자력선별방식을 이용한 고순도 실리카 정제 최적화를 위한 전산모사

최현진¹, 조영민², 이준엽³, 김상범^{1*} ¹한국생산기술연구원 청정생산시스템연구소 ²경희대학교 환경학 및 환경공학과 ³㈜ 우리

Design simulation of magnetic separator for purification of silica sand

Hyun-Jin Choi¹, Young Min Jo², Jun Yub Lee³, Sang Bum Kim^{1*} ¹Green Process and Materials Group, Korea Institute of Industrial Technology ²Department of Environmental Science and Engineering, Kyung Hee University ³R&D Center, WOORI CO. Ltd.

요 약 실리카는 다양한 산업용 소재로 이용되고 있으며, 특히 불순물의 함량이 적은 고품위 실리카는 전자소재인 LCD 및 OLED 등의 원재료로 큰 주목을 받고 있다. 본 연구에서는 물리적 정제방법인 자력선별 방식에 의한 실리카의 고순도화 연구를 위해 세 가지 형태의 자력 선별기를 고려하여 SiO₂와 Fe₂O₃를 대상으로 전산모사를 실시하였다. 전산모사 결과, Fe₂O₃ 입자를 끌어당길 수 있는 유효면적이 자력선별의 매우 중요한 변수로 작용함을 확인하였으며, SiO₂ 입자의 손실율 및 Fe₂O₃ 입자의 제거율은 입자의 크기와 유속에 매우 큰 영향을 받음을 알 수 있었다. 본 연구에서는 입자크기 10 µm, 유속 0.2 m/s의 조건에서 가장 우수한 분리효율의 확보가 가능하였으며, 자력선별기의 구성에 있어 입자의 크기, 유속, 자속 밀도가 매우 핵심적인 변수임을 증명하였다.

Abstract Silica is an essential material in the electronics industries of LCDs and OLEDs, which particularly require high purity. This study attempted to find the optimal design of a magnetic separator for silica sand containing iron compounds using CFD simulation. Three designs of magnetic separation were prepared and their efficiency was examined. As a result of the evaluation, the sufficient contact of particulate silica with the surface of magnetic emitters improved the magnetic separation effects. In addition, the loss of SiO₂ and the removal rate of Fe₂O₃ depended strongly on the particle size, flow rate and magnetic flux density. In addition, magnetic separation is quite effective for a particle size of 10 μ m with a 0.2 m/s flow rate.

Keywords : Iron particle, Magnetic separation, Purification, Silica, Numerical simulation

1. 서 론

최근 급속한 IT 산업의 발전에 따라 세계 디스플레이 시장은 지속적인 고속성장을 이루었으며, 이와 관련한 부품소재산업 역시 향후 기술의 발전과 시장 성장 잠재 력이 매우 큰 분야로 큰 주목을 받고 있다. 특히 순도가 높은 (99.5~99.99%) 고품위 실리카 (Silica, SiO₂) 의 경 우 디스플레이 부품소재 중 초고순도 유리 기판을 구성 하는 핵심소재로 사용될 뿐만 아니라, EMC (Epoxy Molding Compound)와 같은 전자소재, 도료 및 충진제 와 같이 다양한 산업소재의 원료로써 그 활용가치가 매 우 높다고 할 수 있다 [1-4]. 그러나 국내의 경우 고품위

^{*}Corresponding Author : Sang Bum Kim (Korea Institute of Industrial Technology) Tel: +82-10-8978-9677 email: sbkim@kitech.re.kr Received September 4, 2015 Revised September 22, 2015 Accepted January 5, 2016 Published January 31, 2016 실리카의 부존양이 적고, 또한 현재 생산되고 있는 대부 분의 실리카는 SiO₂의 화학성분 품위가 낮기 때문에 디 스플레이용 유리 기판 등과 같은 고순도 실리카 원료 소 재는 대부분 중국산과 인도산의 규석광 또는 호주산 규 사를 수입하여 사용하고 있는 실정이다. 또한 최근 고순 도 실리카 원료 소재의 수요가 급등하고 있으므로, 수입 대체 및 관련 산업의 원료소재를 확보하기 위해서는 실리 카의 고순도화 기술개발이 매우 시급하다고 할 수 있다 [5, 6].

