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Abstract The increasing use of curved beams in buildings, vehicles, ships, and aircraft has results in
considerable effort being directed toward developing an accurate method for analyzing the dynamic
behavior of such structures. The stability behavior of elastic curved beams has been the subject of a
large number of investigations. Solutions of the relevant differential equations have traditionally been
obtained by the standard finite difference. These techniques require a great deal of computer time as
the number of discrete nodes becomes relatively large under conditions of complex geometry and
loading. One of the efficient procedures for the solution of partial differential equations is the method
of differential quadrature. The differential quadrature method(DQM) has been applied to a large number
of cases to overcome the difficulties of the complex algorithms of programming for the computer, as
well as excessive use of storage due to conditions of complex geometry and loading. In this study, the
in-plane extensional vibration for asymmetric curved beams with linearly varying cross-section is
analyzed using the DQM. Fundamental frequency parameters are calculated for the member with various
parameter ratios, boundary conditions, and opening angles. The results are compared with the result by
other methods for cases in which they are available. According to the analysis of the solutions, the
DQM, used only a limited number of grid points, gives results which agree very well with the exact ones.
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In-Plane Extensional Vibration Analysis of Asymmetric Curved Beams with Linearly Varying Cross-Section Using DQM

1. Introduction

The increasing usage of the curved beams in

buildings, cars, and aircraft has resulted in
developing an accurate method for analyzing the
dynamic behavior of such structures. Accurate
research of the vibration response of curved beams
is of great importance in many engineering fields
such as the design of the structures.

Hoppell]l and Lovel2] previously studied the
in-plane vibration of beams. Lovel[2] extended
the research on Hoppe's theory for stretching of
the ring. Lamb([3] investigated the statics of
incomplete rings with small curvature. Den
Hartog[4] found the lowest natural frequency of
circular beams with simply supported or clamped
ends using the Rayleigh-Ritz method, and the
study was extended by Volterra and Morell[5].
Archer[6] showed the basic equations of motion
as given in Lovel2] for the in-plane inextensional
incomplete circular beam.

vibrations of an

Nelson[7] carried out for the vibration of a
circular ring segment having simply supported
ends using Lagrangian multipliers. Auciello and
De Rosal8] reviewed the vibrations of circular

beams and briefly showed a number of other

studies. Ojalvol9] obtained the behavior of
three-dimensional motions of elastic beams
using  classical ~beam-theory  assumptions.
Rodgers and Warner[10] also studied the

frequencies of curved elastic beams with simply
supported ends.

The differential quadrature method introduced
by Bellman and Casti[l1]

method for the solution of differential equations.

is more effective

This simple technique can be applied to a large
number of fields to solve the difficulties of
complex program algorithms, as well as usage of
excessive storage of the computer memories. In
the present research, the in-plane extensional
vibration of the asymmetric curved beams with
linearly varying cross-section is analyzed using

the DQM. Fundamental frequency parameters are

calculated for the member with various
parameter ratios of heights.

of slenderness, boundary conditions, and
opening angles. The results are compared with
the results by other methods for cases in which

they are available. New results are also suggested.

2. Governing Differential Equations

In Fig. 1, the coordinate systems for the curved
beam is shown. The beam axis is defined by the
angle . Here, w is the tangential displacements
of the beam axis, u is the radial displacements,

of the

cross-section at the middle, and 6, is the opening

r is the radius, h, is the height

angle. All displacements are positive directions as

shown.

Fig. 1. Coordinates for a curved beam

The equilibrium conditions of a circular
curved beam neglecting rotatory inertia and

shear deformation, as shown in Fig. 2, give

T | o%u

N’ o%w

0 —T=mr o @)
oM

g T Ir=0 ®3)

where N', 7} and M are the normal force, the
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Fig. 2. Forces on a curved beam

shear force, and the bending moment,

respectively. Here ¢ is the time, and = is the

mass per unit length. From the theory of curved

beams, the normal force and the bending
moment are given
. EA(9) ow
N = r )(@ u) (4)
- EIB) ., ow  8%u
M= (=) gt ) ®)
where FE is the Young's modulus, A4 is the

cross-section area, and [ is the area moment of
inertia.

