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In-Plane Extensional Buckling Analysis of Curved Beams under
Uniformly Distributed Radial Loads Using DQM

Ki-Jun Kang
Department of Mechanical Engineering, Hoseo University

SREHE selA ETIYOOWE o147
34 Be] W A A

SMstm Zaicist 7|AE sk

Abstract The increasing use of curved beams in buildings, vehicles, ships, and aircraft has prompted studies directed
toward the development of an accurate method for analyzing the dynamic behavior of such structures. The stability
behavior of elastic curved beams has been the subject of a large number of investigations. Solutions of the relevant
differential equations have been obtained traditionally using standard finite difference or finite element methods.
These techniques require a great deal of computer time as the number of discrete nodes becomes relatively large
under the conditions of complex geometry and loading. One of the efficient procedures for the solution of partial
differential equations is the method of differential quadrature. The differential quadrature method (DQM) has been
applied to a large number of cases to overcome the difficulties of the complex algorithms of programming for the
computer, as well as the excessive use of storage due to the conditions of complex geometry and loading. The
in-plane buckling of curved beams considering the extensibility of the arch axis was analyzed under uniformly
distributed radial loads using the DQM. The critical loads were calculated for the member with various parameter
ratios, boundary conditions, and opening angles. The results were compared with the precise results by other methods
for cases, in which they were available. The DQM, using only a limited number of grid points, provided results that
agreed very well (less than 0.3%) with the exact ones. New results according to diverse variations were obtained,
showing the important roles in the buckling behavior of curved beams, and can be used in comparisons with other
numerical solutions or with experimental test data.
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1. Introduction

Owing to their importance in many fields of
technology and engineering, the stability behavior of
elastic arches has been the subject of a large number
of investigations. Solutions of the relevant differential
equations have traditionally been obtained by the
standard finite difference or finite element methods.
These techniques require a great deal of computer time
as the number of discrete nodes becomes relatively
large under conditions of complex geometry and
loading. In a large number of cases, the moderately
accurate solution which can be calculated rapidly is
desired at only a few points in the physical domain.
However, in order to get results with even only limited
accuracy at or near a point of interest for a reasonably
complicated problem, solutions often have dependence
of the accuracy and stability of the mentioned methods
on the nature and refinement of the discretization of
the domain.

The common engineering theory of flexure is based
on the Bernoulli-Euler-Navier assumption that cross
sections, which are perpendicular to the centroid before
bending, remain plane and perpendicular to the
deformed locus.

Ojalvo et al.[1] studied the elastic stability of ring
segments with a thrust or a pull directed along the
chord. Vlasov[2] derived closed-form solutions such as
for an arch, in which cross-sections are allowed to
warp non-uniformly along the beam axis, subject to
in-plane bending and uniformly distributed radial loads.
Timoshenko and Gere[3] also studied the stability of
arches in uniform compression and in uniform bending.
Yang and Kuo[4] studied the static stability of curved
thin-walled beams using the principle of virtual
displacements in a Lagrangian formulation with
emphasis place on the effect of curvature, and they
presented closed-form solutions for arches in uniform
bending and uniform compression. In addition,
different approaches were also presented by Kuo and

Yang[5] to support their studies treating a curved beam
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straight beams. Recently,
Yoo[6] presented a theoretical study on the buckling of
thin-walled curved beams with the derivation of
stability equations. Han and Kang[7] also investigated
the buckling behavior of curved beams neglecting
rotatory inertia.

In the present work, the DQM which is a rather
efficient alternate procedure for the solution of partial
differential equations, introduced by Bellman and
Casti[8], is use to analyze the in-plane buckling of
curved beams with extensibility of the arch axis under
uniform pressure. The critical loads are calculated for
the member. The circular beams considered are of
uniform cross section, and have both ends -either
simply supported or clamped. Numerical results are

compared with existing exact solutions where available.

2. Differential Equations

The considered uniform circular beam is shown in
Fig. 1 under a uniform in ward radial pressure @ , per
unit of circumferential length. A point on the centroidal
axis is defined by the angle ©, measured from the
left support, and the radius of the centroidal axis is K.
The tangential and radial displacements of the arch axis
are w and u, respectively. Vv and [ are also the
displacement at right angles to the plane of the beam
and the angular rotation of a cross section, respectively.

