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General inflation and bifurcation analysis of rubber balloons
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Abstract Several typical hyper-elastic constitutive models that encompass both conventional and advanced ones were
investigated for the application of instability problems, including the biaxial tension of a rubber patch and inflation
of spherical or cylindrical balloons. The material models included the neo-Hookean model, Mooney-Rivlin model,
Gent model, Arruda-Boyce model, Fung model, and Pucci-Saccomandi model. Analyses can be done using membrane
equations with particular strain energy density functions. Among the typical strain energy density functions, Kearsley's
bifurcation for the Treloar's patch occurs only with the Mooney-Rivlin model. The inflation equation is so generalized
that a spherical balloon and tube balloons can be taken into account. From the analyses, the critical material
parameters and limit points were identified for material models in terms of the non-dimensional pressure and inflation
volume ratio. The bifurcation was then identified and found for each material model of a balloon. When the finite
element method was used for the structural instability problems of rubber-like materials, some careful treatments
required could be suggested. Overall, care must be taken not only with the analysis technique, but also in selecting
constitutive models, particularly the instabilities.
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1. Introduction medical use. It exhibit hyper-elasticity even when it is
extended up to 5 to 15 times to the original length.
Rubbery materials are well-known and diverse not  Spherical balloons from the dollar-store may show

only to our everyday living but to engineering and  limiting chain extensibility of around 5 while typical
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General inflation and bifurcation analysis of rubber balloons

biological soft tissues such as human arteries can be
stretched up to 2 or less[1,2]. For their higher
extensibility and complicated nonlinear nature of
deformation it is well known that rubber-like materials
may show various kinds of instabilities including
bifurcations.
Rubber
instability[1,3]. Tube balloons may exhibit inflation

balloons may also exhibit inflation

instability as well as bifurcation[4]. Treloar's patch of

particular rubber material may show in-plane

bifurcation for equi-biaxial tension[5]. Compressed or
bent rubber blocks may exhibit wrinkling instability on
the compression surface[6]. Various inflation
instabilities of rubber balloons are well documented in
the literature like Kanner and Horgan[7].

Constitutive models for rubber materials are various
in their mechanics and behaviors. Some material

models can represent those modes of deformations

while others cannot. A recent advancement of
constitutive model was done by Gent and
Arruda-Boyce.  Gent  proposed  very  simple

phenomenological model that can represent various
types of deformation[8]. Arruda and Boyce used eight
molecular chain model to derive the constitutive
equation[9].

This study will investigate features of representing
instabilities and bifurcations of several rubber material
models not only in analytic manner but also by finite
element method. From time to time finite element
method fails to capture unstable phenomena of
rubber-like materials because of numerical instabilities.
The reason for that and some remedies will be
suggested in modeling finite element analysis. Firstly
the Kearsley's bifurcation in biaxially loaded rubber
sheet will be presented. Secondly inflation of ball and
tube balloon is analyzed by the single general inflation
equation. Specific material parameter that causes
inflation instabilities will be found and presented for
each material model. Finally bifurcation of tube
balloon is identified and analyzed either by analytic

method and finite element method.
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2. Theory

2.1 Basic equations

Rubber-like materials and bio-materials such as soft

tissue and arterial wall can be modeled as an
incompressible hyper-elastic material. For
incompressible hyper-elastic continuum materials,

mechanical properties are derived in terms of strain
energy density function W. Letting F be the
deformation gradient tensor and B=FF" be the left
Cauchy-Green tensor, the strain invariants can be
derived in terms of B or principal stretches 4.4.4 as

follows,

L=tuB=X+4+7 (1a)
I, =4[(trB)’ —(rB*)] = L4 + B4 + L4 (1b)
I,=detB= L LA (Ic)
Because of the incompressibility, 44,4,=1 or

detF=1 and 7,=1. The second invariant can also be

expressed as I, =47 +A4>+ 4" in case of incompressible
materials. Then strain energy density function can be
defined by