The substitution of equations (4) and (5) into
equations (1) and (2) using equation (3) shows

the following differential equations:

- %(E](w +u ) +2E (w +u )+ Elw +u'"))
,
+ A (W —u) =mru )
-

1. P T

—3(El(w +u )+ Elw +u )+?EA (w—u))

,

+EA(w — u) =mrw @)
in which each prime and dot denote
differentiation with respect to 6 and ¢,

respectively. Assume that the beam is under the

vibration with a frequency w and let

614

u(0,t) = U0)T(t), w(9,t) = W09)Tt) ®)

where U(6) and W(#) are the normal functions
of u(0) and w(@), respectively, and 7(0) is e

Introducing dimensionless distance coordinate

X (see Fig. 1) defined as
_ b
X=4 ©)

Consider the beam with a rectangular cross
sectional area shown in Figure 1. Here, f(X) and
A(X)
variation law and the area of the varying cross

the height of the

cross-section h at the middle of the beam. The

are the function of the cross-section

section associated with

simple case in which the cross-section varies
linearly is studied, because the only law has been
studied by Auciello and De Rosal8]. The variation

law is
I(X) =1, F(X) = I f(X)*, AX)=A4,f(X)
F(X) =[1+(2n(Xx—0.5))] (10)
hy
where n (= hffl) is the ratio of the heights.
0
Using equations (8), (9), and (10), the

differential equations (6) and (7) can be rewritten

*%(K/-ﬂ-%)ﬁ- E(K?”+U—;)+F(K;+ U(:))

6 0 6 b 6 6 6 6
I - =" (v
%%*%””%*Z—g”%%)“% v)
+f(%0)2(0—vg”79—i ”’2:’2 (12)

where § is the length of the beam axis, r,, and

R is the radius of gyration of the cross sectional
1

I =
area, (—-)?. Each prime denotes differentiation

A[)

with respect to the dimensionless distance X.
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The equations (11) and (12) are the governing
equation of the in-plane extensional vibration of
the asymmetric curved beams with varying
cross-section.

The

starting with the basic equations where there is

in-plane inextensional condition is

no extension of the center line. This condition

requires that w and % be

U="5e 13)

Using the equation (13) and eliminating « in
equations (6) and (7), one can rewrite the

equation

we W F
— () +— (30—)+
05 03 o
Ui) ' 7' ' /
WZ (3%+2F)+K3(F—3+49£)
91) 91) 91) 9{) 0
+—B 5+ +—(—+-—)
9{; 93 ‘90 198 9()
mr4 ? W’
= - Wt — 14
7o) (14)

The equation (14) is the governing equation
of the in-plane inextensional vibration of the
asymmetric curved beams.

The boundary conditions of the beam for both
ends clamped, both ends simply supported, and

clamped-simply supported ends are, respectively,

W=U=U=0 at X=0 and 1 (15)
W=U=M=0 at X=0 and 1 (16)
W=U=U=0 at X=0,

W=U=M=0 at X=1 (17)

3. Differential Quadrature Method

Bellman and Casti[ll] introduced the
differential quadrature method (DQM) by
formulating the quadrature rule in their

615

introductory paper. They suggested the DQM as a
new method for the numerical solution of
ordinary and partial differential equations. Jang
et al.[12] applied for the first time to structural
components of the beams. The versatility of the
DQM to engineering solutions in general and to
structural solutions in particular is increasingly
evident. Recently, Kang and Kim[13], and Kang
and Park[14] studied the vibration and the buckling
analysis of the asymmetric curved beams using
the DQM, respectively. More recently, Kang and
Park[15] also analyzed the extensional vibration
DQM. The

application of the DQM to a partial differential

of the curved beams using the

equation can be written

N
> Wg(x)) for i,j=12~N  (18)

j=1

g2}, =

where L is the differential operator, =; is the
discrete point, i is the row vector of the N value,

Ww..

g(z;) is the function value, W, is the weighting
coefficient of the function value, and N is the
number of discrete point. This equation can be
written as the derivatives of the functions in
terms of the function values at all discrete points.
The form of the function g(z) is
g,(X) = x*!

for k=12~N (19)

If the differential operator represents an # th

derivative, the equation is

]ZNI Wijxl;—l: (k—l)(k— 2)---(k— n)xls—n—l

fori, k=1,2,~N (20)

This expression consists of N sets of N linear
algebraic equations, giving a unique solution for
the weighting coefficients since the matrix is a

Vandermonde matrix.
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4. Numerical Application

The DQM is applied to the in-plane
extensional vibration of the asymmetric curved
beam with linearly varying cross-section.