저품위 실리카의 고품위화 및 순도개선을 위해서 물 리적 방법으로는 파쇄 및 분쇄 과정을 거친 후 세분화된 체거름, 비중선별 및 자력선별 방법이 주로 이용되고 있 으며 [1,2], 화학적 방법으로는 옥살산 (Oxalic acid) 및 혼합산 (Mixed acid) 등을 이용한 침출법이 사용되고 있 다 [2,7-10]. 그러나 상기의 언급된 화학적 방법의 경우 물리적 방법에 비하여 순도개선효과는 우수할 수 있으 나, 시료의 전처리가 요구되며 이에 따른 공정의 번거로 움, 제품의 후처리 등의 문제점이 지속적으로 대두되고 있다 [1]. 반면, 물리적 방법의 경우 순도개선효과는 화 학적 방법에 비하여 낮으나, 공정이 간편하며 경제적이 고 적용성이 우수하기 때문에 실제 산업현장에서의 활용 도가 매우 높다고 할 수 있다 [1]. 특히 자력 선별방식은 구성성분 간의 자성의 차이를 이용하여 원하는 광물을 선별하는 방식으로 광산, 제철소 등에서 특정 물질의 회 수와 오염물질의 제어를 위해 사용되어 왔으며 [11, 12] 최근 이를 이용하여 철 성분을 포함한 미세먼지 포집에 관한 연구도 보고되었다 [11].

한편, 고순도 실리카의 회수와 정제를 위해 사용되고 있는 자력 선별기는 대부분 드럼형태 내부에 마그네틱을 일부분 부착하여 드럼을 회전시키면서 자력 유무에 따라 불순물인 철 성분들을 분리시키는 magnetic drum separator 형태이다. 따라서 본 연구에서는 상용화되어 있는 3종 (수직 실린더 형태, 수평·수직 실린더 형태 2 종)의 자력선별기의 형태를 고려하여, SiO₂와 Fe₂O₃를 대상으로 하여 전산모사를 실시하였으며, 유속, 입자크 기 및 자속밀도에 따른 입자들 간의 분리효율을 고찰하 였다.

2. 실 험

2.1 전산모사 조건

본 연구는 실리카에 포함되어 불순물로 작용하는 철

성분을 제거하는 것을 그 목적으로 하며, 실리카 원료는 오스트레일리아에서 수입된 규사로써 불순물로는 주로 Fe₂O₃이며 성분분석결과를 Table 1에 나타내었다. 한편 본 연구에서 전산모사를 위해 적용한 물질의 특성 값을 Table 2에 요약하여 나타내었다.

SiO ₂ [%]	99.80
CaO [ppm]	44.7
Cr ₂ O ₃ [ppm]	0.44
Fe ₂ O ³ [ppm]	180.2
K ₂ O [ppm]	15.2
MgO [ppm]	6.6
MnO ₂ [ppm]	1.5
Na ₂ O [ppm]	28.4

Table 1. Chemical composition of silica sand.

Table 2. Simulation conditions of silica and iron.

Properties	SiO ₂	Fe ₂ O ₃	Air
Particle size [µm]	10, 60, 100	10, 60, 100	-
Density [kg/m ³]	2,300	4,500	1.29
Electric conductivity [1/ohm-m]	1e-12	6.99e6	5e-15
Magnetic permeability [h/m]	1.256e-6	1	1e-15
Charge density [c/m ³]	0	0	0
Viscosity [kg/m-s]	-	-	1.789e-5
Temperature [K]	298.15	298.15	298.15

또한, 전산모사에 사용된 자력선별기의 형태는 앞 절 에서 언급한 바와 같이 첫 번째는 수직의 실린더 형태에 지그재그 모양으로 마그네틱을 구성하였으며, 두 번째, 그리고 세 번째는 수평과 수직의 흐름을 함께 고려하고 구성하였고, 이를 아래 Fig. 1에 나타내었다. 사용된 simulation tool은 COMSOL Multiphysics를 이용하였으 며 주로 Finite element analysis (accurate)와 Multi-Physics Coupling 등을 적용하여 전산모사를 수행 하였다.

Configuration 3

Fig. 1. Structure of magnetic separator for design simulation.

3. 결 과

3.1 Configuration 1

첫 번째 수직 형태 자력선별기의 시간 및 유속에 따른 SiO₂ (Blue), Fe₂O₃ (Red) 입자의 전산모사 결과를 아래 의 Fig. 2와 같이 나타내었다.

Fig. 2. Particle behavior at configuration 1.

위의 결과에서 알 수 있듯, 수직 형태의 자력선별기의 경우 마그네틱이 입자를 유인할 수 있는 유효 접촉 면적 이 너무 적기 때문에 연속적으로 흐르는 유동체에서 효 과적으로 자력선별하기가 매우 어려운 것을 알 수 있다. 또한 유체흐름 방향에 따라 중력의 영향이 중요한 변수 로 작용하여 궁극적으로 큰 입자에 대한 분리효율에 영 향을 줄 수 있다.