W=w(d,l,) )
From the strain energy density function, constitutive
equation in terms of Cauchy stress tensor ¢ and the

left Cauchy-Green tensor B is written by

6 =-pl+2W,B-2W,B" A3)
where 1=0,¢,®¢,, w,=ow/ol,, W,=0W/ol, and p is
a hydrostatic pressure due to the incompressibility
constraint. And &, is the Kronecker delta and €, is
a unit vector in Cartesian coordinate systems. Nominal

or engineering strain tensor § can be related to the

Cauchy stress tensor ¢ by
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S=o¢F " )
In principal stretch modes, nominal stress in each
direction is S, =0, 4, and Cauchy stress can be derived
by
o, =-p+2W 2,

W, 27) ()

where @ =1, 2 or 3 represent each principal direction.
Equation (5) of

hyper-elastic materials and the following form of

represents membrane behavior

constitutive equations can be obtained.

=0y =24 =)W, + 1 W)

(6a)
0, =0, =2 L~ R) W+ L W,) (6b)
—oy = 2K =)W+ W) (6¢)

2.2 Constitutive models

Strain energy density functions have been proposed
basically in  phenomenological ways or in
micro-mechanical theories such as molecular network
of Gaussian chains. Most simple yet representative
both to experimental and theoretical basis is the

following neo-Hookean model

G
Wy = 0,-3) o

depending on single material constant which is the

infinitesimal shear modulus G and one strain variable

1, In molecular terms, a homogenized behavior of an
isotropic network of ideal Gaussian chains results in
this model[5].

Improvement over the neo-Hookean model can be

done mathematically by expanding with the second

strain variable /,. Mooney and Rivlin suggested the

following model

W,

MR

G
=5[a(11—3)+(1—a)([2—3)] (8)
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where 0<a <1 is a dimensionless material parameter.
Mooney-Rivlin model is for sure phenomenological
one and one of the most popular models in modeling
structures with rubber-like materials. One of the more
complicated theoretical models is Arruda and Boyce's
eight chain model[9] which can represent limiting
chain extensibility observed when severe hardening is

occurred during elongation of the specimen:

_3’f

5
=H
Wi ) AZ:: ©9)
where # and 4, are material parameters relating shear
modulus G with the limiting chain extensibility 4,

and C, are coefficients.

3 99 513 42039
G:/Ll(1+72+ 4 6 8 )
521752 87545 673754, (10a)
1 1 19 519
C,=— C=—o = =
G=1, 71, 7 s, 3500 5 336875
(10b)

Phenomenological model that can represent limiting
chain extensibility similar to Arruda-Boyce model is

the following Gent model[8].

G 1,-3
W, =——J In(l-———
=g =)

()

where J, =1,-3 is a material parameter when /,-3

reaches its maximum i.e., limiting chain extensibility.

For uniaxial tension mode, I,=2+22" and

J,=2,+224-3. This model recovers to the

neo-Hookean model (7) when one takes the limit as

J.—>®©. A molecular-statistical basis for the Gent
model can be found in Horgan and Saccomandi[10].
Rather gradual strain-stiffening instead of abrupt
limiting extensibility can be modeled by Fung
model[11] which is widely used in the biomechanics

applications.
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G
Wiy =—le

b(1,-3) _1]
2b

(12)

where b >0 is a dimensionless material parameter that
is determined experimentally. Limiting the value
b — 0, this model reduces to the neo-Hookean model
(7). Models (9), (11),

neo-Hookean for the strain energy density is dependent

and (12) are generalized

only upon I,, ie., W=W(). Extending Gent model

(11) having dependence on I, was investigated by
Pucci and Saccomandi[12] and Gent[13].

1,-3
‘]m

Weis = g[*ﬂ Jy In(1— )+3(1=p) ln(%z)]

(13)

where 0<f<1 is a another dimensionless material

parameter which represent dependence on /,. Strain

energy (13) reduces to the Gent model (11) when
B=1.

