# 공기유량의 변화에 대한 우드펠릿의 자연발화 특성에 관한 연구

김형석<sup>1</sup>, 최유정<sup>2</sup>, 최재욱<sup>3\*</sup> <sup>1</sup>부경대학교 대학원 안전공학과, <sup>2</sup>부경대학교 대학원 소방공학과, <sup>3</sup>부경대학교 소방공학과

# A Study on the Spontaneous Ignition Characteristics of Wood Pellets related to Change in Flow Rate

Hyeong-Seok Kim<sup>1</sup>, Yu-Jung Choi<sup>2</sup>, Jae-Wook Choi<sup>3\*</sup>

<sup>1</sup>Department of Safety Engineering Graduate Student, Pukyong National University <sup>2</sup>Department of Fire Protection Engineering Graduate Student, Pukyong National University <sup>3</sup>Department of Fire Protection Engineering, Pukyong National University

**요 약** 산업이 발달함에 따라 석탄, 석유등 화석연료의 사용이 증대되고 있다. 그 결과 온실가스의 증가와 더불어 이상기후 등의 문제가 발생하게 되었다. 이로 인해 주 자원을 대체 할 수 있는 친환경적인 신재생에너지에 관한 연구가 활발히 진행 중이며, 그 중 열효율이 높은 우드펠릿이 화력발전소, 가스보일러 등에서 대체연료로서 각광받고 있다. 그러나, 우드펠릿의 사용량은 꾸준히 증대 되고 있는 반면 우드펠릿의 사용 시 발생할 수 있는 화재 및 자연발화 등의 위험성에 대한 선행연구가 부족한 실정이다. 이에 본 연구에서는 길이 20 cm, 높이 20 cm, 두께 14 cm의 시료용기를 사용하여 항온조 내부 유량변화에 따른 우드펠릿 최소자연발화온도와 발화한계온도를 구하여 발화특성을 예측하였다. 그 결과 유량이 0 NL/min일 때 153 ℃에 서 주위온도보다 시료의 중심온도가 상승하여 발화하였고 이때의 발화한계온도는 152.5 ℃를 구하였으며, 유량이 0.5 NL/min, 1.0 NL/min에서 발화한계온도인 149.5 ℃를 구하였다. 또한 유량이 1.5 NL/min일 때 발화한계온도인 147.5 ℃를 구하였으며, 동일한 저장량에서 유량이 증가할수록 발화한계온도가 낮아지는 결과를 도출하였다.

**Abstract** Uses of fossil fuels like coal and oil increases with industrial development, and problems like abnormal climate come up as greenhouse gas increases. Accordingly, studies are actively conducted on eco-friendly renewable energy as a replacement for the main resources, and especially, wood pellets with high thermal efficiency are in the limelight as an alternative fuel in thermal power stations and gas boilers. However, despite a constant increase in their usage, few studies are conducted on their risks like fire and spontaneous combustion. Thus, this study found the auto-ignition temperature and critical ignition temperature of wood pellets with a change in flow rate in a thermostatic bath, using a sample vessel with 20 cm in length, 20 cm in height and 14 cm in thickness to predict their ignition characteristics. Consequently, at the flow rate of 0 NL/min, as the core temperature of the sample increased to higher than the ambient temperature, they ignited at 153 °C, when the critical ignition temperature was 152.5 °C. At the flow rates of 0.5 NL/min and 1.0 NL/min, it was 149.5 °C, and at the flow rate of 1.5 NL/min, it was 147.5 °C. Consequently, at the same storage, the more the flow rate, the lower the critical ignition temperature became.

Keywords : Wood Pellet, Spontaneous Ignition, Vessel, Flow Rate, Critical Ignition Temperature

| 1. 서론                                                    | 사용이 증대되고 있다. 그러나, 환경을 고려하지 않은 채 |
|----------------------------------------------------------|---------------------------------|
|                                                          | 화석연료의 무분별한 사용이 이어졌고 그 결과 대기 중   |
| 대산업이 발달함에 따라 석탄, 석유등 화석연료의                               | 의 CO2 농도가 증가하여 지구온난화와 이상기후 등의   |
| esponding Author : Jae-Wook Choi(Pukvong National Univ.) |                                 |

\*Corresponding Author : Jae-Wook Choi(Pukyong National Univ.) Tel: +82-51-629-6470 email: jwchoi@pknu.ac.kr Received February 21, 2019 Revised April 3, 2019 Accepted April 5, 2019 Published April 30, 2019

현

문제점을 가져왔다.