Applying the DQM to equations (11) and (12),
gives

N 4 2
EAz‘jWJ_Uy): U @1

N N 42
)Q(LEB'W*LZA”U'): mrw 1474

2 ij 1577 i
b i=1 O /=1 28

(22)
where A ;, B, C and D ; are the weighting
coefficients for the first-order, second-order,
third-order, and fourth-order  derivatives,
respectively.

The boundary conditions for both ends
clamped, given by equation (15), can be

expressed in differential quadrature as

W,= at X=90

Wy=0 at X=1

U,= at X=0

Uy= at X=1

N

ZlAz;‘UJ:O at X=0+6

=

N

2 A w-1U;=0 atX=1-6§ (23)
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Here, & is a very small distance from the
boundary ends. In their paper on the application
of DQM to the static analysis of the beams, Jang
et all[12] suggested the §-technique to the
boundary points of discrete points at a very
small distance.

The boundary conditions for both ends simply
supported, given by equation (16), can be
expressed in differential quadrature as

W1=0 at X=O
Wy= at X=1
U,=0 at X=0
UN=0 at X=1

1 & 1 &

6, AAuWit 62 2,B4U;=0

at X=0+56

1 N 1 N
Q*EA(N—U]‘VIGJF 2 EB(AV*UJ'[]J':O
0j=1 05 7=1

atX=1-5 (24

Similarly, the boundary conditions for one
clamped and one simply supported ends, given
by equation (17), can be expressed in differential

quadrature as

W;=0 at X=0
Wy=0 at X=1
U,=0 at X=0
Un= at X=1
21A21U7=0 at X=0+5
1 & 1 &
TUJ;AW*H/W/"'G?FIB(\—MU/_0

aaX=1-5 (25)

This set of equations with the boundary
conditions can be solved for the in-plane
extensional vibration of the asymmetric curved

beams with linearly varying cross-section.
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5. Numerical Results and Comparisons

The

A= (mr'w?/EL)"? for the extensional vibration of

fundamental frequency parameter,

the asymmetric curved beam is evaluated for the
rectangular cross sections under the various
conditions. In the following, the simple cases in
which
examined, because the only law has been studied
by Auciello and De Rosal8]. Kang and Kim[13]
showed the convergence studies relative to the

the cross-section varies linearly are

number of grid point N and the very small
distance parameter 6, respectively. The optimal
values for N are found to be 11 to 13 points,
and the optimal values for § are found to be
1x10 ° tol1x10 7% by

calculations. Therefore, all results are calculated

trial-and-error

using 13 grid points and 6=1x10"°% along the

dimensionless axis.

h
(=-—+—1) is taken to
h’U

The ratio of heights, n
be from 0.0 to 0.4, and the ratio of slenderness,
S/r is 30, 100, and 500, respectively. The results
in Tables 1~ 8

because no data are

by the DQM are summarized
without comparisons
available. Tables 1 and 2 show the fundamental
frequency parameters, A= (mr'e*/EL[)Y? for the
cases of simply-simply supported ends with n=
0.1 and n= 0.4. Tables 3~8 also show the
frequency parameters for the case of fixed-fixed
ends, fixed-simply supported ends, and simply
supported-fixed ends, respectively. Table 9 also
the of the

parameters for the uniform cross sectional area

shows comparisons frequency

with non-uniform cross sectional area of the

beams for the cases of fixed-fixed ends with

S/R=30 and .S/ R=500.

As of
hy

- 1)
h[)

the values the ratio of heights,

beam become larger, the values of

n(

frequency parameters become higher for the

617

cases of simply-simply supported and simply
supported-fixed ends. On the other hand, as the
hy

771)

h become larger, the values
0

values of n(=

of frequency parameters become lower for the
cases of fixed-fixed and fixed-simply supported
ends.

