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In-Plane Extensional Vibration Analysis of Asymmetric Curved 
Beams with Linearly Varying Cross-Section Using DQM

Ki-Jun Kang
Department of Mechanical Engineering, Hoseo University

미분구적법(DQM)을 이용한 단면적이 선형적으로 변하는 
비대칭 곡선보의 내평면 신장 진동해석

강기준
호서대학교 공과대학 기계공학부

Abstract  The increasing use of curved beams in buildings, vehicles, ships, and aircraft has results in 
considerable effort being directed toward developing an accurate method for analyzing the dynamic 
behavior of such structures. The stability  behavior of elastic curved beams has been the subject of a 
large number of investigations. Solutions of the relevant differential equations have traditionally been 
obtained by the standard finite difference. These techniques require a great deal of computer time as 
the number of discrete nodes becomes relatively large under conditions of complex geometry and 
loading. One of the efficient procedures for the solution of partial differential equations is the method 
of differential quadrature. The differential quadrature method(DQM) has been applied to a large number 
of cases to overcome the difficulties of the complex algorithms of programming for the computer, as 
well as excessive use of storage due to conditions of complex geometry and loading. In this study, the 
in-plane extensional vibration for asymmetric curved beams with linearly varying cross-section is 
analyzed using the DQM. Fundamental frequency parameters are calculated for the member with various 
parameter ratios, boundary conditions, and opening angles. The results are compared with the result by 
other methods  for cases in which they are available. According to the analysis of the solutions, the 
DQM, used only a limited number of grid points, gives results which agree very well with the exact ones. 

요  약  빌딩, 자동차, 선박, 항공기 등에서의 곡선보 사용 증가로 인해 이러한 구조물의 동적거동해석에 있어 괄목할 
만한 성과가 있어 왔다. 탄성곡선보의 안정성 거동 해석분야는 많은 연구자들의 관심분야였다. 전통적으로 미분방정식
의 해법은 유한차분법으로 해결해왔다. 이러한 방법들은 복잡한 기하학적 구조 및 하중에 따른 격자점의 증가로 많은 
계산시간을 요구한다. 편미분방정식의 해를 구하기 위한 효율적인 방법 중의 하나는 미분구적법이다. 복잡한 기하학적 
구조 및 하중으로 인한 과도한 컴퓨터 용량의 사용과 복합알고리즘 프로그램의 어려움을 극복하기 위하여 미분구적법
(DQM)이 많은 분야에 적용되어왔다. 본 연구에서는 선형적으로 단면적이 변하는 비대칭 곡선보에 대하여 DQM을 적
용하여 아크축 신장을 고려한 내 평면 진동해석을 수행하였다. 다양한 매개변수 비, 경계조건, 그리고 열림 각에 따른 
기본진동수를 계산하였다. DQM 결과는 활용 가능한 다른 엄밀해와 비교하였다. 다양한 매개변수 비, 경계조건, 그리고 
열림 각에 따른 기본진동수를 계산하였으며 DQM 결과를 활용 가능한 다른 엄밀해와 비교하였다. 해석결과에 따르면 
DQM은, 적은 격자점을 사용하고도, 엄밀해 결과와 일치함을 보여주었다. 
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1. Introduction

The increasing usage of the curved beams in 
buildings, cars, and aircraft has resulted in 
developing an accurate method for analyzing the 
dynamic behavior of such structures. Accurate 
research of the vibration response of curved beams 
is of great importance in many engineering fields 
such as the design of the structures. 

Hoppe[1] and Love[2] previously studied the 
in-plane vibration of beams. Love[2] extended 
the research on Hoppe's theory for stretching of 
the ring. Lamb[3] investigated the statics of 
incomplete rings with small curvature. Den 
Hartog[4] found the lowest natural frequency of 
circular beams with simply supported or clamped 
ends using the Rayleigh-Ritz method, and the 
study was extended by Volterra and Morell[5]. 
Archer[6] showed the basic equations of motion 
as given in Love[2] for the in-plane inextensional 
vibrations of an incomplete circular beam. 
Nelson[7] carried out  for the vibration of a 
circular ring segment having simply supported 
ends using Lagrangian multipliers. Auciello and 
De Rosa[8] reviewed the vibrations of circular 
beams and briefly showed a number of other 
studies. Ojalvo[9] obtained the behavior of 
three-dimensional motions of elastic beams 
using classical beam-theory assumptions. 
Rodgers and Warner[10] also studied the 
frequencies of curved elastic beams with simply 
supported ends.

