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General inflation and bifurcation analysis of rubber balloons

Moon Shik Park
Department of Mechanical Engineering, Hannam University

고무풍선의 일반화 팽창 및 분기 해석 

박문식
한남대학교 기계공학과

Abstract  Several typical hyper-elastic constitutive models that encompass both conventional and advanced ones were
investigated for the application of instability problems, including the biaxial tension of a rubber patch and inflation
of spherical or cylindrical balloons. The material models included the neo-Hookean model, Mooney-Rivlin model, 
Gent model, Arruda-Boyce model, Fung model, and Pucci-Saccomandi model. Analyses can be done using membrane
equations with particular strain energy density functions. Among the typical strain energy density functions, Kearsley's
bifurcation for the Treloar's patch occurs only with the Mooney-Rivlin model. The inflation equation is so generalized
that a spherical balloon and tube balloons can be taken into account. From the analyses, the critical material 
parameters and limit points were identified for material models in terms of the non-dimensional pressure and inflation
volume ratio. The bifurcation was then identified and found for each material model of a balloon. When the finite
element method was used for the structural instability problems of rubber-like materials, some careful treatments 
required could be suggested. Overall, care must be taken not only with the analysis technique, but also in selecting 
constitutive models, particularly the instabilities.

요  약  몇 가지 형 인 기존  진보된 탄성 구성모델들의 고무패치 이축인장  구형 는 원통형 풍선 팽창에서의 

불안정성에 해서 밝힌다. 용할 구성모델은 neo-Hookean 모델, Mooney-Rivlin 모델, Gent 모델, Arruda-Boyce 모델, Fung 
모델, Pucci-Saccomandi 모델 등이다. 팽창  분기 해석은 이들 변형에 지 함수들의 막 방정식을 이용하여 수행할 수 있다. 
해석에는 사각패치에 한 Kearsley의 분기 상, 고무풍선의 일반화 한 팽창 상, 고무풍선의 분기 상을 다룬다. 이들 변형
에 지 함수들 에서도 오직 Mooney-Rivlin 모델에서만 Kearsley의 분기 상이 일어남을 확인하 다. 팽창 방정식은 구형 
풍선과 원통형 풍선을 함께 다룰 수 있도록 일반화 시켰다. 팽창해석에 의하여 극한 과 임계 물성치들을 무차원 압력  

팽창 부피의 항들로 구하 다. 그 게 구해진 결과들로부터 분기 상을 구할 수 있었다. 한 유한요소법을 사용하여 고무류
의 구조  불안정 문제들을 다룰 때 필요한 특별한 조처에 해서 제안하 다. 결론 으로 고무류의 불안정성을 포함하는 

문제를 다룰 때는 해석기법은 물론 구성모델의 선택에 따라 결과가 달라질 수 있으므로 신 한 처리가 요구된다. 
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1. Introduction

Rubbery materials are well-known and diverse not 
only to our everyday living but to engineering and 

medical use. It exhibit hyper-elasticity even when it is 
extended up to 5 to 15 times to the original length. 
Spherical balloons from the dollar-store may show 
limiting chain extensibility of around 5 while typical 
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biological soft tissues such as human arteries can be 
stretched up to 2 or less[1,2]. For their higher 
extensibility and complicated nonlinear nature of 
deformation it is well known that rubber-like materials 
may show various kinds of instabilities including 
bifurcations.

Rubber balloons may also exhibit inflation 
instability[1,3]. Tube balloons may exhibit inflation 
instability as well as bifurcation[4]. Treloar's patch of 
particular rubber material may show in-plane 
bifurcation for equi-biaxial tension[5]. Compressed or 
bent rubber blocks may exhibit wrinkling instability on 
the compression surface[6]. Various inflation 
instabilities of rubber balloons are well documented in 
the literature like Kanner and Horgan[7].

Constitutive models for rubber materials are various 
in their mechanics and behaviors. Some material 
models can represent those modes of deformations 
while others cannot. A recent advancement of 
constitutive model was done by Gent and 
Arruda-Boyce. Gent proposed very simple 
phenomenological model that can represent various 
types of deformation[8]. Arruda and Boyce used eight 
molecular chain model to derive the constitutive 
equation[9].

