# 고조파 억제를 위한 IoT 센서용 소형 마이크로스트립 패치 안테나

이현승, 임정택, 정방철, 김철영<sup>\*</sup> 충남대학교 전자공학과

# Harmonic Suppression Compact Microstrip Patch Antenna for IoT Sensor

# Hyun-Seung Lee, Jeong-Taek Lim, Bang-Chul Jung, Choul-Young Kim\* Dept. of Electronics Engineering, Chungnam National University

**요 약** 본 논문에서는 요즘 많은 관심이 대두되고 있는 무선전력전송에 사용하는 랙테나를 소형화시키기 위해 대역저지필터 (BSF)를 포함시켜 고조파를 억제시킨 IoT 센서용 소형 마이크로스트립 패치 안테나를 제안한다. 재 방사 될 수 있는 고조파 성분을 억압하기 위하여 대역저지필터 역할을 하는 U-slot을 안테나의 그라운드 면에 삽입시킴으로써 안테나의 크기를 그대 로 유지하면서도 고조파를 제거할 수 있는 마이크로스트립 패치 안테나를 제안하였다. 제안한 안테나를 제작하여 측정해본 결과 BSF를 포함하지 않은 기준 안테나의 제 2고조파(4.6GHz)의 S11이 - 5.61dB이었고, BSF를 포함한 안테나의 S11은 - 0.338dB로 줄어들었으며, 방사효율도 29.76%에서 1.5%로 확연히 억제되었다. 또한 최대이득은 BSF를 포함하지 않은 안테 나의 경우 2.89dBi에서 BSF를 포함한 안테나의 경우 - 12dBi로 줄어드는 것을 확인하였다. 반면 기본주파수(2.45GHz)에서는 S11값이 - 18dB 에서 - 15dB로 줄어들었고, 효율도 68.2%에서 60%로 약간 줄어드는 것을 확인할 수 있었다. 본 논문에서 제안한 대역저지 필터를 결합한 마이크로스트립 안테나를 랙테나에 응용할 경우, 고조파 차단 필터가 차지하는 많은 면적을 줄이면서도, 랙테나의 성능을 저하시키는 고조파 성분도 효과적으로 제거할 수 있을 것이라 사료된다.

**Abstract** This paper proposes an antenna incorporating a bandstop filter to miniaturize the rectenna used for wireless power transmission with the emerging interest these days. To suppress the harmonics that can be re-radiated, this paper proposes a microstrip patch antenna that can suppress the harmonics while maintaining the size of the antenna by inserting a U-slot, which acts as a bandstop filter, on the ground plane of the antenna. As a result, S11 of the second harmonic(4.6GHz) was reduced from -5.61dB to -0.338dB and the efficiency was suppressed significantly from 29.76% to 1.5%. In addition, the maximum gain was reduced to -12dBi from 2.89dBi. On the other hand, at the fundamental frequency (2.45GHz), the S11 value was reduced from -18 dB to -15 dB, and the efficiency was reduced slightly from 68.2% to 60%. In the case of applying a microstrip antenna combined with the proposed bandstop filter to a rectenna, it is believed that the harmonics that degrade the performance of the rectenna can be removed effectively while reducing the large area occupied by harmonic suppression.

Keywords : Bandstop filter(BSF), Wireless Power Transmission, Microstrip antenna(MSA), IoT sensor, Harmonic

# 1. 서론

무선 전력전송 기술 중 하나인 렉테나 (Rectenna)는 정류회로(Rectifier)와 안테나 (Antenna)의 합성어로서, RF 신호를 받아들이는 안테나와 정류 다이오드, 다이오 드, 부하 저항 등으로 구성되며, 안테나에 입사된 RF 전 력을 정류회로를 통해 DC 전력으로 변환해주는 소자를 말한다[1,2]. 랙테나는 RF-to-DC 변환효율(Conversion

이 논문은 2016년도 미래창조과학부의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임 (No. NRF-2016R1A2B4 014834). \*Corresponding Author : Choul-Young Kim(Chungnam National University) Tel: +82-42-821-5663 email: cykim@cnu.ac.kr