These displacements are considered to be positive in
the directions indicated. The compressive force F°, in
the beam is ¢ . This compressive force may cause

buckling of the beam either in its plane or out of its

plane.
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Where N*, 7, and M are the normal force, internal
shear force, and bending moment, respectively. And
m is the mass per unit length, and ¢ is the time.
From the elementary theory of beams, the normal force

and the bending moment are given

X FA ., ow
B P y N :(7)(@*71) (4)
. EI  ow 8%u
v JW*(RQ )(¥+ W) (5)

Fig. 1. Coordinate system with radial loads
Here FE is the Young's modulus of elasticity, A is

the cross sectional area, and / is the area moment of
inertia of the cross section.

Substituting equations (4) and (5) with equation (3)
in equations (1) and (2) leads in the following

differential equations of in-plane vibration of curved

. beams:
EIfw" "\ EA[wW _ % 6
e awe e ©
T M g 0 0 0 g
Fig. 2. Forces on a curved beam s u_/, u_, B L”,l 77,192“’ -
r\e ¢ r\e 6 ot

The corresponding buckling equations can be

deduced from the in-plane vibration equations . . . . L .
P 9 in which each prime denotes one differentiation with

suggested by Timoshenko and Gere[3] in investigating respect to the dimensionless distance coordinate

the torsional buckling of open section columns. His . ) ) )
) X=06/6 0> in which © ) is the opening angle of the
procedure is merely to replace the external load term

member.

On the basis of Timoshenko and Gere[3], the

buckling equations may be deduced from the equation

by a fictitious load whose intensity is the load causing
buckling times the appropriate 'curvature' term. The
equilibrium conditions of a circular curved beam

element neglecting shear deformation, undergoing by formally replace the inertial terms suggested by

in-plane vibration as shown in Fig. 2, give Wah(9]
m—q. R
O N =Rt )] 2 " ®
o o o L ddu ) ©)
x ot? R? df " do
oN o w
g T=mR @
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8%w 1 d

J dw
ot R* df

(—u+ a0

(10)
It may be noted that (1/R)(du/df+w) is the
in-plane slope, and (1/R)(—u+dw/df) is the strain

of the center line of a beam during bending.

Substituting equations (8), (9), and (10) into
equations (6) and (7) gives
[ ) AR @R W
0 0l I 16, EI 0 b

an

wou” AR (W' W (1,1»}23 u W

—t o e | (-

T
(12)

Using the length of the arch axis S (ZR@U) and
the of the
r(=+VI/A), the equations (11) and (12) can be

rewritten with the slenderness ratio S/r

radius of gyration cross  section

_(u;" N )_qu3(_u_”_u_/)

o)\, EI g5 b
(13)

(w_” £)+£L(w_”u_’):

o0 oy oo\ on O

Wi W v (14)

EI by 67

A mathematical study of the in-plane inextensional
condition of small cross section is carried out starting
with the basic equations where there is no extension
of the center line. This condition requires that W and

u be related by

_ow

"0

(15)

Using the equation (15) and eliminating u» in

equations (11) and (12), one can write the equation as
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Vo + W=
e0 eO e0
QR3)(w[V u)
S R (16)
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The equation (16) is the governing equation of
in-plane inextensional buckling of the beams.

The boundary conditions for both ends clamped,
both ends

supported ends are, respectively,

simply supported, and clamped-simply

w=u=u'= at X=0 and 1 17
w=u=M=0 at X=0 and 1 (18)
w=u=u'=(0 at X=0,

w=u=M=0 at X=1 (19)

3. Differential Quadrature Method

The differential quadrature method (DQM) was
introduced by Bellman and Casti[8]. By formulating
the quadrature rule for a derivative as an analogous
extension of quadrature for integrals in their
introductory paper, they proposed the differential
quadrature method as a new technique for the
numerical solution of initial value problems of ordinary
and partial differential equations. It was applied for the
first time to static analysis of structural components by
Jang et al[l10]. The versatility of the DQM to
engineering analysis in general and to structural
analysis in particular is becoming increasingly evident
by the related publications of recent years. Recently,
Kang and Kim[11], and Kang and Park[12] studied
the vibration and the buckling analysis of asymmetric
curved beams using DQM, respectively. More recently,
Kang and Park[13] analyzed the extensional vibration
of curved beams using DQM. From a mathematical
point of view, the application of the differential
quadrature method to a partial differential equation can

be expressed as follows:
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)= 3w,

Jj=1

Jf(xy) for 4, j=1,1,3,., N (20)

where L denotes a differential operator, z; are the
discrete points considered in the domain, i are the row

vectors of the N values, f(z;) are the function values

at these points, W,

i

attached to these function values, and N denotes the

are the weighting coefficients

number of discrete points in the domain. This equation,
thus, can be expressed as the derivatives of a function
at a discrete point in terms of the function values at all
discrete points in the variable domain.