3.2 Configuration 2

두 번째 수직 및 수평형태를 동시에 고려한 자력선별 기의 유속, 입자크기 및 자속밀도에 따른 SiO₂ 및 Fe₂O₃ 입자의 거동을 전산 모사한 결과를 Fig. 3에 나타내었다. 먼저 Fig 3(a)의 입자의 유속에 따른 결과를 살펴보면, 입자크기 10 µm, 자속밀도 1.2 T (Tesla)의 조건에서 유 속 0.3 m/s 이상에서는 Fe₂O₃ 입자의 자력선별이 용이하 지 않은 것을 확인하였다. 즉, 동일한 입자가 상대적으로 낮은 유속에서 자기장에 진입하게 되면 자기발생원 방향 으로 이동할 수 있는 확률이 크게 증가할 수 있음을 알 수 있다. 그러나 높은 유속에서 10 µm 정도의 입자는 유 속이 증가하면서 주 유체흐름 방향의 관성력을 크게 받 으므로 분리효율이 매우 낮게 나타났다.

입자유속 0.05 m/s, 자속밀도 1.2 T의 조건에서 입자 크기에 따른 영향 (Fig. 3(b))을 살펴보면, 60 µm의 입자 크기 영역에서는 전체 입자의 흐름이 원활하지 않아 Fe2O3 입자의 자력선별이 어려운 것을 확인할 수 있다. 상대적으로 중력의 영향을 크게 받는 크기가 큰 입자는 자석선별 구간에 이르지 못한 채 이송 덕트의 수평 부 분에서 바닥면으로 침강하였다. 따라서 configuration 2 는 불특정 조대입자나 비정상적인 크기나 무게의 입자가 포함되어 있을 경우, 세밀한 자성분리를 기대하기 어려 운 구조로 판단된다.

한편 유속 0.02 m/s, 입자크기 10 µm인 조건에서 자속 밀도에 따른 영향을 살펴보면 0.9 T 이상에서는 아래의 Fig. 3(c)와 같이 Fe₂O₃ 입자의 분리가 상대적으로 원활 히 이루어짐을 확인할 수 있었다. 즉, 관성력으로 작용하 는 중력의 영향이 상대적으로 적으므로 덕트 흐름 내에 서의 체류시간이 길고, 자기장의 영향을 크게 받을 수 있 다. 그렇지만 1.2 T의 자기력에 대하여 덕트의 수평부분 에서의 분리가 집중적으로 이루어지므로 장시간 운전이 진행될 때는 입자흐름의 방해요소로 작용할 수 있다. 보 다 더 바람직하게는 수평 및 수직부분의 자성 분리판에 서 고르게 포집되는 것이 효과적일 수 있다.

0.05 m/s- 10 μm- Br=1.2 T 0.1 m/s- 10 μm- Br=1.2 T 0.2 m/s- 10 μm - Br=1.2 T 0.3 m/s- 10 μm - Br=1.2 T

Configuration 2 구조에서 유속 및 입자크기에 따른 Fe2O3의 제거율과 SiO2의 손실율의 관계는 F2O3의 제거 율이 감소하면 SiO2의 손실율이 증가하는 경향을 알 수 있으며, 유속 0.2 m/s, 입자크기 10 µm의 조건에서 분리 효율이 가장 우수한 것을 알 수 있다. 이상의 결과를 정 리하여 Table 3에 나타내었다.

Velocity [m/s]	Particle size [µm]	Removal rate [Fe ₂ O ₃]	Loss rate [SiO ₂]	Efficiency [%]
0.05	10	1	0.69	0.31
0.05	60	1	1.00	0.00
0.05	100	1	1.00	0.00
0.1	10	1	0.36	0.64
0.1	60	1	1.00	0.00
0.1	100	1	1.00	0.00
0.2	10	0.96	0.20	0.76
0.2	60	1	1.00	0.00
0.2	100	1	1.00	0.00
0.3	10	0.5	0.02	0.48
0.3	60	1	1.00	0.00
0.3	100	1	1.00	0.00
0.5	10	0.5	0.11	0.39
0.5	60	1	1.00	0.00
0.5	100	1	1.00	0.00

Table 3. Separation efficiency of configuration 2 with various conditions.