이에 화석연료가 아닌 대체연료로서 에너지 고갈의 위험성이 적고 환경을 고려한 신재생에너지에 관한 산업 이 주목을 받고 있으며 특히 바이오매스와 같은 새로운 대체 에너지의 개발에 관심이 증대되고 있다[1.2].

그 중 우드펠릿은 목재를 가공하는 과정에서 발생하 는 톱밥을 분쇄하여 건조 후 압축 성형한 것으로서 발열 량은 가공 방법에 따라 최소 4,000 ~ 5,000 kcal/kg이 발 생하므로 열효율이 높아 화력발전소, 가스보일러 등에서 대체연료로서 우드펠릿이 각광받고 있다[3].

대체 자원으로 사용하고 있는 우드펠릿에 대한 연구 는 활발히 일어나는 반면, 우드펠릿을 사용함에 따라 발 생할 수 있는 화재 및 자연발화 등의 위험성에 관한 선 행연구가 부족한 실정이다.

자연발화란 아무런 착화원이 없고 공기 중의 상온에 서 물질이 스스로 발열하고, 그 열이 장기간 축적이 되고 발화점에 도달하게 되어 연소를 일으키는 현상이다. 또 한 외부로부터 화염 · 스파크 등의 착화원에 노출되지 않고 물질을 공기 중에서 가열했을 때 발화점까지 온도 가 상승하는 과정이 전반적으로 반응열의 축적에 의한 경우에도 자연발화에 포함 시킨다[4,5].

자연발화에 대한 Jackson[6]은 ASTM Crucible-type 을 이용하여 변형시킨 장치를 사용하여 탄화수소 94개 와 상업용 물질 15개에 대해 실험연구를 하였으며, Kadioglu[7] 등은 고체 자연발화에서 석탄의 습분 효과 에 관하여 연구하였으며, Thomas[8]는 코르크, 나무 등 셀룰로오스 물질의 반응열로 인한 자연발화 특성에 대하 여 연구를 하였다.

자연발화온도에 영향을 미치는 인자로는 용기의 크 기, 용기의 모양, 용기의 배치, 용기 안으로 들어가는 공 기유동이 있다[9].

따라서 본 연구에서는 우드펠릿을 사용하여 유량의 변화에 따른 자연발화온도 및 최고온도를 구하여 우드펠 릿의 사용현장에 필요한 자료를 제공하고자 한다.

# 2. 본론

#### 2.1 열발화 이론[10-12]

발화는 크게 자연발화와 인화로 형식을 나누는데, 자 연발화는 가연성 물질이 에너지를 받아 스스로 발화점에 도달하여 연소가 일어나는 현상으로 축열 과정에 있는 상태에서 내부에서 방열과 발열 속도의 균형 문제로 발 생하고, 인화는 착화원에 의해 연소가 시작하는 현상으 로 나눌 수 있다.

열발화 이론은 일반적으로 두 가지로 설명할 수 있으 며, 고체에 대한 자연발화는 Frank-Kamenetskii의 열발 화 이론을, 액체의 자연발화는 Semenov의 이론을 적용 한다.

Frank-Kamenetskii의 열발화 이론에서의 자연발화는 산소의 영향을 받으므로 확산을 고려할 필요가 있으나, 발화한계온도 부근까지는 그 영향이 미미하므로, 산소의 확산과 고체와 기체 간의 열전달은 고려하지 않고, 계 내 부의 온도 분포를 고려한 이론이다.

Semenov의 이론은 발열과 열전달(전도, 복사, 대류) 에 의한 방열과의 평형 문제를 다루는 이론이다. 계 외로 의 방열속도와 화학반응에 의한 발열속도의 차이에 의해 발생하고, Arrhenius형을 참고하여 계 내에서의 발열속 도와 Newton의 냉각법칙을 따라 계 외로의 방열속도와 의 불균형으로 일어나는 한계 조건을 수리학적으로 도입 한 것이다.