3. Analyses

3.1

Kearsley investigated asymmetric stretching of a

Kearsley's bifurcation

symmetrically loaded square rubber sheet[14]. Later, it
loaded rubber

experiences bifurcation instability[15]. It is investigated

was verified that biaxially sheet

further in this work with several constitutive models
suggested in section 2.2.
Square patch is loaded biaxially as in Fig. 1(a)

where f, and f, means force per unit length in

direction 1 and 2. For plane stress state, o,=0 and

equation (6¢) and (6b) can be rewritten

=208 = 21O, + 2 Wz)% (14a)

5 242 2 )
fo =2 =2 W, + K Wz)z (14b)

where ¢, is the thickness of the patch before stretching.

Note that loading is controlled rather than displacement

17

or stress. Symmetric and asymmetric loading is given
by

kfi=f,=0 15)

where k=1 means symmetric loading and f =1 means
asymmetric loading. Applying Mooney-Rivlin model
(8) into equations (14) and using equation (15), one
can obtain A =14,(4,) or 4, =4,(4). For symmetric

loading k =1, equation (15) can be written as

(b =AHAHE =4 =B = A2 a =D+ (K4 +Da}=0
(16)

Equation (16) gives two solutions. The one is

symmetric deformation A4 =4, and the other is

asymmetric deformation that can be solved by
numerical method. Fig. 2(a) shows the symmetric and
asymmetric solution for 4 =0.906 that was used for
verification ~ for  the

experimental Kearsley's

bifurcation[15]. Letting A =4, =4, for the symmetric

solution, bifurcation point can be determined by

solving the following equation
=32 a-D)+(A +1)a=0 17

Fig. 2(b) shows the solution of equation (17), i.e.,

A =24, with respect to the specific material parameter

« . Bifurcation point for the example material
(¢=0906) is A4,=3.106 as derived in the
literature[15].

For asymmetric loading k <1, equation (15) can be

written as

K2 =205+ 2 =k a =D+ (kA2 = A2+ Ay —kAy)ar
=0 (18)

Solution of equation (18) is shown in Fig. 2(c)
where various k=1, 0.99, 0.9 and 0.8 are compared.
For k=1 and 0.99, equation (14a) and 14(b) give

load versus stretch curves resulting Fig. 2(d). In this
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work, the same value for the bifurcation load

f.,=23.12 N is obtained as in the literature[15]. In
Fig. 2(d), finite element method solutions are plotted
along with the analytic solutions and their results are
almost identical. One hundred linear quadrilateral plane

stress elements are used for the solution.

f /> F,
It
E %fl; 1 F,
TS R B
(a) (b) (©)

Fig. 1. Square rubber patch. (a) uniformly distributed
biaxial edge loading (b) 10x10 finite element
model with distributed loading control (c) 10x10
finite element model with constrained edge

loading
7 10
N 0.8
asymmetric
5 solution
06
B N symmetric | o
solution
A 04
3 &2, =3.106
02
2
1 0.0
1 2 3 3 s M 7 12 3 4 5 6 7 8 9 10
2 2
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A y
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Fig. 2. Analysis of square rubber patch (@ =0.906) in
biaxial loading. (a) symmetric and asymmetric
solutions for the symmetric loading (b)
bifurcation point with respect to the material
parameter (c) solutions for the non-symmetric
loading (d) load-stretch curves by analytic
solutions and finite element methods

the

element methods needs special considerations with care

Obtaining load-stretch behaviors by finite

for it may lead to be unstable. For example, in loading
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control such as in Fig. 1(b), general static analysis by
incremental method with Newton-Rhapson iterations
can be done for most increments but some increments
may diverge due to excessive oscillatory iterations by
numerical truncation error. It is typical for membrane
analysis with rubber-like materials. One remedy for
such a numerical instability is to model constrained
edges as in Fig. 1(c) where the same displacement
constraints are imposed along each edge and impose
resultant load instead of distributed load.