Tei. +82-42-821-3003 einail. Cykiin@ciu.a

Received February 17, 2017Revised (1st April 14, 2017, 2nd May 31, 2017)Accepted June 9, 2017Published June 30, 2017

efficiency)이 중요한 파라미터가 이를 늘리기 위한 방안 이 지속적으로 연구되고 있다. 렉테나의 변환효율을 개 선하기 위해서는 RF 전력을 DC 전력으로 변환할 때 다 이오드의 비선형성에 의해 생성될 수 있는 고조파 성분 이 다시 안테나를 통해 재 방사되는 것을 차단할 필요가 있다. 따라서, 렉테나를 구성하는 안테나와 다이오드 사 이에 고조파 차단 필터를 삽입한다[3-9]. 하지만, 고조파 차단 필터를 안테나와 다이오드의 사이에 삽입함으로 인 해 렉테나의 크기가 커진다는 단점이 존재했다. 본 논문 은 상술한 문제점을 해결하기 위해, 고조파 차단 필터를 삽입하면서도 안테나의 크기가 커지지 않도록 하여 종래 에 비해 안테나를 소형화시키는 기술을 제공하는데 그 목적이 있다. 상술한 목적을 달성하기 위하여 마이크로 스트립 패치 안테나의 그라운드 부분에 U-Slot를 포함시 켜 고조파 제거가 가능한 마이크로스트립 안테나를 Fig. 1과 같이 제안한다.



Fig. 1. Proposed microstrip antenna with the BSF (a) Geometry of the antenna (b) Top view (c) Bottom view

# 2. 설계 및 제작

# 2.1 설계

본 논문에서는 안테나의 크기를 확장시키지 않으면서 도 안테나를 통해 재 방사되는 고조파 성분을 저지시키 기 위해 안테나의 기판(ground plane)에 U-Slot를 결합 시켜 BSF를 포함한 마이크로 스트립 안테나를 Fig. 2와 같이 설계하였다. 안테나의 급전선 밑 기판에 폭이 1.68mm, 길이는 10mm의 오픈 스터브와 같은 모양의 U-slot을 삽입하였다. Fig. 3은 BSF가 없는 기준 마이크 로 스트립 안테나와 본 논문에서 제안한 BSF를 포함한 마이크로 스트립 안테나의 S<sub>11</sub>을 EM 시뮬레이션 하여 비교한 것이다. 시뮬레이션 결과는 Fig. 3과 같이 기준 마이크로스트립 안테나는 4.6GHz에서 2차 고조파가 나 타났고, 본 논문에서 제안한 BSF를 포함한 마이크로스 트립 패치 안테나의 제 2고조파는 억제됨을 알 수 있다.



Fig. 2. Geometry of the MSA with the BSF



Fig. 3. Comparison S11s of MSA with BSF and reference MSA(simulation)

Fig. 4 (a)는 제안된 안테나에 삽입된 U\_slot BSF 부 분을 나타낸 그림이다. 이것을 등가 회로로 나타내면 Fig. 4 (b)와 같이 되며, *C*, *L*, *R* 값들은 식 (1) ~ 식 (3) 으로 부터 구할 수 있다[10].

$$C = \frac{w_c}{2Z_0(w_0^2 - w_c^2)} \tag{1}$$

$$L = \frac{1}{4\pi^2 f_0^2 C}$$
(2)

$$R = \frac{2Z_0}{\sqrt{\frac{1}{|s_{11}(w_0)|^2} - (2Z_0(w_0C - \frac{1}{w_0L}))^2 - 1}}$$
(3)



Fig. 4. U-slot of the BSF (a) Geometry of the U-slot BSF (b) Equivalent circuit of the U-slot BSF

### 2.2 제작 및 측정

시뮬레이션을 통하여 설계한 마이크로스트립 패치 안 테나를 유전율 3.5, 높이 30 mil(0.76 mm)인 테프론 RF-35 기판을 이용하여 제작 하였다. 제작된 안테나의 S<sub>11</sub>과 방사패턴은 Agilent사의 8719ES 벡터 회로망 분 석기로 측정하였다.