This study will investigate features of representing 
instabilities and bifurcations of several rubber material 
models not only in analytic manner but also by finite 
element method. From time to time finite element 
method fails to capture unstable phenomena of 
rubber-like materials because of numerical instabilities. 
The reason for that and some remedies will be 
suggested in modeling finite element analysis. Firstly 
the Kearsley's bifurcation in biaxially loaded rubber 
sheet will be presented. Secondly inflation of ball and 
tube balloon is analyzed by the single general inflation 
equation. Specific material parameter that causes 
inflation instabilities will be found and presented for 
each material model. Finally bifurcation of tube 
balloon is identified and analyzed either by analytic 
method and finite element method.

2. Theory

2.1 Basic equations

Rubber-like materials and bio-materials such as soft 
tissue and arterial wall can be modeled as an 
incompressible hyper-elastic material. For 
incompressible hyper-elastic continuum materials, 
mechanical properties are derived in terms of strain 

energy density function W . Letting F  be the 

deformation gradient tensor and TFFB =  be the left 
Cauchy-Green tensor, the strain invariants can be 

derived in terms of B  or principal stretches 321 ,, λλλ  as 
follows,
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Because of the incompressibility, 1321 =λλλ  or 

1det =F  and 13 =I . The second invariant can also be 

expressed as 2
3

2
2

2
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−−− ++= λλλI  in case of incompressible 

materials. Then strain energy density function can be 
defined by

),( 21 IIWW =        (2)

From the strain energy density function, constitutive 
equation in terms of Cauchy stress tensor σ  and the 
left Cauchy-Green tensor B  is written by

1
21 22 −−+−= BB1σ WWp        (3)

where jiij ee1 ˆˆ ⊗= δ , 11 IWW ∂∂= , 22 IWW ∂∂=  and p  is 

a hydrostatic pressure due to the incompressibility 

constraint. And ijδ  is the Kronecker delta and iê  is 

a unit vector in Cartesian coordinate systems. Nominal 

or engineering strain tensor S  can be related to the 
Cauchy stress tensor σ  by
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T−= FσS        (4)

In principal stretch modes, nominal stress in each 

direction is 1−= ααα λσS  and Cauchy stress can be derived 

by

)(2 2
2

2
1

−−+−= ααα λλσ WWp        (5)

where =α 1, 2 or 3 represent each principal direction. 
Equation (5) represents membrane behavior of 
hyper-elastic materials and the following form of 
constitutive equations can be obtained.
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2.2 Constitutive models

Strain energy density functions have been proposed 
basically in phenomenological ways or in 
micro-mechanical theories such as molecular network 
of Gaussian chains. Most simple yet representative 
both to experimental and theoretical basis is the 
following neo-Hookean model

)3(
2 1 −= IGWnH       (7)

depending on single material constant which is the 

infinitesimal shear modulus G  and one strain variable 

1I . In molecular terms, a homogenized behavior of an 

isotropic network of ideal Gaussian chains results in 
this model[5].

Improvement over the neo-Hookean model can be 
done mathematically by expanding with the second 

strain variable 2I . Mooney and Rivlin suggested the 

following model

)]3)(1()3([
2 21 −−+−= IIGWMR αα       (8)

where 10 ≤<α  is a dimensionless material parameter. 
Mooney-Rivlin model is for sure phenomenological 
one and one of the most popular models in modeling 
structures with rubber-like materials. One of the more 
complicated theoretical models is Arruda and Boyce's 
eight chain model[9] which can represent limiting 
chain extensibility observed when severe hardening is 
occurred during elongation of the specimen:
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where μ  and mλ  are material parameters relating shear 

modulus G  with the limiting chain extensibility mλ  

and kC  are coefficients.
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Phenomenological model that can represent limiting 
chain extensibility similar to Arruda-Boyce model is 
the following Gent model[8].

)31ln(
2

1

m
mGE J

IJGW −
−−=

     (11)

where 3−= mm IJ  is a material parameter when 31 −I  

reaches its maximum i.e., limiting chain extensibility. 