For symmetrically loaded square patch, that is
f,=/f,=f, bifurcation point should be found by the

finite element method using linear perturbation and

eigenvalue analysis. At bifurcation point, tangent
stiffness matrix K, becomes singular, i.e, K,-u=0 for
nontrivial displacement solution # . Referring to base

Jors

one can set up the following eigenvalue problem by

state at load f, <f, before singular point load

applying perturbation load Af onto the base state

(K, +nAK)-u=0 (19)

where 77 is an eigenvalue, Z =fo+nAf is the

estimated bifurcation load, K, =K,(f,) is the stiffness

matrix at base state, AK =AK(Af) is the differential

stiffness matrix by perturbation of incremental loading

Af . Calculated bifurcation points are listed in Table 1
for the square rubber patch for Fig. 1(a) with example
material[14]. As shown in the table, bifurcation point
can be identified however its value is not accurate but
approximate especially at base state long before the
It
nonlinearity affects the stiffness matrix that becomes
By this

investigation, in the context of finite element methods,

bifurcation point. is certain that the material

singular approaching bifurcation point.
even though general nonlinear analysis such as Fig.
2(d) is very accurate, finding bifurcation points of
rubber-like materials using eigenvalue analysis cannot
be recommended as a robust technique.

Existence of Kearsley's bifurcation phenomena for
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square patch with Mooney-Rivlin material was verified
by the experiment[15] and by the analytical or
numerical method. In this study other material models
described in the previous section will be investigated
next. Neo-Hookean material (7) can be treated as ¢ =1

by Mooney-Rivlin material. For ¢ =1, there is no

asymmetric solution from equation (16). It means

A,—>© a g—1 from Fig. 2(b). Therefore
bifurcation cannot happen by neo-Hookean models.
For Gent material (11), equation (15) can be written

kAR =R 244 —kiy=0 (20)

Equation (20) for symmetric loading, k=1, is

(b =2y Ay + DA 25 =20 2y +1) =0 (e2y)

This means that there is only one symmetric
solution so the bifurcation cannot be observed for the
Gent model. Likewise, Arruda-Boyce (9) and Fung
model (12) are investigated by the same procedure and
verified that there is no bifurcation or asymmetric
deformation  for the For

symmetric  loading.

Pucci-Saccomandi model (13) in which strain energy
density is dependent on 7, as well as I,, equation (20)
for symmetric loading, k=1, can also be written

(A=) WAy 2, ,, ) =0 22)

where function #4(4,4,,J,,8) has no real solution
meaning no bifurcation phenomenon. Among material
models described in the section 2.2, it is concluded that
Kearsley's bifurcation occurs only for Mooney-Rivlin

model.

Table 1. FEM calculation of bifurcation point using base
state and eigenvalue analysis with perturbation

fo!f. 05 06 07 08 09 095 099 1.01 1.1

f;,,,/f;, 0.6194 0.7051 0.7853 0.8608 0.9322 0.9666 0.9935 * *

*) eigensolution cannot be found due to numerical singularities at
the base state

19

3.2 General inflation of rubber balloons

Rubber balloons are easily inflated but may exhibit
various kinds of instabilities. For example, there may
be possible either symmetric or asymmetric inflation of
symmetrically pressurized twin rubber balloons of Fig.
3(a). One balloon becomes larger while the other
balloon becomes smaller at some point during inflation.
It is because of the existence of limit point that is
caused by the rubber material and the geometry of the
balloon. Likewise, even single balloon such as Fig.
3(b) and (c) may exhibit bifurcation or instability
during inflation.

Both spherical and cylindrical balloon can be
expressed by the following general inflation equation:

k-0,—0,=0 (23)

Stresses o, and o, in equation (23) are membrane
stresses in zenith and azimuth direction respectively as

shown in Fig. 3(b) and (c). For spherical balloon,

x =1, and for cylindrical balloon, x=1/2. For a
specific material of section 2.2, stresses are defined by

equations (6b) and (6¢) assuming plane stress condition
0,=0 and incompressibility A, =(44,)”". Then, by
solving equation (23), it can be obtained as A, = 4,(4,)

or 4, =4,(4)). Inflation pressure is then recovered by,

to, _ t,0,

r A

_l-o

S (24)

p=

where, ¥ =Ar,, t=t,/AA,, v=21, are used and

Ty, I, are initial radius, initial thickness, respectively.
Parameter o is introduced to indicate a level of
inflated volume. Internal pressure can be expressed in

dimensionless form as follows:

_hpP _ 9

WG oG (25)
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.................