### 3. 결론

#### 3.1 실험시료

본 실험에 사용한 우드펠릿은 H 화력발전소에서 열 량첨가제로 사용하며, K 회사에서 공급한 것을 사용하 였다. Table 1은 KOTITI 시험 연구원에서 제공하는 Test report를 참조하여 시료의 특성치를 나타내었다.

| Table 1. Characteristics | of | wood | pellet | [13-15] |  |
|--------------------------|----|------|--------|---------|--|
|--------------------------|----|------|--------|---------|--|

| Test item(s)      | Unit              | Limit       | Test<br>result |
|-------------------|-------------------|-------------|----------------|
| Diameter          | mm                | 6-8         | 8              |
| Length            | mm                | L≤40        | 20             |
| Unit volume mass* | kg/m <sup>3</sup> | Min.<br>600 | 650            |
| Total moisture*   | %wt               | Max.<br>10  | 8.1            |
| Ash***            | %wt               | Max.<br>3.0 | 3.0            |
| Fines             | %wt               | Max.<br>2.0 | 2.0            |

|                             | As air<br>dried<br>basis | kcal/kg | Min.<br>4,300 | 4,680             |
|-----------------------------|--------------------------|---------|---------------|-------------------|
| Gross<br>calorific<br>value | As<br>dried<br>basis     |         | Min.<br>4,200 | 4,530             |
|                             | As<br>received<br>basis  |         | Min.<br>4,100 | 4,300             |
| Net calo                    | rific value*             | %wt     | Min.<br>3,900 | 3,940             |
| Chlorine***                 |                          | %wt     | Max.<br>0.05  | 0.03              |
| Sulp                        | hur***                   | %wt     | Max.<br>0.05  | 0.03              |
| Nitro                       | gen***                   | %wt     | Max.<br>0.5   | 0.5               |
| Hydr                        | ogen**                   | %wt     | Report        | 6.22              |
| Ash<br>temp                 | fusion<br>perature       | °C      | Min.<br>1,150 | 1,211             |
|                             | As                       | mg/kg   | Max.<br>1.0   | Less<br>than 0.5  |
|                             | Cd                       | mg/kg   | Max.<br>0.5   | Less<br>than 0.1  |
|                             | Cr                       | mg/kg   | Max.<br>10    | 6                 |
| Trace                       | Cu                       | mg/kg   | Max.<br>10    | 5                 |
| element                     | Pb                       | mg/kg   | Max.<br>10    | Less<br>than 1    |
|                             | Hg                       | mg/kg   | Max.<br>0.05  | Less<br>than 0.01 |
|                             | Ni                       | mg/kg   | Max.<br>10    | 3                 |
|                             | Zn                       | mg/kg   | Max.<br>100   | 12                |
| Bior                        | nass**                   | %wt     | Max.<br>90    | 95.7              |
| DN                          | A test                   |         | Negative      | Negative          |

\* As received basis

\*\* As dried basis

\*\*\* As Air dried basis

## 3.2 실험장치[16]

실험장치는 Fig. 1에 나타내었으며 항온조, 열전대, 온도제어장치, 유량계, 온도기록장치, 시료용기로 되어 있다. 열풍 순환식 항온조는 내용적 27 L (길이 30 cm × 높이 30 cm × 폭 30 cm)로 직경이 10 cm인 Siroccco fan을 부착하여 내부의 온도분포를 일정하게 유지하여 내부공기를 순환시켰으며, 항온조의 가열히터는 온도를 최대 1200 ℃까지 가열시킬 수 있는 히터(1.5 kW x 5 ea)를 설치하였다. 항온조 상부에 있는 배기구에 팬을 설 치하여 릴레이 스위치에 의해 설정온도에 비하여 내부의 온도가 높을 때는 자동으로 팬이 작동되게 하였다. 온도 측정에 사용한 열전대는 시료의 중심온도와 주위온도를

제어하기 위해 사용하였으며, 전자는 2조인 Chromel-Alumel로 된 직경 0.35 mm의 열전대를 시료 용기의 중심부에 설치하였으며, 후자는 항온조의 벽면과 시료용기의 사이에 설치하였다. 온도제어장치는 Konics 의 model EC-5600을 사용하여 냉접점을 거친 후의 보 정된 온도를 제어하였으며, 이를 설정온도와 비교하였을 때 그 온도 차이에 의해 가열히터 5개의 전류치를 제어 하였고, 릴레이 스위치를 사용하여 상부에 부착된 팬의 작동을 on-off 타입으로 제어하도록 하였다. 유량계는 SHIMADZU에서 제조된 model SPG-120S를 사용하여 공기를 유입하도록 하였다. 온도기록장치는 Yoko gawa 에서 제조된 펜으로 기록되는 model 4151을 사용하여 설정온도 및 시료중심의 온도를 연속적으로 기록하도록 하였다.