The differential quadrature method introduced 
by Bellman and Casti[11] is more effective 
method for the solution of differential equations. 
This simple technique can be applied to a large 
number of fields to solve the difficulties of 
complex program algorithms, as well as usage of 
excessive storage of the computer memories. In 
the present research, the in-plane extensional 
vibration of the asymmetric curved beams with 
linearly varying cross-section is analyzed using 
the DQM. Fundamental frequency parameters are 

calculated for the member with various 
parameter ratios of  heights. 

of slenderness, boundary conditions, and 
opening angles. The results are compared with 
the  results by other methods  for cases in which 
they are available. New results are also suggested. 

2. Governing Differential Equations
In Fig. 1, the coordinate systems for the curved 

beam is shown. The beam axis is defined by the 
angle  . Here,   is the tangential displacements 
of the beam axis,   is the radial displacements, 
 is the radius,   is the height of the 
cross-section at the middle, and   is the opening 
angle. All displacements are positive directions as 
shown.

  

Fig. 1. Coordinates for a curved beam 

The equilibrium conditions of a circular 
curved beam neglecting rotatory inertia and 
shear deformation, as shown in Fig. 2, give






 (1)






 (2)




   (3)

where   and M are the  normal force, the 
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Fig. 2. Forces on a curved beam

shear force, and the bending moment, 

respectively. Here  is the time, and  is the 
mass per unit length. From the theory of curved 
beams, the normal force and the bending 
moment  are given

 

 





 (4)









 (5) 

  

where  is the Young's modulus,   is the 

cross-section area, and  is the area moment of 
inertia.

The substitution of equations (4) and (5)  into 
equations (1) and (2) using equation (3)  shows 
the following differential equations: 



 ″′″ ′″″′″′ 




′ (6)



 ′′″″″′ 


 ′′

″′  (7)

in which each prime and dot denote 
differentiation with respect to   and  , 
respectively. Assume that the beam is under the 
vibration with a frequency  and let

     (8)

where   and   are the normal functions 
of   and  , respectively, and   is .

Introducing dimensionless distance coordinate 
 (see Fig. 1) defined as 

  
 (9)

Consider the beam with a rectangular cross 
sectional area shown in Figure 1. Here,   and 
  are the function of the cross-section 
variation law and the area of the varying cross 
section associated with the height of the 
cross-section   at the middle of the beam. The 
simple case in which the cross-section varies 
linearly is studied, because the only law has been 
studied by Auciello and De Rosa[8]. The variation 
law is

    
 ,  

     (10)

where   

  is the ratio of the heights.

Using equations (8), (9), and (10), the 
differential equations (6) and (7) can be rewritten 




 ″


 ′




 ″


 ′




″




 ″′




″′




  





 

 ′



 (11)



 ′


 ′




 ″




″




 ″′


′



 

 ′





 



″


 ′
 


 (12)

where  is the length of the beam axis,  , and 
 is the radius of gyration of the cross sectional 

area, 





. Each prime denotes differentiation 

with respect to the dimensionless distance . 
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The equations (11) and  (12) are the governing  
equation of the in-plane extensional vibration of 
the asymmetric curved beams with varying 
cross-section.

The in-plane inextensional condition is 
starting with the basic equations  where there is 
no extension of the center line. This condition 
requires that  and  be 

θ
(13)

Using the equation (13) and eliminating  in 
equations (6) and (7), one can rewrite the 
equation 















 ′





 




 ″




″′



 ″′


 ′
              




″




 ″


 ′



 ″′


 ′
 

 






″
 (14)

The equation (14) is the governing  equation 
of the in-plane inextensional vibration of the 
asymmetric curved beams.