Fig. 5는 제작된 BSF를 포함한 마이크로스트립 패치 안테나를 보여 준다. Fig. 5(b)는 패치 안테나의 뒷면에 U-slot을 삽입한 것을 보여주고 있다. Fig. 6은 기준 안 테나와 BSF를 포함한 제작된 안테나의 S<sub>11</sub>을 비교한 것 을 보여준다. 시뮬레이션 결과와 마찬가지로 2차 고조파 가 억제됨을 확인할 수 있다. 비교 결과 값을 Table 1에 나타내었다. 4.6GHz에서의 제 2고조파가 BSF에 의해 S<sub>11</sub>이 - 5.61dB에서 - 0.338dB로 줄어들었음을 확인 할 수 있다. Fig. 7과 Fig. 8은 제작된 BSF를 포함한 마 이크로스트립 패치 안테나의 방사패턴을 기본주파수 (2.45GHz)와 제 2고조파(4.6GHz)에서 각각 측정한 값 을 2차원과 3차원 그래프로 보여주고 있다. 4.6GHz의 제 2고조파에서 방사 패턴이 확연이 줄어들었음을 확인 할 수 있다. 자세한 값은 Table 1에 나타내었다.



Fig. 5. A Photograph of the fabricated MSA (a) Top view (b) Bottom view



Fig. 6. Comparison S11s of fabricated MSA with BSF and reference MSA

제 2고조파인 4.6GHz에서 BSF를 포함하지 않았을 때 최대이득은 2.89dBi 였고, BSF를 포함시킨 안테나는 -12dBi로 줄어들었고, 안테나 방사효율도 29.76%에서 1.5%로 거의 억제됨을 확인할 수 있다. 기본주파수인 2.45GHz에서 시뮬레이션과는 달리 실측 S<sub>11</sub>값이 -18dB 에서 -15dB로 줄어들었고, 효율도 68.2%에서 60%로 약간 줄어드는 것을 확인할 수 있었다. 그 이유 는 U-slot이 삽입됨으로 그라운드 쪽으로 약간의 후방방 사가 발생하면서 손실이 되었을 것이라고 사료 된다.

 
 Table 1. Measured results of the reference antenna and MSA with BSF

| Antennas  |                      | Fundamental<br>(2.45GHz) | Second harmonic<br>(4.6GHz) |
|-----------|----------------------|--------------------------|-----------------------------|
| Reference | S11(dB)              | -18                      | -5.61                       |
|           | Maximum<br>gain(dBi) | 5.64                     | 2.89                        |
|           | Efficiency (%)       | 68.2                     | 29.76                       |
| with BSF  | S11(dB)              | -15                      | -0.338                      |
|           | Maximum<br>gain(dBi) | 5.6                      | -12                         |
|           | Efficiency (%)       | 60                       | 1.5                         |



Fig. 7. Radiation pattern of the MSA with BSF at the 2.45GHz of the harmonic (a) 2D radiation pattern (b) 3D radiation pattern

# 3. 결론

본 논문에서는 안테나에서 재 방사 될 수 있는 고조파 성분을 억압하기 위하여 BSF를 마이크로스트립 패치 안 테나에 삽입하되, 안테나의 그라운드 면에 U-slot을 삽 입시킴으로 안테나의 크기를 그대로 유지하면서도 고조 파를 제거할 수 있는 마이크로스트립 패치 안테나를 제 안하였다. 제작, 측정해본 결과 제 2고조파(4.6GHz)의 S<sub>11</sub>이 -5.61dB에서 -0.338dB로 줄어들었고 이득은 2.89dBi에서 -12dBi로 감소했으며, 안테나 방사효율도 29.76%에서 1.5%로 확연히 억제됨을 확인할 수 있었다. 본 논문에서 제안한 대역저지 필터를 결합한 마이크로스 트립 안테나를 렉테나에 응용할 경우, 고조파 차단 필터 가 차지하는 많은 영역을 줄이면서도, 렉테나의 성능을 저하시키는 고조파 성분도 효과적으로 제거할 수 있을 것이라 사료된다.