3.3 Configuration 3

세 번째 수직 및 수평형태를 동시에 고려한 자력 선별 기의 유속, 입자크기 및 자속밀도에 따른 SiO2 및 Fe2O3 입자 거동의 전산모사 결과를 Fig. 4에 나타내었다. Fig. 4(a)의 자속밀도 1.2 T의 조건에서 입자크기별 유속에 따른 Fe₂O₃ 입자의 분리를 살펴보면, 결과에서 알 수 있 듯, 입자크기 10 µm에서 유속 0.5 m/s 이상의 경우 Fe₂O₃ 입자의 자력선별이 어려운 것을 확인할 수 있으며, 입자 크기 60 µm 이상에서는 전체 입자의 흐름이 원활하지 않 아 자력선별이 역시 어려운 상황임을 알 수 있다. 또한 유속 0.1 m/s, 입자크기 10 µm와 60 µm에서의 자속밀도 에 따른 영향을 살펴보면 (Fig 4(b)), 결과에서 알 수 있 듯 자기력의 존재 하에서 입자크기 10 µm인 경우 분리가 원활하나, 60 µm 이상의 입자의 경우 역시 입자의 흐름 이 원활하지 않아 자력선별이 용이하지 않음을 알 수 있다. Configuration 3 구조의 입자크기, 유속 및 자속밀도 에 따른 Fe2O3 입자의 제거율 및 SiO2 입자의 손실율과 의 관계를 살펴보면 Configuration 2의 형태와 마찬가지

로 F2O3의 제거율이 증가하면 SiO2 손실율 이 감소하는

것을 알 수 있으며, 입자크기 60 µm 이상에서는 전체 입 자의 흐름이 원활하지 않아 자력선별이 어려우며, 10 µm 입자의 분리효율이 상대적으로 높은 것을 알 수 있다. 언 급된 결과에 대하여 Table 4에 정리하여 나타내었다.

Br= 1.2 T, w/ gravity, 0.1 m/s, 10 μm Br= 1.2 T, w/ gravity, 0.5 m/s, 10 μm

Br= 1.2 T, w/ gravity, 0.1 m/s,60 μm Br= 1.2 T, w/ gravity, 0.5 m/s,60 μm

(a) Effect of velocity and particle size

Fig. 4. Particle behavior at configuration 2.

 Table 4. Separation efficiency of configuration 3 at various conditions.

Velocity [m/s]	Particle size [µm]	Removal rate [Fe ₂ O ₃]	Loss rate [SiO ₂]	Efficiency [%]
0.1	10	1	0.44	0.56
0.3	10	0.7	0.12	0.58
0.5	10	0.54	0.14	0.4
0.1	10	0.88	0.48	0.4
0.1	10	1	0.5	0.5
0.1	10	0.66	0.2	0.46
0.3	10	0.46	0.22	0.24
0.5	10	0.4	0.18	0.22
0.1	60	1	1	0
0.3	60	1	1	0
0.5	60	1	1	0
0.1	60	0.16	0.7	-0.54
0.1	60	1	1	0
0.1	60	1	0.02	0.98
0.3	60	1	0.02	0.98
0.5	60	1	0	1

4. 결 론

본 연구에서는 고순도 실리카의 회수와 정제를 위해 3 종류의 magnetic drum separator에 대하여 입자 크기 및 유속, 자속밀도에 따른 전산모사를 실시하였다. 그 결 과, configuration 1 형태의 경우 Fe₂O₃ 입자를 유인할 수 있는 유효면적이 상대적으로 매우 적어 효과적인 분 리가 어려움을 확인하였으며, configuration 2 형태의 경 우 Fe₂O₃ 입자의 제거효율이 감소하면 SiO₂ 입자의 손 실율은 감소하는 경향을 가지며, 유속 0.2 m/s, 입자크기 10 µm의 조건에서 가장 우수한 분리효율을 나타내었다. Configuration 3 형태의 경우 configuration 2의 형태와 유사한 경향을 보였으며, 입자크기 60 µm 이상에서는 전 체 입자들의 흐름이 원활하지 않아 자력선별이 용이하지 않음을 알 수 있었다.