시료용기의 크기는 길이 20 cm, 높이 20 cm, 두께 14 cm로서 직육면체의 형상으로 무한평판에 근접하도록 하 였으며, 이 용기는 스테인리스로 된 300 mesh의 망을 사 용하여 앞뒷면에 1차원 방향으로 열전달이 되게 하였으 며, 그 외의 부분은 약 1 cm로 된 석고판으로 단열을 시 켰다.



- ⑦ Sirocco fan
- ② Sample
- ③ Cold junction (8) Heater (9) Fan
- (4) Program controller 5 Temperature recorder

1 Chromel-alumel thermocouple

Fig. 1. Schematic diagram of experimental apparatus for spontaneous ignition temperature

# 4. 실험결과 및 고찰

### 4.1 유량이 0 NL/min일 때 자연발화온도

산업현장에서 우드펠릿의 자연발화로 인한 화재의 위 험성을 예방하기 위하여 임의의 온도를 정하여 발화되었 을 때는 온도를 내리고 비발화 되었을 때는 온도를 상승 시키는 방법으로 실험을 반복하여 최저발화온도를 구하 였다.

Fig. 2, 3에는 시료의 용기의 두께가 14 cm일 때 공기 의 유량을 0 NL/min으로 실험하여 비발화에 대한 결과 와 발화에 대한 결과를 나타내었다.

Fig. 2는 152 ℃에서 실험을 실시한 것으로 160시간 이 경과하여도 발화되지 않았다. 이는 열이 발열속도에 비해 방열속도가 크기 때문에 오랫동안 시간이 지나도 발화하지 않는 것으로 사료된다.

Fig. 3은 발화되지 않는 온도보다 1도 높은 153 ℃에 서 실험을 실시한 것으로 주위온도보다 시료온도가 상승 하게 되어 발화가 일어났으며 이로 인하여 시료용기 내 부의 온도가 급격히 상승하였고, 항온조의 주위온도도 상승하였다. 시간이 지남에 따라 시료의 중심으로부터 연소반응이 종료되어 온도가 하강하는 형상을 나타내었다.

이는 화학반응으로 발생하는 열이 내부에 축적되어 계 내의 온도를 상승시키고 그 결과 반응을 가속화시켜 발화가 일어나는 것으로 사료된다[12].

또한 발화가 일어나지 않은 최고온도인 152 ℃와 발 화가 일어난 최저온도인 153 ℃의 평균온도인 152.5 ℃ 의 발화한계온도를 구하였다.



Fig. 2. The relationship between the temperature and time of wood pellets with a 14 cm vessel at 152  $^\circ\!\!C$  when the flow rate was 0 NL/min



Fig. 3. The relationship between the temperature and time of wood pellets with a 14 cm vessel at 153 °C when the flow rate was 0 NL/min

#### 4.2 유량이 0.5 NL/min일 때 자연발화온도

Fig. 4, 5에는 시료의 용기의 두께가 14 cm일 때 유량 을 0.5 NL/min으로 실험을 행한 것으로, Fig. 4는 149 ℃에서 비발화 하였으며, Fig. 5는 150 ℃에서 발화한 결 과를 나타내었다. 또한 발화온도 149 ℃와 비발화 온도 150 ℃의 평균온도인 149.5 ℃의 발화한계온도를 구하 였다.



Fig. 4. The relationship between the temperature and time of wood pellets with a 14 cm vessel at 149  $^{\circ}{\rm C}$  when the flow rate was 0.5 NL/min



Fig. 5. The relationship between the temperature and time of wood pellets with a 14 cm vessel at 150 °C when the flow rate was 0.5 NL/min

## 4.3 유량이 1.0 NL/min일 때 자연발화온도

Fig. 6, 7에는 시료의 용기의 두께가 14 cm일 때 유량 을 1.0 NL/min으로 실험을 행한 것으로 Fig. 6은 149 ℃ 에서 비발화 하였으며, Fig. 7은 150 ℃에서 발화한 결과 를 나타내었다. 또한 발화 온도인 149 ℃와 비발화 온도 인 150 ℃의 평균온도 149.5 ℃의 발화한계온도를 구하 였다.

시료용기 내 온도가 서서히 상승 후 낮아졌다 재상승 하는 것을 확인할 수 있는데, 이는 시료용기 중심에 삽입 되어 있는 열전대 부근의 시료가 발화 후 산소부족으로 인하여 연소반응이 약화되어 온도가 하강하다 인접시료 에서 재발화하여 온도가 재상승한 것으로 예측된다[17].