©
Fig. 3. Rubber balloons inflations. (a) two balloons
inflating by the same inflation pressure (b)
spherical(ball) balloon inflation (c) cylindrical
(tube) balloon inflation

Equation (23) and then (25) can be solved

analytically for simple material models such as
neo-Hookean or Gent model[7]. For neo-Hookean
model it can be found as:

for k=1

p=@"-0)" (2632)

1/3
cﬂ:[l—%j(li';zj for k=1/2

Equation (26a) and (26b) are plotted in Fig. 4(a) and
4(b). Other models are plotted as well in the same

(26b)

figure with the values of specific material constants. As
shown in the figure neo-Hookean model shows a limit
point but no stiffening beyond the limit point. It means
balloon turns into very large inflation that is burst of
the balloon.

limit point is

For neo-Hookean  model

v=37=264,9=0620 for ball balloon and

v=14+21=293,0=0750  for

respectively. For other models, limit points are listed in

tube  balloon,
Table 2 and 3. There is another limit point beyond the
first limit point as shown in Fig. 3(c). For certain
material constant, there is no limit point at all. For

example, ball balloon of Mooney-Rivlin model,

equation (8), has no limit point when a <a. =0.82. So

a critical material constant, i.e., (-). that divides stable

and unstable inflation of the balloon can be identified
as shown in Fig. 3(c). In Table 2 and 3 a., J,x, A

and b. represent those critical material constants. Fig.

4(d) is used to find critical material parameters. Lower

o <a, has no limit point at all meaning there is no

instability or softening during inflation. Other points

including the first (v,,¢,) and the second (v,,9,)
limit points are depicted in Fig. 4(c) and are listed in
Table 2 and 3. In Fig 4(c), point '0' is the point of the
same pressure with the second limit before the first
limit point. Likewise, point '3' is the point of the same

pressure with the first limit after the second limit point.

1.6
e | K=1 i
"
i
12 A i
FU(b=0.05) '.'
1.0 1 b
) GE(J,, =30)
0.8 A GE2(J,,=30,4=09 VAN
Z X/AB(2, =3
0.6 1
MR 09,
a=0.
0.4 A ( )
0.2 4 NH
0.0 ey
1 10 100
1%
(a)
1.6 0
4
— 3
14 | k=0.5 ]
FU(b=0.05) Ji
1.2 ~+ )
GE(J, =30 4
1.0 4 1
GE2(J,, =30,5=0.9) /
(4 /
08 /N
4B(4, =3)
0.6 A
MR(a=0.9)
0.4 A
NH
0.2 A
0.0 t
1 10 100
19
(b)
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16
14 4
12 4
1.0 4
0.8 (e, 0.)
0.6 A

04 4

(v, 9,)

(V5. 93)

100

10

(d

Fig. 4.

100

Inflation curves. (a) ball balloon (b) tube balloon

(c) inflation paths (d) critical material parameter.
NH: neo-Hookean, MR: Mooney-Rivlin, GE:
Gent, GE2: Gent or Pucci and Saccomandi, FU:
Fung, AB: Arruda-Boyce

Table 2, Inflation characteristics for spherical balloon

(k=1)

Table 3. Inflation characteristics for cylindrical balloon

Material ~ Material

0 0.) (VL) (Vy,0,) () (1)

(2.65, 620) (0, 0)

(3.25, .680) (29.2,

583) (163) (1.75)

(3.02, .646) (12.5,

579) (27.7) (1.81)

(2.80, .655) (14.1,

543) (30.8) (1.62)