From Tables 1~8, it is seen that the values of
frequency parameters of the bean with fixed
ends are much higher than those of the beam
of

frequency parameters of the beam with simply

with simply supported ends. The values
supported-fixed ends are also higher than those
of the beam with fixed-simply supported ends.
The values of frequency parameters can be

increased by decreasing the opening angle, ©

and the slenderness ratio, S/ R. However, when
the value of the slenderness ratio, S/ R is greater
than 500, the difference between the values of
frequency parameters is less than 2.0 percent.

The variations of the slenderness ratio, S/R

hy
— — 1) affect the
hy

and the ratio of heights, n(

vibration behavior of fixed boundary conditions
more significantly than the vibration behavior of
simply supported boundary conditions. Table 9
shows that the values of frequency parameters of
uniform cross-sectional beam are also slightly
higher than those of non-uniform cross-sectional
beam. The

parameters in the uniform and the non-uniform

difference of the values of the

beams can be also reduced by increasing the
values of S/R. The beam behaviors are affected
more importantly by fixed-fixed end conditions,
smaller opening angles, larger ratios of heights,
and smaller slenderness ratios. Auciello and De
Rosal8] the

frequencies of the inextensional vibration of the

also  calculated fundamental
beams using the SAP IV finite element methods
employing 60 elements. In Table 10, the results
are summarized, and the solutions by the DQM

are in good agreement with those by other
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numerical methods. For a thick beam, the shear
deformable theory accounting the rotary inertia
and shear effects gives a better approximation to
the actual beam behavior. Therefore, the shear
deformable theory for linearly varying cross
sectional curved beams should be considered the

next research.

Table 1. Fundamental frequency parameter,
A= (mr'o?/ EL, )1/ for in-plane
extensional vibration of asymmetric
curved beams with simply-simply
supported ends and n= 0.1

) A= (mr’ wZ/E[ )1/2
(deg(:ee) S/R

30 100 500
30 143.0 142.8 142.8
60 34.80 34.65 34.63
90 14.81 14.69 14.66
120 7.8616, 7.966 7.757
150 4.680 4.611 4.604
180 2.982 2.933 2.929

Table 2. Fundamental frequency parameter,
A= (mr'o?/El, T2, for in-plane
extensional vibration of asymmetric
curved beams with simply-simply
supported ends and n= 0.4

) A= (mr? u)z/EI)
(deg(;ee) S/R

30 100 500
30 147.0 146.8 146.8
60 35.76 35.58 35.57
90 15.20 15.05 14.87
120 8.051 7.940 7.918
150 4.781 4.700 4.686
180 3.037 2.980 2.970

Table 3. Fundamental frequency parameter,

A= (mr? mZ/E[ )1/2 for in-plane
extensional vibration of asymmetric
curved beams with fixed-fixed ends and

n= 0.1
. A= (mr? mZ/E[ )1/2
(degl;ee) S/R

30 100 500
30 223.2 222.8 2227
60 54.80 54.42 54.37
90 23.63 23.30 23.24
120 12.75 12.47 12.44
150 7.744 7.524 7.499
180 5.052 4.883 4.865

Table 4. Fundamental frequency parameter,
A= (mr'?/ EL )1/2 for in-plane

extensional vibration of asymmetric
curved beams with fixed-fixed ends and

n= 0.4
. A= (m'r"le/EIO )1/2
(deg:ee) S/R
30 100 500

30 218.8 218.2 217.9
60 53.66 53.23 53.17
90 23.11 22.76 22.56
120 12.45 12.17 12.13
150 7.550 7.333 7.305
180 4915 4.751 4.731

Table 5. Fundamental frequency parameter,
A= (mr w2/E1)1/° for in-plane
extensional vibration of asymmetric
curved beams with fixed-simply
supported ends and n= 0.1

A= (m'r"le/EIO )1/2
6
(deg:ee) S/R
30 100 500

30 179.7 179.2 176.8
60 43.94 43.60 43.17
90 18.82 18.56 18.45
120 10.07 9.879 9.846
150 6.055 5.913 5.897
180 3.905 3.802 3.784

618
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Table 6.

