. I. Cho, B. H. Choi,

"Analytical Study on Structural Ductility of HSB500 Thick-Walled Press-Braked U-section Steel Beams", Jouranl of KOSHAM, Vol. 11, pp. 11, 2013.

- [8] B. H. Choi, S. M. Park, M. O. Hwang, "Finite Element Analyses on Ultimate Compressive Strength of Longitudinally Stiffened Polygonal Sections", Journal of KOSHAM, pp. 40, 2011.
- [9] B. H. Choi, S. M. Park, M. O. Hwang, Local Buckling Strength of Modular Hexagon-section Shell Wind-Turbine Towers, Journal of KOSHAM, Vol. 13, No. 1, pp. 081-087, 2013. DOI: <u>http://dx.doi.org/10.9798/KOSHAM.2013.13.1.081</u>
- [10] ABAQUS, "Analysis User's Manual", version 6.14, 2014.

최 병 호(Byung Ho Choi)

[정회원]

- 2002년 12월 : Auburn University (구조공학박사)
- 2003년 11월 ~ 2008년 3월 : 포항 산업과학연구원 선임연구원
- 2008년 4월 ~ 2009년 8월 : 포항 산업과학연구원 책임연구원
- •2009년 9월 ~ 현재 : 한밭대학교 건설환경공학과 교수

<관심분야> 강구조공학, 합성구조, 복합신소재구조공학

김 정 원(Jung Won Kim)

[준회원]

• 2013년 9월 ~ 현재 : 한밭대학교 일반대학원 토목공학과 석사과정

<관심분야> 구조공학, 강구조공학