The boundary conditions of the beam for both 
ends clamped, both ends simply supported, and 
clamped-simply supported ends are, respectively, 

  at X=0 and 1 (15)
  at X=0 and 1 (16) 
   at X=0,
   at X=1 (17)

                                   

 3. Differential Quadrature Method

 Bellman and Casti[11] introduced the 
differential quadrature method (DQM) by 
formulating the quadrature rule in their 

introductory paper. They suggested the DQM as a 
new method for the numerical solution of 
ordinary and partial differential equations. Jang 
et al.[12] applied for the first time to structural 
components of the beams. The versatility of the 
DQM to engineering solutions in general and to 
structural solutions in particular is increasingly 
evident. Recently, Kang and Kim[13], and Kang 
and  Park[14] studied the vibration and the buckling  
analysis of the asymmetric curved beams using 
the DQM, respectively.  More recently, Kang and 
Park[15] also analyzed the extensional vibration 
of the curved beams using the  DQM. The 
application of the DQM to a partial differential 
equation can be written

   
 



  for    ∼ (18)

where L is the differential operator,   is the 
discrete point,  is the row vector of the   value, 
  is the function value,  is the weighting 
coefficient of the function value, and  N is the 
number of discrete point. This equation can be 
written as the derivatives of the functions in 
terms of the function values at all discrete points.

The form of the function  is 

    
    for  ∼ (19)

If the differential operator represents an   
derivative, the equation is

    

                  for (20)

This expression consists of  N sets of N linear 
algebraic equations, giving a unique solution for 
the weighting coefficients since the matrix is a 
Vandermonde matrix.
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4. Numerical Application

The DQM is applied to the in-plane 
extensional vibration of the asymmetric curved 
beam with linearly varying cross-section.

Applying the DQM to equations (11) and (12), 
gives




 ″




 



 




 







 ′





 



 




 










 



 




 





 


 



 



   


 (21)



 ′




 



 




 










 



 




 







′



 



 



  




 





 



 



 



 


  

(22)

where , and  are the weighting 
coefficients for the first-order, second-order, 
third-order, and fourth-order derivatives, 
respectively.

The boundary conditions for both ends 
clamped, given by equation (15), can be 
expressed in differential quadrature as 

                at 

                at 

                 at 

                 at     

          at δ

     at δ (23)

Here, δ  is a very small distance from the 
boundary ends. In their paper on the application 
of DQM to the static analysis of the beams, Jang 
et al.[12] suggested the δ-technique to the 
boundary points of discrete points  at a very 
small distance.

The boundary conditions for both ends simply 
supported, given by equation (16), can be 
expressed in differential quadrature as

                at 

                at 

                 at 

               at    

θ θ
 

                       at δ

 


 



  




 



      

                        at δ (24)

Similarly, the boundary conditions for one 
clamped and one simply supported ends, given 
by equation (17), can be expressed in differential 
quadrature as

                 at 

                 at 

                  at 

                  at 

           at δ

 


 



  




 



     

                           at δ (25)

This set of equations with the boundary 
conditions can be solved for the in-plane 
extensional vibration of the asymmetric curved  
beams with linearly varying cross-section.
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5. Numerical Results and Comparisons 

The fundamental frequency parameter, 
  

  for the extensional vibration of 
the asymmetric  curved beam is evaluated for the 
rectangular cross sections under the various 
conditions. In the following, the simple cases in 
which the cross-section varies linearly are 
examined, because the only law has been studied 
by Auciello and De Rosa[8]. Kang and Kim[13] 
showed the convergence studies relative to the 

number of grid point  and the very small 
distance  parameter , respectively. The optimal 
values for  are found to be 11 to 13 points, 
and the optimal values for  are found to be 

 to  by trial-and-error 
calculations. Therefore, all results are calculated 
using 13 grid points and  × along the 
dimensionless axis.