References

- J. -Y. Hyun, S. -B. Jeong, Y. -B. Chae, "High purification characteristics of quartz with physical separation method", J. Miner. Soc. Korea, vol. 19, pp. 1-5, 2006.
- [2] K. Y. Lee, Y. Y. Yoon, S. Y. Cho, Y. -B. Chae, "Impurity analysis and acid heating purification of silica minerals", Anal. Sci. Technol., vol. 20, pp. 516-523, 2007.
- [3] Y. -C. Yang, S. -B. Jeong, Y. -B. Chae, S. Kim, "Preparation of high-grade silica sand for metallurgical-grade Si using a physical beneficaton", J. Miner. Soc. Korea, vol. 22, pp. 191-197, 2009.
- [4] C. A. Edem, S. P. Malu, B. I. Ita, "Characterization and beneficiation of the glass making potentials of silica sand deposit from river benue north central nigeria", Journal of Natural Sciences Research, vol. 4, pp. 49-58, 2014.
- [5] Y. Y. Yoon, K. Y. Lee, S. Y. Cho, S. B. Chung, Y. B. Chae, "Impurity variation in high purity silica mineral with different leaching methods", Anal. Sci. Technol., vol. 21, pp. 332-337, 2008.
- [6] Y. B. Chae, S. B. Chung, Y. T. Kim, "High purity careful manufacture method of naturalsilica", Korea patent, 10-2002-0055190, 2002.
- [7] M. Taziarchou, D. Panias, I. Douni, I. Paspaliaris, A. Kontopoulos, "Removal of iron from silica by leaching with oxalic acid", Hydrometallurgy, vol. 46, pp. 215-227, 1997. DOI: <u>http://dx.doi.org/10.1016/S0304-386X(97)00015-7</u>
- [8] M. Taziarchou, D. Panias, I. Douni, I. Paspaliaris, A. Kontopoulos, "Dissolution of hematite in acidic oxalate solutions", Hydrometallurgy, vol. 44, pp. 287-299, 1997.

DOI: http://dx.doi.org/10.1016/S0304-386X(96)00075-8

- [9] S. O. Lee, T. Tran, Y. Y. Park, S. J. Kim, M. J. Kim, "Study on the kinetics of iron oxide leaching by oxalic acid", Int. J. Miner. Process, vol. 80, pp. 144-152 2006. DOI: <u>http://dx.doi.org/10.1016/j.minpro.2006.03.012</u>
- [10] F. Veglio, B. Passariello, C. Abbruzzese, "Iron removal process for high-purity silica sands production by oxalic acid leaching", Ind. Eng. Chem. Res., 38 4443, 1999. DOI: <u>http://dx.doi.org/10.1021/ie990156b</u>
- [11] H. Park, S. Huang, S. G. Chung, S. Kim, Y. M. Jo, "Fine iron dust collection by magnetized mesh filters", J. KOSAE, vol. 31, pp. 118-130, 2015. DOI: <u>http://dx.doi.org/10.5572/kosae.2015.31.2.118</u>
- [12] N. Gokon, A. Shimada, N. Hasegawa, H. Kaneko, Y. Tamura, K. Ito, T. Ohara, "The magnetic coagulation reaction between paramagnetic particles and iron ions coprecipitates", J. Magn. Magn. Mater., vol. 246, pp. 275-282, 2002. DOI: <u>http://dx.doi.org/10.1016/S0304-8853(02)00074-4</u>

최 현 진(Hyun-Jin Choi)

[정회원]

- •2009년 2월 : 경기대학교 환경공학 과 (공학사)
- •2011년 2월 : 경기대학교 환경공학 과 (공학석사)
- •2015년 8월 : 고려대학교 화공생명 공학과 (공학박사)
- 2011년 3월 ~ 현재 : 한국생산 기 술연구원 연구원

이 준 엽(Jun Yub Lee)

[정회원]

- 1991년 8월 : 고려대학교 화학공학
 과 (공학사)
- 1993년 8월 : 고려대학교 화학공학 과 (공학석사)
- 2002년 2월 : 고려대학교 화학공학
 과 (공학박사)
- 2008년 11월 ~ 현재 : ㈜ 우리 연 구소장

<관심분야> 기계소재, 대기환경

김 상 범(Sang Bum Kim)

[정회원]

- 1990년 2월 : 고려대학교 화학공학
 과 (공학사)
- 1993년 2월 : 고려대학교 화학공학 과 (공학석사)
- 2002년 2월 : 고려대학교 화학공학 과 (공학박사)
- •2004년 1월 ~ 현재 : 한국생산기 술연구원 수석연구원

<관심분야> 대기환경, 에어로졸

<관심분야>

조 영 민(Young Min Jo)

[정회원]

•1984년 2월 : 고려대학교 화학공학 과 (공학사)

- 1986년 2월 : 고려대학교 화학공학 과 (공학석사)
- 1997년 5월 : 뉴사우스웨일즈대학 교 화학공학과 (공학박사)
- •1998년 3월 ~ 현재 : 경희대학교 환경공학과 교수

<관심분야> 대기오염제어