For uniaxial tension mode,  12
1 2 −+= λλI  and 

32 12 −+= −
mmmJ λλ . This model recovers to the 

neo-Hookean model (7) when one takes the limit as 

∞→mJ . A molecular-statistical basis for the Gent 

model can be found in Horgan and Saccomandi[10]. 
Rather gradual strain-stiffening instead of abrupt 
limiting extensibility can be modeled by Fung 
model[11] which is widely used in the biomechanics 
applications.
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where 0>b  is a dimensionless material parameter that 
is determined experimentally. Limiting the value 

0→b , this model reduces to the neo-Hookean model 
(7). Models (9), (11), and (12) are generalized 
neo-Hookean for the strain energy density is dependent 

only upon 1I , i.e., )( 1IWW = . Extending Gent model 

(11) having dependence on 2I  was investigated by 

Pucci and Saccomandi[12] and Gent[13].
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     (13)

where 10 ≤< β  is a another dimensionless material 

parameter which represent dependence on  2I . Strain 
energy (13) reduces to the Gent model (11) when 

1=β .

3. Analyses

3.1  Kearsley's bifurcation

Kearsley investigated asymmetric stretching of a 
symmetrically loaded square rubber sheet[14]. Later, it 
was verified that biaxially loaded rubber sheet 
experiences bifurcation instability[15]. It is investigated 
further in this work with several constitutive models 
suggested in section 2.2.

Square patch is loaded biaxially as in Fig. 1(a) 

where 1f  and 2f  means force per unit length in 

direction 1 and 2. For plane stress state, 03 =σ  and 
equation (6c) and (6b) can be rewritten
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where 0t  is the thickness of the patch before stretching. 

Note that loading is controlled rather than displacement 

or stress. Symmetric and asymmetric loading is given 
by

021 =− ffk      (15)

where 1=k  means symmetric loading and 1≠k  means 
asymmetric loading. Applying Mooney-Rivlin model 
(8) into equations (14) and using equation (15), one 

can obtain )( 211 λλλ =   or )( 122 λλλ = . For symmetric 

loading 1=k , equation (15) can be written as
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               (16)

Equation (16) gives two solutions. The one is 

symmetric deformation 21 λλ =  and the other is 

asymmetric deformation that can be solved by 
numerical method. Fig. 2(a) shows the symmetric and 

asymmetric solution for 906.0=α  that was used for 
experimental verification for the Kearsley's 

bifurcation[15].  Letting 21 λλλ ==  for the symmetric 

solution, bifurcation point can be determined by 
solving the following equation

0)1()1)(3( 628 =++−− αλαλλ      (17)

Fig. 2(b) shows the solution of equation (17), i.e., 

crλλ =  with respect to the specific material parameter 

α . Bifurcation point for the example material 

( 906.0=α ) is 106.3=crλ  as derived in the 
literature[15]. 

For asymmetric loading 1<k , equation (15) can be 
written as
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   0=       (18)

Solution of equation (18) is shown in Fig. 2(c) 

where various  =k 1, 0.99, 0.9 and 0.8 are compared. 

For  =k 1 and 0.99, equation (14a) and 14(b) give 
load versus stretch curves resulting Fig. 2(d). In this 
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work, the same value for the bifurcation load 

12.23=crf  N is obtained as in the literature[15]. In 

Fig. 2(d), finite element method solutions are plotted 
along with the analytic solutions and their results are 
almost identical. One hundred linear quadrilateral plane 
stress elements are used for the solution.

1f

2f

1f

2f

1F

2F

  

         (a)                   (b)                  (c)
Fig. 1. Square rubber patch. (a) uniformly distributed 

biaxial edge loading  (b) 10x10 finite element 
model with distributed loading control (c) 10x10 
finite element model with constrained edge 
loading

                 (a)                             (b)

                 (c)                             (d)
Fig. 2. Analysis of square rubber patch ( 906.0=α ) in 

biaxial loading. (a) symmetric and asymmetric 
solutions for the symmetric loading (b) 
bifurcation point with respect to the material 
parameter  (c) solutions for the non-symmetric 
loading (d) load-stretch curves by analytic 
solutions and finite element methods

Obtaining load-stretch behaviors by the finite 
element methods needs special considerations with care 
for it may lead to be unstable. For example, in loading 

control such as in Fig. 1(b), general static analysis by 
incremental method with Newton-Rhapson iterations 
can be done for most increments but some increments 
may diverge due to excessive oscillatory iterations by 
numerical truncation error. It is typical for membrane 
analysis with rubber-like materials. One remedy for 
such a numerical instability is to model constrained 
edges as in Fig. 1(c) where the same displacement 
constraints are imposed along each edge and impose 
resultant load instead of distributed load.