Fundamental frequency parameter,
A= (mr'«?/EL)Y?, for in-plane
extensional vibration of asymmetric
curved beams with fixed-simply
supported ends and n= 0.4

Table 9. Fundamental frequency parameter,
A= (vamZ/E[O)I/Q, for in-plane
extensional vibration of uniform and
non-uniform curved beams with
fixed-fixed ends

A= (mr'?/EI)Y? A= (mr'e?/ EL)'?
0, SR 0, n= 0.0 n= 04
(degree) (degree) (uniform) (non-uniform)
30 100 500 S/R=30| S/R=500 | S/R=30| .9/ R=500
30 176.8 1765 176.5 30 223.6 223.1 21838 217.9
60 43.17 42.89 43.12 60 54.88 54.45 53.66 53.17
90 18.45 18.22 16.01 90 23.67 23.29 23.11 22.56
120 9.846 9.660 9.497 120 12.77 12.46 12.45 12.13
150 5.897 5.757 5.681 150 7.758 7.512 7.550 7.305
180 3.784 3.683 3.637 180 5.061 4.874 4915 4.713
Table 7. Fundamental frequency parameter, Table 10. Fundam4er;tal frle/?uency parameter,
/\:(’m’l'iw?/E[U)l/Q, for in-plane A= (mr'o?/EL)V?, for in-plane
extensional vibration of asymmetric Fbrztlf(?nsdof c(;.lrved beams with
curved beams with simply 1xed-lixed ends
supported-fixed ends and 7= 0.1 ] = (mr4w2/E[())l/2
O j—
A= (’IIL’I'lLu?/E[U)1/2 (degree) n= 04
0, Galerkin C.D.M. SAP 1V DQM
(degree) S/R 10 16240 | 16246 16295
30 100 500 20 403.37 404.41 404.52 405.54
30 181.9 181.2 180.7 30 178.04 178.46 178.90
60 44.47 44.08 44.01 40 99.161 99.391 99.469 99.586
90 19.05 18.78 18.89 50 62.807 62.811 62.896
120 10.20 10.00 9.975 60 42.841 42.958 42.950 42.985
150 6.142 5.998 5.980
180 3.967 3.864 3.852
6. Conclusions
Table 8. Fundamental frequency parameter, The i | . | vibrati f th
= (mra/ BV, for in-plane e in-plane extensional vibration of the
extensional vibration of asymmetric asymmetric curved beams with linearly varying
curved beams with simply cross-section is analyzed by the differential
supported-fixed ends and n= 0.4 quadrature method (DQM) neglecting the
A= (mr'? /)12 transverse shearing deformation. The frequency
bo S/R parameters are calculated for the beams with
(degree) . . .
30 100 500 diverse parameter ratio, opening angles, and
30 184.9 184.0 183.2 boundary conditions. The results are compared
60 45.19 44.72 44.60 with other method for cases in which one is
90 19.36 19.06 19.60 available. The present approach gives excellent
120 1036 10.15 10.14 results requiring only a limited number of grid
150 6.2 6.08 6.0 . . .
> 37 / 73 points: only thirteen points were used for the
180 4.029 3.922 3913

619

solutions. New results are given for four sets of

boundary conditions not considered by previous
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researchers for the in-plane extensional
vibration of the asymmetric curved beams:
fixed-fixed ends, simply-simply supported ends,
simply supported-fixed ends, and fixed-simply

supported ends.

The present method shows the followings:

1) The results by the DQM give the good
precision compared with the other method
in which one is available.

2) Only thirteen discrete points are used for
the analysis.

3) It takes less than 1.0 second to compile the
FORTRAN program with IMSL subroutine
4) The differential equations for the in-plane
extensional vibration of the asymmetric
curved beams with linearly varying
cross-section are presented. The new results
with various opening angles, boundary
conditions, cross section ratios, and
slenderness ratios are also shown. Those
results can be also used in the comparisons
with other numerical solutions or with

other experimental test data by others.

5) For a thick beam, the shear deformable theory
gives a better approximation to the actual
beam behavior. Therefore, the shear deformable
theory for linearly varying cross sectional
curved beams should be considered the

next research.
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