The general form of the function f(z) is taken as

fi(X)=Xx""1  for k=1,2,3,...N 21
If the differential operator L represents an 17 th
derivative, then
N
> Wit = U= D= 2)+ (k= m)xf 7!
f=
for7, k=1,2,...,N (22)

This expression represents N sets of N linear

algebraic equations, giving a unique solution for the
weighting coefficients, WI-]», since the coefficient

matrix is a Vandermonde matrix which always has an

inverse.

4. Numerical Application

The DQM is applied to the determination of the
in-plane extensional buckling of the curved beams. The
differential quadrature approximations of governing
equations and boundary conditions are shown.

Applying the differential quadrature method to
equations (13) and (14), gives

1 &
—0—2 ]wj+
j=1

N
X0

cw
C»A|H
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where A ;, B ; C; and D ; are the weighting
coefficients for the first-, second-, third-, and
fourth-order derivatives, respectively, along the

dimensionless axis.
The boundary conditions for clamped ends, given by
equation (17),

can be expressed in differential

quadrature form as follows:

w,=0 at X=0

w=0 at X=1

u,;=0 at X=0

u =0 at X=1

EIAZju] 0 at X=0+5¢6

ZVIA (-l ;=0 at X=1-—5 (25)

Here, & denotes a very small distance measured
along the dimensionless axis from the boundary ends.
In their work on the application of DQM to the static
analysis of beams and plates, Jang et al.[10] proposed
the so-called &-technique wherein adjacent to the
boundary points of the differential quadrature chosen
grid points at a small distance. This & approach is
used to apply more than one boundary condition at a
given station.

The boundary condition for simply supported ends
given by equation (18) can be expressed in differential

quadrature forms as follows:
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w,;=0 at X=0
w =0 at X=1
u,=0 at X=0
u =0 at X=1
Z:N]lAzjwj+jZNIBZJuj:0 at X=0+§

N N
:1A<Av,l)jwj +jZJIB(N,1)juj =0 atX=1—5 (26)

j
Similarly, the boundary condition for one clamped
and one simply supported ends, given by equation (19),

can be expressed in differential quadrature forms as

wi;=0 at X=0
w =0 at X=1
u,;=0 at X=0
u =0 at X=1
jgNIA2ju,.:o at X=0+5

N N
DAt D By =0 at X=1-5 (27)

j=1 i=1
This set of equations together with the appropriate
boundary conditions can be solved for the in-plane

extensional buckling of the beams.

5. Numerical Results and Comparisons

In-plane extensional buckling parameter ¢ =g, R*/El
subjected to uniformly distributed radial loads is
calculated by the DQM, and the inextensional buckling
parameter is also presented together with existing
exact solutions by Timoshenko and Gere[3]. The value
g™ is evaluated for the case of various end conditions,
opening angle 6, and slenderness ratio S/r.

Table 1 presents the results of convergence studies
relative to the number of grid point /V and a very
small distance § for the case of both ends clamped

with 6, =180" neglecting extensibility of a curved
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beam arch. The data show that the accuracy of the
numerical solution increases with increasing /V. Then
numerical instabilities arise if /V becomes too small
(possibly smaller than approx. 9) or too large (possibly
greater than approx. 14). Table 1 also shows the

sensitivity of the solution to the choice of &. The
solution accuracy also decreases due to numerical
instabilities if & becomes too big (possibly greater
than approx. 110 *). The optimal value for NV is
found 11 ~ 13, and & is found to be 1x107° ~
1x107%, which

calculations. Here, 11 for N and 110" % for § are

is obtained from trial-and-error
used for all calculations because the exact value of
buckling parameter for this case is 8.0 given by
Timoshenko and Gere[3] (see Table 5).