(292, .640) (14.1,

550) (31.4) (1.69)

models  constants
NH
MR .= goa (620, .752)
a= 906
CE s 176 (443, 675)
=300
GEZ e 141 @410, 69)
B=09 Jm =30.0
AB A s 206 (429, 670)
Aw=3
U b gs7 (486, 783)

b= 050

(333, .732) (104,

697) (20.1) (2.17)

(xk=0.5)

Material
models (Vsp) (V,9) ©,0) (L) (1)
NH 0%, ) (%, 0)
MR A= § (0, 1)

a = 906 (351, 800) (00, .584) (157)
GE J .-152 (W0, 81

J =300 (338, 788 (135,708 (67 (00)
GEL J .51 (70830
B=09 J, -3 (21, 786) (152, 665 (24) (180)
AB 4 _aj (484 8D)

Ap=13 (326,.776) (152, 674)  (334) (189)
FU  booges (530, 94)

b= 1050 (378, 889) (112, 853) (087) (247)

3.3 Bifurcation of rubber balloons

Using Table 2 and 3, bifurcation of twin ball
balloons of Fig. 3(a) and a tube balloon of Fig. 3(c)
can be identified. Considering twin ball balloons of

Arruda-Boyce model with 4, =3 inflated by blowing

air into up to the first limit point, (v, @)= (2.92,
.640) as listed in Table 2, the balloon will be inflated
either symmetric or asymmetric fashion. Symmetric
fashion occurs if both balloons are inflated up to point
3 in Fig. 4(c) meaning enough air as large as v;= 31.4
is blown into the balloons while maintaining pressure
as  ¢;=0.640. Asymmetric fashion occurs if one
balloon is inflated up to point 2 while the other balloon

shrinks back to point 0 meaning the pressure is
dropped to @,= ¢,= 0.550. Volume and size of the

balloons are calculated noting that v=V/V, =4 4,.

Vv r

—=—=v

v (27a)

7, L, 14.1

2 =3—==3——=2.03

r, \/ v, V1.69 (27b)
where 7, and  are initial and inflated radius, 7, and

7, represent radius of the smaller and the large
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balloons  when inflation  occurs.

asymmetric
Asymmetric inflation is depicted as dashed line in Fig.
4(a).

Likewise tube balloon may exhibit asymmetric

inflation. From Table 3, Arruda-Boyce model of
Ay =3 (v, ) =(3.26,

(v,, @,)=(15.2, .674), U,=1.85 and U;=33.4. From

their  values

are .776),

equation (23), it can be found that A, =132 and 4,

=1.06 at point 0 while A,=2.78 and 4,=1.97 at point 2.

Vv _r2€ 3

T (28a)
Tl |A L2 [LO6 152,

4 \v, Vio7Viss (28b)

Where £, and ¢ are initial and inflated tube lengths,
7, and 7, represent radius of the smaller and the large

balloons, 4, and A, represent axial stretch of the
smaller and the larger balloon. Furthermore in a single
tube balloon, asymmetric inflation can be occurred and
is depicted as dashed line in Fig. 4(c).

Asymmetric inflation analyses can be done by finite
element method. Consider the aforementioned tube
balloon of Arruda-Boyce rubber material. Tube balloon
is modeled by axisymmetric finite elements as shown
in Fig. 5(a) and (b) where boundary conditions,
dimensions and material properties are listed. There is
no restraint imposed between the point A and B in the
model Fig. 5(a) while constraint equation of equal
radial displacement is imposed for about two thirds of
the tube wall in the model Fig. 5(b). Elemental length
is 0.1 and the total of 120 linear axisymmetric shell
elements are used. Riks method or arc-length method
should be used to capture limit points and bifurcation
where either stable unstable

phenomenon or

equilibrium path can be traced using material

nonlinearity and large geometry.