For symmetrically loaded square patch, that is 

fff == 21 , bifurcation point should be found by the 
finite element method using linear perturbation and 
eigenvalue analysis. At bifurcation point, tangent 

stiffness matrix tK  becomes singular, i.e., 0=⋅uKt  for 

nontrivial displacement solution u . Referring to base 

state at load crff <0  before singular point load  crf , 

one can set up the following eigenvalue problem by 

applying perturbation load  fΔ  onto the base state

0)( 0 =⋅Δ+ uKK η       (19)

where η  is an eigenvalue, fffcr Δ+= η0
~  is the 

estimated bifurcation load, )( 000 fKK =   is the stiffness 

matrix at base state, )( fKK ΔΔ=Δ  is the differential 
stiffness matrix by perturbation of incremental loading 

fΔ . Calculated bifurcation points are listed in Table 1 

for the square rubber patch for Fig. 1(a) with example 
material[14]. As shown in the table, bifurcation point 
can be identified however its value is not accurate but 
approximate especially at base state long before the 
bifurcation point. It is certain that the material 
nonlinearity affects the stiffness matrix that becomes 
singular approaching bifurcation point. By this 
investigation, in the context of finite element methods, 
even though general nonlinear analysis such as Fig. 
2(d) is very accurate, finding bifurcation points of 
rubber-like materials using eigenvalue analysis cannot 
be recommended as a robust technique.

Existence of Kearsley's bifurcation phenomena for 
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square patch with Mooney-Rivlin material was verified 
by the experiment[15] and by the analytical or 
numerical method. In this study other material models 
described in the previous section will be investigated 

next. Neo-Hookean material (7) can be treated as 1=α  

by Mooney-Rivlin material. For  1=α , there is no 
asymmetric solution from equation (16). It means 

∞→crλ  as 1→α  from Fig. 2(b). Therefore 

bifurcation cannot happen by neo-Hookean models.
For Gent material (11), equation (15) can be written

021
4
2

3
1

3
2

4
1 =−+− λλλλλλ kk      (20)

Equation (20) for symmetric loading, 1=k , is 

0)1)(1)(( 21
2
2

2
12121 =+−+− λλλλλλλλ       (21)

This means that there is only one symmetric 
solution so the bifurcation cannot be observed for the 
Gent model. Likewise, Arruda-Boyce (9) and Fung 
model (12) are investigated by the same procedure and 
verified that there is no bifurcation or asymmetric 
deformation for the symmetric loading. For 
Pucci-Saccomandi model (13) in which strain energy 

density is dependent on 2I  as well as 1I , equation (20) 

for symmetric loading, 1=k , can also be written 

0),,,()( 2121 =− βλλλλ mJh       (22)

where function ),,,( 21 βλλ mJh  has no real solution 
meaning no bifurcation phenomenon. Among material 
models described in the section 2.2, it is concluded that 
Kearsley's bifurcation occurs only for Mooney-Rivlin 
model.

Table 1. FEM calculation of bifurcation point using base 
state and eigenvalue analysis with perturbation

crff /0 0.5 0.6 0.7 0.8 0.9 0.95 0.99 1.01 1.1

crcr ff /~
0.6194 0.7051 0.7853 0.8608 0.9322 0.9666 0.9935 * *

*) eigensolution cannot be found due to numerical singularities at 
the base state

3.2 General inflation of rubber balloons

Rubber balloons are easily inflated but may exhibit 
various kinds of instabilities. For example, there may 
be possible either symmetric or asymmetric inflation of 
symmetrically pressurized twin rubber balloons of Fig. 
3(a). One balloon becomes larger while the other 
balloon becomes smaller at some point during inflation. 
It is because of the existence of limit point that is 
caused by the rubber material and the geometry of the 
balloon. Likewise, even single balloon such as Fig. 
3(b) and (c) may exhibit bifurcation or instability 
during inflation.