Fig. 6. The relationship between the temperature and time of wood pellets with a 14 cm vessel at 149  $^{\circ}$ C when the flow rate was 1.0 NL/min



Fig. 7. The relationship between the temperature and time of wood pellets with a 14 cm vessel at 150 °C when the flow rate was 1.0 NL/min

### 4.4 유량이 1.5 NL/min일 때 자연발화온도

Fig. 8, 9에는 시료의 용기의 두께가 14 cm일 때 유량 을 1.5 NL/min으로 실험을 행한 것으로서, Fig. 8에는 147 ℃에서 비발화된 것을 나타내었고, Fig. 9는 148 ℃ 에서 발화한 결과를 나타내었다. 또한 발화한 147 ℃와 비발화한 148 ℃의 발화한계온도는 147.5 ℃로 측정하 였다.

본 실험에서 각각의 유량의 변화에 따른 자연발화온 도는 시료 용기의 내부로 공기를 주입시키면 불균일한 흐름을 가지는 공기의 유동이 생기고 이 유동이 용기 내 부의 시료에 분산됨으로써 시료 중심의 풍부한 산소와 반응이 용이하여 자연발화온도는 감소하고 발화지연시 간은 증가하는 것으로 예측된다[18].



Fig. 8. The relationship between the temperature and time of wood pellets with a 14 cm vessel at 147  $^\circ\!\!C$  when the flow rate was 1.5 NL/min



Fig. 9. The relationship between the temperature and time of wood pellets with a 14 cm vessel at 148 °C when the flow rate was 1.5 NL/min

## 4.5 유량의 변화에 따른 자연발화온도

Fig. 10은 Fig. 3, 5, 7 및 9의 발화에 대한 실험 결과 를 나타낸 것으로 유량이 0 ~ 1.5 NL/min으로 증가할수 록 발화 온도는 낮아지고 있다.





# 5. 결론

용기의 길이가 20 cm, 높이 20 cm, 두께 14 cm 일 때 유량의 변화에 대한 우드펠릿의 자연발화온도를 측정 한 결과를 다음과 같이 구하였다.

 유량이 0 NL/min에서 152 ℃의 설정온도에서는 160 시간이 경과되어도 발화가 일어나지 않았으 나, 발화되지 않은 온도보다 1 ℃ 높은 온도에서는 주위온도보다 시료의 중심온도가 상승하여 발화되 어 평균온도인 152.5 ℃의 발화한계온도를 구하였다.

- 유량이 0.5 NL/min 및 1.0 NL/min일 경우 149 ℃ 에서 비발화 되었으며, 150 ℃에서 발화가 일어나 발화한계온도는 149.5 ℃를 구하였다.
- 3) 유량이 1.5 NL/min에서는 148 ℃에 비발화 되었으나, 148 ℃에서 발화되어 발화한계온도는 147.5 ℃를 구하였으며, 동일한 저장량에서 유량이 0 NL/min에서 1.5 NL/min으로 증가할수록 발화한 계온도는 낮아졌다.