The ratio of heights,  

  is taken to 

be from 0.0 to 0.4, and the ratio of slenderness, 
  is  30, 100, and 500, respectively. The results 
by the DQM are summarized  in Tables 1∼8 
without comparisons because no data are 
available. Tables 1 and 2 show the fundamental 
frequency parameters,      for the 
cases of  simply-simply supported ends with 
0.1 and  0.4. Tables 3∼8 also show the 
frequency parameters for the case of  fixed-fixed 
ends,  fixed-simply supported ends, and simply 
supported-fixed ends, respectively. Table 9 also  
shows the comparisons of the frequency 
parameters for the  uniform cross sectional area 
with non-uniform cross sectional area of the 
beams for the cases of   fixed-fixed ends with 
=30 and =500. 

As the values of the ratio of heights,  

 


   beam become larger, the values of  

frequency parameters become  higher for the 

cases of simply-simply supported and simply 
supported-fixed ends. On the other hand, as the 

values of  

   become larger, the values  

of frequency parameters become  lower  for the 
cases of fixed-fixed and fixed-simply supported 
ends. 

From Tables 1~8, it is seen that the values of  
frequency parameters of the bean with fixed 
ends are much higher than those of the beam 
with simply supported ends. The values of  
frequency parameters of the beam with simply 
supported-fixed ends are also higher than those 
of the beam with fixed-simply supported ends. 
The values of frequency parameters can be 
increased by decreasing the opening angle, θ  

and  the slenderness ratio, . However,  when 
the value of the slenderness ratio,  is greater 
than 500, the difference between the values of 
frequency parameters is less than 2.0 percent. 
The variations of  the slenderness ratio,   

and the ratio of heights,  

    affect the 

vibration behavior of  fixed boundary conditions 
more significantly than the vibration behavior  of 
simply supported boundary conditions. Table 9 
shows that the values of frequency parameters of 
uniform cross-sectional beam are also slightly 
higher than those of non-uniform cross-sectional 
beam. The difference of the values of the 
parameters in the uniform and the non-uniform 
beams can be also reduced by increasing the 
values of  . The beam behaviors are affected 
more importantly by fixed-fixed end conditions, 
smaller opening angles, larger  ratios of heights, 
and smaller slenderness ratios. Auciello and De 
Rosa[8] also calculated the fundamental 
frequencies of the inextensional vibration of the 
beams using the SAP IV finite element methods 
employing 60 elements. In Table 10, the results 
are summarized, and the solutions by the DQM 
are in good agreement with those by other 
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numerical methods. For a thick beam, the shear 
deformable theory accounting the rotary inertia 
and shear effects gives a better approximation to 
the actual beam behavior. Therefore, the shear 
deformable theory for linearly varying cross 
sectional curved beams should be considered the 
next research.


(degree)

            
   



30 100 500
30 143.0 142.8 142.8
60 34.80 34.65 34.63
90 14.81 14.69 14.66

120 7.861 7.966 7.757

150 4.680 4.611 4.604
180 2.982 2.933 2.929

Table 1. Fundamental frequency parameter, 
  

 , for in-plane 
extensional vibration of asymmetric 
curved beams with simply-simply 
supported ends and  0.1  


(degree)

            
   

              

30 100 500
30 147.0 146.8 146.8
60 35.76 35.58 35.57
90 15.20 15.05 14.87
120 8.051 7.940 7.918
150 4.781 4.700 4.686
180 3.037 2.980 2.970

Table 2. Fundamental frequency parameter, 
  

 , for in-plane 
extensional vibration of asymmetric 
curved beams with simply-simply 
supported ends and  0.4 


(degree)

            
   

  

30 100 500
30 223.2 222.8 222.7
60 54.80 54.42 54.37

90 23.63 23.30 23.24
120 12.75 12.47 12.44
150 7.744 7.524 7.499
180 5.052 4.883 4.865

Table 3. Fundamental frequency parameter, 
  

 , for in-plane 
extensional vibration of asymmetric 
curved beams with fixed-fixed ends and 
 0.1 


(degree)

            
   