In Tables 2~4, the critical buckling parameter
q =q,R*/EI determined by the DQM for the case of
both

clamped-simply supported ends is presented including

ends clamped, simply supported, and
the effect of extensibility of the arch axis. The value of
the slenderness ratio S/r is 30, 100, and 300,
respectively. The first four critical loads of extensional
and inextensional buckling parameters for the case of

both ends clamped with the slenderness ratio S/
300, 6, = 90°, and 6, =180" are shown in Table 5.
The results by the DQM in Tables 2~5 are presented

without comparisons since no data are available. Tables

6~8 also show the critical buckling parameters for the
case of both ends clamped, simply supported, and
clamped-simply supported ends neglecting the effect of
extensibility. The results by the DQM are compared
with the exact solutions by Timoshenko and Gere[3]
in Tables 6 and 7.

In Figs. 3~6, the buckling parameters of the beam
neglecting or including the effect of extensibility with
both ends clamped (C-C), clamped-simply supported
(C-S), and simply supported (S-S) are compared with
each other. The value of the slenderness ratio S/r is

50 and 500, and the opening angle 6, is 90 and 180

degree, respectively.
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From Tables 2~8, it is seen that the critical buckling
parameters of the member with clamped ends are much
higher than those of the member with simply supported
ends. The buckling parameter can be increased by

decreasing the opening angle © ; and the slenderness

ratio .S/r. However, When the value of the slenderness
ratio S/r is greater than 300, the difference between
extensional and inextensional buckling values is less
than 2.0 percent. The variation of the slenderness ratio
S/r

clamped boundary condition more significantly than of

affects the buckling behavior of both ends

both ends simply supported boundary condition. The
values of buckling parameters using extensional theory
are slightly larger than those using inextensional
theory. However, the values with rotatory inertia term
I/AR? in equations (11) and (12) are almost the same
as those without rotatory inertia term shown in
equation (16) if the value of I/AR? is greater than
1000. The beam behavior is affected more importantly
by clamped-clamped end conditions, smaller opening
angles, and smaller slenderness ratio due to the effects
of shear deformation. The shear deformable theory
which takes into account the rotary inertia and shear
effects gives a better approximation to the actual beam
behavior for a thick beam. Therefore, the shear
deformable beam theory should be considered the next
research.

Han and Kang[7] calculated the critical buckling
parameters using inextensional theory given in equation
(16), and the results are in Tables 6~8. In Tables 6 and

7, the critical load q* is compared with the exact
solutions by Timoshenko and Gere[3] for the case of
both ends clamped and simply supported. The DQM
also shows the excellent agreements with the exact
solutions by Timoshenko and Gere[3].

From Figs. 3~6, the buckling parameters of the
member including extensibility are more affected by
clamped-clamped end conditions than by any other
The

extensional and inextensional buckling values becomes

boundary  conditions. difference  between

larger as the slenderness ratio .S/r becomes smaller.
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As it can be seen, the critical values of buckling
parameters of the beam including extensibility affect
the beam behavior more importantly. Therefore, the
buckling analysis of curved beams with extensional

theory is necessary for the beam behavior.

Table 1. Critical load of in-plane inextensional buckling
parameter ¢ =g, R*/El with both ends
clamped for a range of grid points /V and a
very small distance ¢ ; 6, =180"

d=1x%

N

107* 107° 107° 1077 1078
9 11.81 11.96 11.84 9.895 8.948
10 10.93 10.67 7.840 8.221 8.064
11 9.831 8.204 8.076 7.990 8.008
12 10.72 10.09 8.002 8.007 8.003
13 8.002 8.683 7.993 7.984 8.085
14 16.31 8.018 7.792 7.857 11.67

Table 2. Critical load of in-plane extensional buckling
parameter ¢ =g, R*/El with both ends
clamped; N=11 and §=1x10""%

q =q,R/EI
b0
(degree) S/ r

30 100 300
30 2959 295.8 295.7
60 73.83 73.76 73.76
90 32.71 32.63 32.59
120 18.34 18.27 18.25
150 11.72 11.64 11.63
180 8.158 8.087 8.072

Table 3. Critical load of in-plane extensional buckling
parameter ¢ =g, R°/El with both ends
simply supported; N=11 and 6=1x10"°