Both spherical and cylindrical balloon can be 
expressed by the following general inflation equation:

021 =−⋅ σσκ          (23)

Stresses 1σ  and 2σ  in equation (23) are membrane 

stresses in zenith and azimuth direction respectively as 
shown in Fig. 3(b) and (c). For spherical balloon, 

1=κ , and for cylindrical balloon, 2/1=κ . For a 
specific material of section 2.2, stresses are defined by 
equations (6b) and (6c) assuming plane stress condition 

03 =σ  and incompressibility 1
213 )( −= λλλ . Then, by 

solving equation (23), it can be obtained as )( 211 λλλ =  

or )( 122 λλλ = . Inflation pressure is then recovered by,

0
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02
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r
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r
t

r
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⋅
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⋅
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⋅

=
υ
σ

λλ
σσ

      (24)

where, 01rr λ= , 210 / λλtt = , 2
2
1λλυ =  are used and 

0r , 0t  are initial radius, initial thickness, respectively. 

Parameter υ  is introduced to indicate a level of 
inflated volume. Internal pressure can be expressed in 
dimensionless form as follows:

GGt
pr

υ
σϕ 1

0

0 ==      (25)
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1σ

2σ

p
 (a)                        (b)

    

1σ

2σ

(c)

Fig. 3. Rubber balloons inflations. (a) two balloons 
inflating by the same inflation pressure (b) 
spherical(ball) balloon inflation (c) cylindrical 
(tube) balloon inflation

Equation (23) and then (25) can be solved 
analytically for simple material models such as 
neo-Hookean or Gent model[7]. For neo-Hookean 
model it can be found as:

1)( 3/171 =−= −− κυυϕ for      (26a)

2/1
1

211
3/1

22 =⎟
⎠
⎞

⎜
⎝
⎛
+

⎟
⎠
⎞

⎜
⎝
⎛ −= κ

υ
υ

υ
ϕ for       (26b)

Equation (26a) and (26b) are plotted in Fig. 4(a) and 
4(b). Other models are plotted as well in the same 
figure with the values of specific material constants. As 
shown in the figure neo-Hookean model shows a limit 
point but no stiffening beyond the limit point. It means 
balloon turns into very large inflation that is burst of 
the balloon. 

For neo-Hookean model limit point is 

620.0,64.272 === ϕυ  for ball balloon and 

750.0,93.2214 ==+= ϕυ  for tube balloon, 

respectively. For other models, limit points are listed in 
Table 2 and 3. There is another limit point beyond the 
first limit point as shown in Fig. 3(c). For certain 
material constant, there is no limit point at all. For 
example, ball balloon of Mooney-Rivlin model, 

equation (8), has no limit point when 82.0* =<αα . So 

a critical material constant, i.e., *)(⋅  that divides stable 

and unstable inflation of the balloon can be identified 

as shown in Fig. 3(c). In Table 2 and 3 *α , *mJ , *mλ  

and *b  represent those critical material constants. Fig. 

4(d) is used to find critical material parameters. Lower 

*αα <  has no limit point at all meaning there is no 

instability or softening during inflation. Other points 

including the first ),( 11 ϕυ  and the second ),( 22 ϕυ  

limit points are depicted in Fig. 4(c) and are listed in 
Table 2 and 3. In Fig 4(c), point '0' is the point of the 
same pressure with the second limit before the first 
limit point. Likewise, point '3' is the point of the same 
pressure with the first limit after the second limit point.

(a) 

 

(b)
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(c)

   

(d)

Fig. 4. Inflation curves. (a) ball balloon (b) tube balloon 
(c) inflation paths (d) critical material parameter. 
NH: neo-Hookean, MR: Mooney-Rivlin, GE: 
Gent, GE2: Gent or Pucci and Saccomandi, FU: 
Fung, AB: Arruda-Boyce

Table 2. Inflation characteristics for spherical balloon 
( 1=κ )

Material 
models

Material 
constants ),( ** ϕυ ),( 11 ϕυ ),( 22 ϕυ )( 3υ )( 0υ

NH (2.65, .620) (∞ , 0)

MR
*α = .824 (6.20, .752)

α = .906 (3.25, .680) (29.2, .583) (163) (1.75)
GE

*mJ = 17.6 (4.43, .675)

mJ = 30.0
(3.02, .646) (12.5, .579) (27.7) (1.81)

GE2
*mJ = 14.1 (4.10, .692)

β =0.9 mJ = 30.0
(2.80, .655) (14.1, .543) (30.8) (1.62)

AB
*mλ = 2.26 (4.29, .670)

mλ = 3
(2.92, .640) (14.1, .550) (31.4) (1.69)

FU
*b = .067 (4.86, .783)

b = .050 (3.33, .732) (10.4, .697) (20.1) (2.17)