30 100 500
30 218.8 218.2 217.9
60 53.66 53.23 53.17

90 23.11 22.76 22.56
120 12.45 12.17 12.13
150 7.550 7.333 7.305
180 4.915 4.751 4.731

Table 4. Fundamental frequency parameter, 
  

 , for in-plane 
extensional vibration of asymmetric 
curved beams with fixed-fixed ends and 
 0.4 


(degree)

            
   



30 100 500

30 179.7 179.2 176.8

60 43.94 43.60 43.17

90 18.82 18.56 18.45

120 10.07 9.879 9.846

150 6.055 5.913 5.897

180 3.905 3.802 3.784

Table 5. Fundamental frequency parameter, 
  

 , for in-plane 
extensional vibration of asymmetric 
curved beams with fixed-simply 
supported ends and  0.1  
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
(degree)

            
   

   

30 100 500
30 176.8 176.5 176.5
60 43.17 42.89 43.12

90 18.45 18.22 16.01
120 9.846 9.660 9.497
150 5.897 5.757 5.681
180 3.784 3.683 3.637

Table 6. Fundamental frequency parameter, 
  

 , for in-plane 
extensional vibration of asymmetric 
curved beams with fixed-simply 
supported ends  and  0.4  


(degree)

            
   

               

30 100 500
30 181.9 181.2 180.7
60 44.47 44.08 44.01

90 19.05 18.78 18.89
120 10.20 10.00 9.975
150 6.142 5.998 5.980
180 3.967 3.864 3.852

Table 7. Fundamental frequency parameter, 
  

 , for in-plane 
extensional vibration of asymmetric 
curved beams with simply 
supported-fixed ends  and  0.1


(degree)

            
   

   

30 100 500
30 184.9 184.0 183.2
60 45.19 44.72 44.60

90 19.36 19.06 19.60
120 10.36 10.15 10.14
150 6.237 6.087 6.073
180 4.029 3.922 3.913

Table 8. Fundamental frequency parameter, 
  

 , for in-plane 
extensional vibration of asymmetric 
curved beams with simply 
supported-fixed ends and  0.4


(degree)

             
   

    0.0 
  (uniform)

     0.4
  (non-uniform) 

=30 =500  =30 =500
30 223.6 223.1 218.8 217.9

60 54.88 54.45 53.66 53.17
90 23.67 23.29 23.11 22.56
120 12.77 12.46 12.45 12.13
150 7.758 7.512 7.550 7.305
180 5.061 4.874 4.915 4.713

Table 9. Fundamental frequency parameter, 
  

 , for in-plane 
extensional vibration of uniform and 
non-uniform curved beams with 
fixed-fixed ends


(degree)

             
   

             0.4    
Galerkin C.D.M. SAP IV DQM

10 1624.0 1624.6 1629.5
20 403.37 404.41 404.52 405.54
30 178.04 178.46 178.90
40 99.161 99.391 99.469 99.586
50 62.807 62.811 62.896
60 42.841 42.958 42.950 42.985

Table 10. Fundamental frequency parameter, 
  

 , for in-plane 
vibrations of curved beams with 
fixed-fixed ends 

6. Conclusions

The in-plane extensional vibration of the 
asymmetric curved beams with linearly varying 
cross-section is analyzed  by the differential 
quadrature method (DQM) neglecting the 
transverse shearing deformation. The frequency 
parameters are calculated for the beams with 
diverse parameter ratio, opening angles, and 
boundary conditions. The results are compared 
with other method for cases in which one is 
available. The present approach gives excellent 
results requiring only a limited number of grid 
points: only thirteen points were used for the 
solutions. New results are given for four sets of 
boundary conditions not considered by previous 
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researchers for the in-plane extensional 
vibration of the asymmetric curved beams: 
fixed-fixed ends, simply-simply supported ends, 
simply supported-fixed ends, and fixed-simply 
supported ends.

The present method shows the followings:
1) The results by the DQM give the good 

precision compared with the other method 
in which one is available.  

2) Only thirteen discrete points are used for 
the analysis. 