, q =q, R EI
(dcgrncc) S/ r

30 100 300
30 143.0 142.9 1424
60 35.03 35.0 350
90 15.03 15.0 15.0
120 8.037 8.0 7.995
150 4.495 4.764 4.754
180 3.031 3.004 3.004
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Table 4. Critical load of in-plane extensional bucklin Table 7. Critical load of in-plane inextensional
p g P
parameter q* = q”,RB/ EI  withboth  ends buckling parameter q* = qﬂR3 /EI with both
clamped-simply  supported; V=11 and ends simply supported; N=11 and
§=1x10"8 6=1x10"8
q* = qm‘RS/E] 00 q* = qaRS/E[
90 (det
gree) .
(degree) S/r Timoshenko and Gere[3] DQM
30 100 300 30 143 143.0
30 226.5 203.3 205.7 60 35 35.01
60 47.81 50.90 51.10 90 15 15.0
90 22.01 22.28 2227 120 8 7.997
120 12.25 12.24 12.23 150 476 4758
150 7.673 7.614 7.624 180 3.0 3.001
180 5.184 5.113 5.120
Table 8. Critical load of in-plane inextensional
Table 5. The first four critical loads of in-plane buckling p arametér 4 =4, "/ EI with both
extensional and inextensional buckling ends clamped-simply ~supported; ~N=11
* . — —8
parameters, ¢ =q, R*/El, with both ends and 0=1Xx10
clamped; N=11, 6=1x10"%, and S/r 0, q =q, R EI
=300 (degree) oM
o 3
6, q, = 4, R°/EI 30 2050
(degree) Extensibility Inextensibility 60 5071
(90° and 180%)
90° 180° 90° 180" 90 2213
n=1 32.59 8.072 3246 8.008 120 12.13
n=2 53.39 1291 52.38 12.68 150 7.512
n=3 8291 20.18 86.86 21.50 180 5.031
n=4 309.2 82.38 305.9 79.05
40
q° | S Extensional Buckling Sir=50
Table 6. Critical load of in-plane inextensional | 2 Inextensional Buckling
buckling parameter ¢ = g, R*/EI with both
ends clamped; N=11 and 6=1x10"* 30+ %
90 (I* = und/E[ %4
(degree) Timoshenko and Gere[3] DQM 204
30 294 294.4
15
60 733 73.39 M
10 } ¥
90 324 3246 cC cs S-S
End condition
120 18.1 18.15
50 s 1155 Fig. 3. Comparisons between extensional and inextensional
i i critical loads of in-plan buckling parameter
180 80 8.008 ¢ =q, R/ EL, N=11, §=1x10"%, §/r=50, and
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0,=90°
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a* ® Extensional Buckling S/ =500
5. XYY Inextensional Buckling
|
25
20 4
15
: _

cs
End condition

cC S-S

Fig. 4. Comparisons between extensional and inextensional
critical loads of in-plan buckling parameter

¢ =q REL, N=11, 6=1x10"%, §/r=500,
and 6,=90°
10
q* | 777 Extensional Buckling Sir=50

XXXV Inextensional Buckling

5

44

34

: .\
Cs S-S

cC

End condition
Fig. 5. Comparisons between extensional and inextensional
critical loads of in-plan buckling parameter
¢ =q,R*/EL, N=11, 6=1x10"%, §/r=50, and
6,=180°

q* | XYY Extensional Buckling
2222 Inextensional Buckling

\~

S/r =500

2

\~

cc cs ss
End condition

Fig. 6. Comparisons between extensional and inextensional

critical loads of in-plan buckling parameter

¢ =q,R*/EL, N=11, 6=1x10"%, §/r=500,

and 6,=180"
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6. Conclusions

The DQM was applied to the computation of the
eigenvalues of the equations governing the in-plane
buckling of curved beams under the uniformly
distributed radial loads including extensibility of a
beam arch. The present approach gives excellent results
for the cases treated while requiring only a limited
number of grid points: only eleven discrete points were
used for the evaluation. New results are given for three
sets of boundary conditions not considered by previous
investigators for the in-plane extensional buckling
analysis: ends,

clamped-clamped simply-simply

supported ends, and clamped-simply supported ends.

The present approach gives the followings:

1) The results by the DQM give the mathematical
precision compared with the exact solutions by
others for the cases in which they are available.

2) Only eleven discrete points are used for the
evaluation.

3) It requires less than 1.0 second to compile the
program with IMSL subroutine using a personal
computer.

4) Diversity of new results according to the opening
angles, boundary conditions, and slenderness ratio
is also suggested. Those results can be used in
the comparisons with other numerical solutions or

with other experimental test data.
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