Fig. 8. Radiation pattern of the MSA with BSF at the 4.6GHz of the harmonic (a) 2D radiation pattern (b) 3D radiation pattern

#### References

- J. C. Lin, "Space solar-power stations, wireless power transmissions, and biological implications," IEEE Microwave Magazine, pp. 36-2, Mar. 2002. DOI: https://doi.org/10.1109/6668.990673
- [2] T. W. Yoo and K. Chang, "Theoretical and experimental development of 10 and 35 GHz rectennas," IEEE Trans. Microwave Theory Tech., vol. 40, no. 6, pp. 1259-1266, June 1992. DOI: <u>https://doi.org/10.1109/22.141359</u>
- [3] C. Brown and J.F. Triner, "Experimental thin-film, etched-circuit rectenna," IEEE MTT-S Int. Microwave Symp. Dig., pp.185-187, Jun. 1982. DOI: <u>https://doi.org/10.1109/MWSYM.1982.1130655</u>
- [4] T. W. Yoo and K. Chang, "Theoretical and experimental development of 10 and 35GHz rectennas," IEEE Trans. Micro. Theory Tech., vol.40, pp.1259-1266, Jun. 1992. DOI: <u>https://doi.org/10.1109/22.141359</u>
- [5] P. Koert, J. Cha, and M. Macina, "35 and 94 GHz rectifying antenna systems," SPS' 91-Power from Space Dig., pp.541-547, Aug. 1991.

- [6] J. O. Mc Spadden, L. Fan, and K. Chang, "Design and experiments of a high-conversion-efficiency 5.8 GHz rectenna," IEEE Trans. Micro. Theory Tech., vol. 46, no. 12, pp. 2053-2060, Dec. 1998. DOI: https://doi.org/10.1109/22.739282
- [7] T. W. Yoo and K. Chang, "Theoretical and experimental development of 10 and 35GHz rectennas," IEEE Trans. Micro. Theory Tech., vol. 40, pp. 1259-1266, Jun. 1992. DOI: https://doi.org/10.1109/22.141359
- [8] J. O. Mc Spadden and K. Chang, "A dual polarized circular patch rectifying antenna at 2.45 GHz for microwave power conversion and detection," IEEE MTT-SInt. Micro. Symp. Dig., pp. 1749-1752, 1994. DOI: https://doi.org/10.1109/MWSYM.1994.335103
- [9] C. K. Ghosh, "Harmonics suppression of microstrip antenna using open ended stubs," Microwave and optical technology letters, vol. 58, no. 6, pp. 1340-1345, June 2016. DOI: https://doi.org/10.1002/mop.29809
- [10] D. J Woo, J. W, Lee, C. S Pyo, W. K. Choi, "Novel U-Slot and V-Slot DGSs for Bandstop Filter With Improved Q Factor," IEEE Trans. Micro. Theory Tech., vol. 54, no. 6, pp. 2840-2847, Jun. 2006. DOI: <u>https://doi.org/10.1109/TMTT.2006.875450</u>

시간강사

#### 이 현 승(Hyun-Seung Lee)

#### [정회원]



- 2000년 2월 : 원광대학교 원광대 학원 전자공학과 (공학석사)
- •2014년 2월 : 충남대학교 충남대 학원 전자공학과 (공학박사)
- 2014년 3월 ~ 2017년 2월 : 충남 대학교(박사 후 과정)
  2017년 3월 ~ 현재 : 충남대학교

<관심분야> 안테나, 필터, 레이다, 추적 알고리즘

#### 임정택(Jeong-Taek Lim)

[준회원]



•2016년 3월 ~ 현재 : 충남대학교 충남대학원 전자공학과 (공학석사 과정)

<관심분야> mm-wave 집적회로 및 시스템

## 정 방 철(Bang Chul Jung)

## [정회원]

- 2004년 8월 : 한국과학기술원 전 기 및 전자공학과 (공학석사)
   2008년 2월 : 한국과학기술원 전 기 및 전자공학과 (공학박사)
  - •2010년 3월 ~ 2015년 8월 : 경상 대학교 정보통신공학과 교수
  - •2015년 9월 ~ 현재 : 충남대학교 정보통신공학과 교수

<관심분야> 차세대 이동통신, 통계적 신호처리, 다중안테나 시스템

### 김 철 영(Choul-Young Kim)

#### [정회원]

- 2004년 2월 : 한국 과학기술원 전 자공학과 (공학석사)
- •2008년 2월 : 한국 과학기술원 전 자공학과 (공학박사)
- 2009년 3월 ~ 2011년 2월 : 미 국 캘리포니아 샌디에고(UCLA) 전자 및 컴퓨터공학과 (박사 후 과정)

•2011년 3월 ~ 현재 : 충남대학교 전자공학과 교수

<관심분야> 근거리 레이다 및 위상배열 안테나 응용을 위한 MMIC 및 시스템