3) It takes less than 1.0 second to compile the 
FORTRAN program with IMSL subroutine

4) The differential equations for the in-plane 
extensional vibration of the asymmetric 
curved beams with linearly varying 
cross-section are presented. The new results 
with various opening angles, boundary 
conditions, cross section ratios, and 
slenderness ratios are also shown. Those 
results  can be also used in the comparisons 
with other numerical solutions or with 
other experimental test data by others. 

5) For a thick beam, the shear deformable theory 
gives a better approximation to the actual 
beam behavior. Therefore, the shear deformable 
theory for linearly varying cross sectional 
curved beams should be considered the 
next research.

References

[1] R. Hoppe,  "The Bending Vibration of a Circular 
Ring", Crelle's J. Math., Vol. 73, pp. 158-170, 1871.

[2] A. E. H. Love, "A Treatise of the Mathematical Theory 
of Elasticity", 4th ed, Dover, New York, 1944.  

[3] H. Lamb, "On the Flexure and Vibrations of a Curved 
Bar", Proceedings of the London Mathematical 
Society,  Vol. 19,  pp. 365-376, 1888.

[4] J. P. Den Hartog, "The Lowest Natural Frequency of 
Circular Arc",  Philosophical Magazine, Series 7, Vol. 
5, pp. 400-408, 1928.

[5] E. Volterra, J. D. Morell, "Lowest Natural Frequency of 
Elastic Arc for Vibrations outside the Plane of Initial 

Curvature", J. Appl. Math., Vol. 28, pp. 624-627, 1961.

[6] R. R. Archer, "Small Vibration of Thin Incomplete 
Circular Ring", Int. J. Mech. Sci., Vol 1, pp. 45-56, 1960.

[7] F. C. Nelson, "In-Plane Vibration of a Simply 
Supported Circular Ring Segment" Int. J. Mech. Sci., 
Vol. 4, pp. 517-527, 1962.

[8] N. M. Auciello, M. A. De Rosa, "Free Vibrations of 
Circular Arche", J. Sound Vibr., Vol. 176, pp. 443-458, 1994.

[9] U. Ojalvo, "Coupled Twisting-Bending Vibrations of 
Incomplete Elastic Ring", Int. J. Mech. Sci., Vol. 4, pp. 
53-72, 1962.

[10] L. C. Rodgers, W. H. Warner, "Dynamic Stability of 
Out-of-Plane Motion of Curved Elastic Rod", J. Appl. 
Math., Vol. 24, pp. 36-43, 1973.

[11] R. E. Bellman, J.  Casti, "Differential Quadrature and  
Long-Term Integration", J. Math. Anal. Applic., Vol. 
34,  pp. 235-238, 1971.

[12] S. K. Jang, C. W. Bert, A. G. Striz, "Application of 
Differential Quadrature to Static Analysis of Structural 
Components", Int. J. Numer. Mech. Engng, Vol. 28, pp. 
561-577, 1989.

[13] K. Kang, Y. Kim, "In-Plane Vibration Analysis of 
Asymmetric Curved Beams Using DQM",  J. KAIS., Vol. 
11, pp. 2734-2740, 2010. 

[14] K. Kang , C. Park, "In-Plane Buckling  Analysis of 
Asymmetric Curved Beams Using DQM", J. KAIS., Vol. 
141, pp. 4706-4712, 2013. 

[15] K. Kang, C. Park, "Extensional Vibration Analysis of 
Curved Beams Including Rotatory Inertia and Shear 
Deformation Using DQM", J. KAIS., Vol. 17, pp. 
284-293, 2016.

Ki-Jun Kang                [Regular Member]

• Feb. 1984: Chungnam 
National University, Dept. of 
Mechanical Engineering (B.S), 

• Dec. 1989: San Jose State 
University, Dept. of 
Mechanical Engineering (M.S)

• Dec. 1995: University of Oklahoma, Dept. of 
Mechanical Engineering (Ph.D)

• Mar. 1997~ the present : Dept. of Mechanical 
Engineering, 

• Hoseo University, Professor

<Areas studied>
Structural and Numerical Analysis, Buckling,
Vibration