At first, material with 1=24,.= 2.29 listed at Table

22

3 is analyzed by the model Fig. 5(a). Finite element
result is drawn in Fig. 5(c) by blue dots showing that

the result coincides with the analytic result obtained

from the previous section. Secondly, material with 4,
= 3 listed at Table 3 is analyzed by the model Fig.
5(b). Here Fig. 5(b) should be used to control
equilibrium path of uniform inflation rather than that of
bifurcated inflation. Finite element result is drawn in
Fig. 5(c) by red dots as labeled 'controlled' showing
that the result almost coincides with the analytic result
obtained from the previous section. Note that slightly
higher solution is obtained due to the constraints

imposed along tube wall.

Lastly, material with 4, = 3 is analyzed by the
model Fig. 5(a) where tube wall is free to inflate in
any direction. Finite element results are drawn in Fig.
5(c) by dashed lines as labeled 'free' showing the
bifurcated. Portion of tube

equilibrium path is

containing point A in Fig. 5(a) bifurcate from the limit
point (v,,¢,)=(3.38, .777) to the point (V3,®;)=(23.1,
701). Portion of tube containing point B in Fig. 5(a)

bifurcate from the limit point (v;,®,)=(1.75, .777) to

(Vy,9,)=(1.56, .701). This bifurcated
inflation pattern is plotted in Fig. 5(d). See inflated

the point

shape at ¢ =.777 and ¢ =.701 in Fig. 5(d) those are
limiting instances. Note that those results are slightly
different from the analytic results in Table 3. It is for
the geometric imperfection is inherent in the finite
element model Fig. 5(a). At bifurcated instance, the
ratio of larger to smaller radius, equation (28b), was
2.10 from the previous analysis. By the finite element

method, it is calculated as follows:

T A [ 107 2301, )
r. V4 \o, V227V156

Again, the result is slightly different from the

29

analytic result because of the imperfection in the model

of Fig. 5(a). From Fig. 5(d), note that the pressure at
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fully inflated instance is ¢ =.711 whose value is much

smaller than ¢ =.777 of pre inflated instance. This
explains why at certain point of blowing the balloon is
inflating so fast. That is the everyday practice when we

are blowing many tube balloons for parties and fun.
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Fig. 5.

Tube balloon inflation and bifurcation. (a)
ax-isymmetric FEM model with no restraint
for inflation (b) axisymmetric FEM model with
restraint for infla-tion (c) analytic results and
FEM results (d) inflation and bifurcation
instances of tube balloon.
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3. Conclusion

Inflation and bifurcation behaviors are analyzed for
several typical hyper-elastic material models and key
of the

deformations are identified and estimated. Material

characteristics symmetric and asymmetric

models such as neo-Hookean, Mooney-Rivlin, Gent,
Arruda-Boyce,
covered in this study. Analytic results are obtained by

Fung, and Pucci-Saccomandi are
solving the general membrane equations while finite
element results are obtained by using plane stress
membrane elements and axi-symmetric shell elements.
Findings and remarks are summarized as follows:

1) For Treloar's patch problem, both from the analytic
the

model

element
the
bifurcation phenomena while other models adopted

in this study do not.

solutions and finite solutions,

Mooney-Rivlin shows Kearsley's

2

~

Physically this means it is very crucial that which
model has to be used for certain type of problems
when one needs to model rubber-like structures.

3

~

Finite element method gives accurate solution for

load-displacement tracing if Newton's method with

Riks or arc-length option is used. However finding

bifurcation point, in this case due to the material

stiffness, by finite element method with perturbed
eigenvalue option is possible but not robust so it is
not recommended.

4) Note that bifurcation problem due to the geometric
stiffness such as buckling of the structures are
solved by perturbed eigenvalue analysis and it is
robust.

5) General inflation equation is solved analytically for
the spherical and cylindrical balloons. By this study
key characteristics such as critical material
parameters and distinct limit points are identified.

6) Bifurcation characteristics of twin ball or tube
balloons are estimated by those key characteristics.

7) Finite element solutions for the tube balloon which

shows symmetric and asymmetric inflation are

compared with those of analytic solution. Special
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consideration when modeling tube balloon by finite

element method is suggested.
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