#### References

- [1] Y. H. Park, D. O. Youn, "Applicability of A New Tidal Power System with Reduced Environmental Impact", *The Korea Academia-Industrial Cooperation Society*, Vol.18, No.12, pp.112-117, Dec. 2017. DOI: http://dx.doi.org/10.5762/KAIS.2017.18.12.112
- [2] K. S. Shin, H. R. Choi, H. C. Lee, "Topic Model Analysis of Research Trend on Renewable Energy", *The Korea Academia-Industrial Cooperation Society*, Vol.16, No.9, pp.6411-6418, Sep. 2015. DOI: http://dx.doi.org/10.5762/KAIS.2015.16.9.6411
- [3] S. W. Yoon, H. D. Kang, K. Y. Kang. Bioindustry and Environment. p.292-300, Moonumsa, 2010.
- [4] Y. S. Mok, J. W. Choi, "A Study on Autoignition of Granulated Activated Carbon with Change of Ambient Temperature", *The Korean Society of Safety*, Vol.7, No.4, pp.45-53, Dec. 1992.
- [5] Y. J. Park, H. P. Lee, K. C. Goh, Y. S. Eom, "A Study on the Spontaneous Ignition Possibility of Shredded Waste Thermoplastic Elastomer", *The Korean Society of Safety*, Vol.31, No.1, pp.61-65, Feb. 2016. DOI: http://dx.doi.org/10.14346/JKOSOS.2016.31.1.061
- [6] J. L. Jackson, "Spontaneous Ignition Temperature", Industrial and Engineering Chemistry, Vol.43, No.12, pp.2869-2870, 1951. DOI: http://dx.doi.org/10.1021/ie50504a058
- [7] Y. Kadioglu, M. Varamaz, "The Effect of Moisture Content and Air-drying on Spontaneous Combustion Characteristics of Two Turkish lignites", *Fuel*, Vol.82, pp.1685-1693, 2003. DOI: <u>http://dx.doi.org/10.1016/S0016-2361(02)00402-7</u>
- [8] P. H. Thomas, Self-heating and Thermal Ignition A Guide to its Theory and Application, America Society for Testing and Materials, USA, pp.56-82, 1972. DOI: <u>http://dx.doi.org/10.1520/STP32090S</u>
- [9] B. E. Mitchell, P. C. Jurs, "Prediction of Autoignition Temperatures of Organic Compounds from Molecular", *J. Chem. Inf. Comput. Sci*, Vol.37, No.3, pp.538-547, May. 1997.

DOI: https://pubs.acs.org/doi/abs/10.1021%2Fci9601751

- [10] D. A. Frank-Kamenetskii. Diffusion and Heat Transfer in Chemical Kinetises. p.5-36, Pleum Press, 1969.
- [11] N. N. Semenov. Chemical Kinetics and Chain Reaction. Oxford University Press, 1935.
   DOI: <u>https://pubs.acs.org/doi/abs/10.1021/ed012p298.3</u>
- [12] J. W. Choi, S. G. Jeon. Fire Protection Safety Engineering. p.92-100, Hwasumok, 2018.
- [13] Y. R. Kim, S. R. Lee, Test Report for Wood Pellet, KOTITI Testing & Research Institute, Korea.
- [14] Korea Forest Research Institute, Standards and Quality Standards of Wood Products, Korea.
- [15] Y. J. Choi, A Study on the Spontaneous Ignition Characteristic of Wood Pellet and Powder used in Mixtures of Thermal Power Plant, Master's thesis, Pukyong National University of Fire Protection Engineering, Busan, Korea, pp.15-16, 2017.
- [16] H. J. Kang, A Study on the Autoignition Characteristics of Waste Polyurethane Foam, Master's thesis, Pukyong National University of Safety Engineering, Busan, Korea, pp.11-13, 2002.
- [17] W. S. Lim, A Study on the Explosion Characteristics of Hydroxy Propyl Methyl Cellulose dust, Ph.D. dissertation, Pukyong National University of Safety Engineering, Busan, Korea, pp.84-90, 2005.
- [18] O. G. Penyazkov, "Auto-ignition of Hydrogen-Air Mixture at Nonuniform Flow and Boundary Conditions", *Proceedings of the European Combustion Meeting 2009*, Heat and Mass Transfer Institute, Minsk, Belarus, Space Research Institute, Vienna, Austria, pp.1-3, March 2009.

방 이사

김 형 석(Hyeong-Seok Kim)

[정회원]

2012년 2월 : 부경대학교 산업대학 원 안전공학과 (공학석사)
2014년 2월 : 부경대학교 일반대학 원 안전공학과 (공학박사 수료)
2014년 8월 ~ 현재 : (주) 한국소

•2011년 1월 ~ 현재 : 부경대학교

소방공학과 겸임교수



<관심분야> 화학, 기계

# 최 유 정(Yu-Jung Choi)

#### [정회원]



- 2017년 2월 : 부경대학교 일반대학 원 소방공학과 (공학석사)
- •2019년 2월 : 부경대학교 일반대학 원 소방공학과 (공학박사 수료)

<관심분야> 자연발화 및 화재폭발, 가스안전

## 최 재 욱(Jae-Wook Choi)

#### [정회원]

- 1989년 2월 : 동아대학교 화학공학 과 (공학석사)
- 1994년 2월 : 동아대학교 화학공학
   과 (공학박사)
- 1999년 1월 ~ 2000년 1월 : 일본 산업안전연구소 객원교수
- •1997년 3월 ~ 현재 : 부경대학교 소방공학과 교수

<관심분야> 위험물질, 가스안전, 화재폭발