Table 3. Inflation characteristics for cylindrical balloon 
( 5.0=κ )

Material 
models *α ),( ** ϕυ ),( 11 ϕυ ),( 22 ϕυ )( 3υ )( 0υ

NH (2.93, .750) (∞ , 0)
MR

*α = .5 (∞ , 1)
α = .906 (3.51, .800) (∞ , .584) (1.57)

GE
*mJ = 18.2 (5.00, .818)

mJ = 30.0 (3.38, .784) (13.5, .708) (26.7) (2.00)

GE2
*mJ = 15.1 (4.70, .830)

β =0.9 mJ = 30.0 (3.21, .786) (15.2, .665) (32.4) (1.80)

AB
*mλ = 2.29 (4.84, .812)

mλ = 3 (3.26, .776) (15.2, .674) (33.4) (1.85)

FU
*b = .065 (5.50, .946)

b = .050 (3.78, .889) (11.2, .853) (20.87) (2.47)

3.3 Bifurcation of rubber balloons

Using Table 2 and 3, bifurcation of twin ball 
balloons of Fig. 3(a) and a tube balloon of Fig. 3(c) 
can be identified. Considering twin ball balloons of 

Arruda-Boyce model with 3=mλ  inflated by blowing 

air into up to the first limit point, ),( 11 ϕυ = (2.92, 

.640) as listed in Table 2, the balloon will be inflated 
either symmetric or asymmetric fashion. Symmetric 
fashion occurs if both balloons are inflated up to point 

3 in Fig. 4(c) meaning enough air as large as 3υ = 31.4 

is blown into the balloons while maintaining pressure 

as 3ϕ =0.640. Asymmetric fashion occurs if one 

balloon is inflated up to point 2 while the other balloon 
shrinks back to point 0 meaning the pressure is 

dropped to 0ϕ = 2ϕ = 0.550. Volume and size of the 

balloons are calculated noting that 2
2
10 λλυ == VV .

υ== 3
0

3

0 r
r

V
V

     (27a)

03.2
69.1

1.14
33

0

2 ===
υ
υ

a

b

r
r

     (27b)

where 0r  and r  are initial and inflated radius,  ar  and 

br  represent radius of the smaller and the large 
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balloons when asymmetric inflation occurs. 
Asymmetric inflation is depicted as dashed line in Fig. 
4(a).

Likewise tube balloon may exhibit asymmetric 
inflation. From Table 3, Arruda-Boyce model of   

3=mλ  their values are ),( 11 ϕυ =(3.26, .776),  

),( 22 ϕυ =(15.2, .674), 0υ =1.85 and 3υ =33.4. From 

equation (23), it can be found that 1λ =1.32 and 2λ

=1.06 at point 0 while 1λ =2.78 and 2λ =1.97 at point 2.

υ==
0

2
0

2

0 l

l

r
r

V
V

     (28a)
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υ
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λ

b

a

a

b

r
r

     (28b)

Where 0l  and l  are initial and inflated tube lengths, 

ar  and br  represent radius of the smaller and the large 

balloons, aλ  and bλ  represent axial stretch of the 

smaller and the larger balloon. Furthermore in a single 
tube balloon, asymmetric inflation can be occurred and 
is depicted as dashed line in Fig. 4(c).

Asymmetric inflation analyses can be done by finite 
element method. Consider the aforementioned tube 
balloon of Arruda-Boyce rubber material. Tube balloon 
is modeled by axisymmetric finite elements as shown 
in Fig. 5(a) and (b) where boundary conditions, 
dimensions and material properties are listed. There is 
no restraint imposed between the point A and B in the 
model Fig. 5(a) while constraint equation of equal 
radial displacement is imposed for about two thirds of 
the tube wall in the model Fig. 5(b). Elemental length 
is 0.1 and the total of 120 linear axisymmetric shell 
elements are used. Riks method or arc-length method 
should be used to capture limit points and bifurcation 
phenomenon where either stable or unstable 
equilibrium path can be traced using material 
nonlinearity and large geometry.

At first, material with *mλλ = = 2.29 listed at Table 

3 is analyzed by the model Fig. 5(a). Finite element 
result is drawn in Fig. 5(c) by blue dots showing that 
the result coincides with the analytic result obtained 

from the previous section. Secondly, material with mλ

= 3 listed at Table 3 is analyzed by the model Fig. 
5(b). Here Fig. 5(b) should be used to control 
equilibrium path of uniform inflation rather than that of 
bifurcated inflation. Finite element result is drawn in 
Fig. 5(c) by red dots as labeled 'controlled' showing 
that the result almost coincides with the analytic result 
obtained from the previous section. Note that slightly 
higher solution is obtained due to the constraints 
imposed along tube wall.

Lastly, material with mλ = 3 is analyzed by the 

model Fig. 5(a) where tube wall is free to inflate in 
any direction. Finite element results are drawn in Fig. 
5(c) by dashed lines as labeled 'free' showing the 
equilibrium path is bifurcated. Portion of tube 
containing point A in Fig. 5(a) bifurcate from the limit 

point ),( 11 ϕυ =(3.38, .777) to the point ),( 33 ϕυ =(23.1, 

.701). Portion of tube containing point B in Fig. 5(a) 

bifurcate from the limit point ),( 11 ϕυ =(1.75, .777) to 

the point ),( 00 ϕυ =(1.56, .701). This bifurcated 

inflation pattern is plotted in Fig. 5(d). See inflated 

shape at 777.=ϕ  and 701.=ϕ  in Fig. 5(d) those are 

limiting instances. Note that those results are slightly 
different from the analytic results in Table 3. It is for 
the geometric imperfection is inherent in the finite 
element model Fig. 5(a). At bifurcated instance, the 
ratio of larger to smaller radius, equation (28b), was 
2.10 from the previous analysis. By the finite element 
method, it is calculated as follows:

64.2
56.1

1.23
27.2
07.1

0

2 ===
υ
υ

λ
λ

b

a

a

b

r
r

      (29)

Again, the result is slightly different from the 
analytic result because of the imperfection in the model 
of Fig. 5(a). From Fig. 5(d), note that the pressure at 
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fully inflated instance is 711.=ϕ  whose value is much 

smaller than 777.=ϕ  of pre inflated instance. This 

explains why at certain point of blowing the balloon is 
inflating so fast. That is the everyday practice when we 
are blowing many tube balloons for parties and fun.

 
10,1,10,10 00

3
0

3 ==== − lrtG

AB

  

(a)

  

nuuu === L21

 

(b)

(c)

(d)

Fig. 5. Tube balloon inflation and bifurcation. (a) 
ax-isymmetric FEM model with no restraint 
for inflation (b) axisymmetric FEM model with 
restraint for infla-tion (c) analytic results and 
FEM results (d) inflation and bifurcation 
instances of tube balloon.

3. Conclusion

Inflation and bifurcation behaviors are analyzed for 
several typical hyper-elastic material models and key 
characteristics of the symmetric and asymmetric 
deformations are identified and estimated. Material 
models such as neo-Hookean, Mooney-Rivlin, Gent, 
Arruda-Boyce, Fung, and Pucci-Saccomandi are 
covered in this study. Analytic results are obtained by 
solving the general membrane equations while finite 
element results are obtained by using plane stress 
membrane elements and axi-symmetric shell elements. 
Findings and remarks are summarized as follows:
1) For Treloar's patch problem, both from the analytic 

solutions and the finite element solutions, 
Mooney-Rivlin model shows the Kearsley's 
bifurcation phenomena while other models adopted 
in this study do not. 

2) Physically this means it is very crucial that which 
model has to be used for certain type of problems 
when one needs to model rubber-like structures. 

3) Finite element method gives accurate solution for 
load-displacement tracing if Newton's method with 
Riks or arc-length option is used. However finding 
bifurcation point, in this case due to the material 
stiffness, by finite element method with perturbed 
eigenvalue option is possible but not robust so it is 
not recommended. 

4) Note that bifurcation problem due to the geometric 
stiffness such as buckling of the structures are 
solved by perturbed eigenvalue analysis and it is 
robust.

5) General inflation equation is solved analytically for 
the spherical and cylindrical balloons. By this study 
key characteristics such as critical material 
parameters and distinct limit points are identified. 

6) Bifurcation characteristics of twin ball or tube 
balloons are estimated by those key characteristics. 

7) Finite element solutions for the tube balloon which 
shows symmetric and asymmetric inflation are 
compared with those of analytic solution. Special 
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consideration when modeling tube balloon by finite 
element method is suggested.
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