졸-겔법을 이용한 γ-Al₂O₃ 합성 시 PVA와 HNO₃ 첨가에 따른 입자크기 제어

엄명헌¹, 김나은², 하범용^{3*} ¹공주대학교 화학공학부, ²한국가스안전공사, ³영진전문대학교 신재생에너지전기계열

Particle Size Control by the Addition of PVA and HNO₃ in γ -Al₂O₃ Synthesis Using by Sol-Gel Method

Myeong-Heon Um¹, Na-Eun Kim², Beom-Yong Ha^{3*} ¹Division of Chemical Engineering, Kongju National University ²Department II, Korea Gas Safety Corporation ³Department of Renewable & Electrical Engineering, Yeungjin University

요 약 세라믹 재료 중 알루미나(Al₂O₃)는 산업에서 널리 사용되는 세라믹 재료로서 최근의 기술발전에 따라 재료 크기 가 작아지고 이에 따른 특성이 다양하여 그 중요성이 더해 가고 있다. 본 연구에서는 다양한 알루미늄 알콕사이드 중 Aluminum isopropoxide(AIP)를 출발 원료물질로 하여 졸-껠(Sol-Gel)법에 의해 가수분해 및 해교과정을 거쳐 boehmite 졸을 제조하고 이후 건조 및 하소시켜 γ-Al₂O₃를 제조하였다. 이러한 제조 과정 중 입자의 응집현상을 방지 하기 위해 9,000 ~ 10,000, 31,000 ~ 50,000, 89,000 ~ 98,000, 130,000의 분자량을 갖는 4종류의 PVA(Polyvinyl alcohol)를 첨가하고 3종류 질산(0.1, 0.3, 0.5 몰비)을 첨가하여 입자에 미치는 영향을 확인하고자 하였다. 제조된 γ -Al₂O₃는 X선 회절분석기(XRD), X선 형광분석기(XRF), 입도분석기(PSA), 전계방사 주사전자현미경(FE-SEM) 등의 기 기분석을 통하여 결정구조 및 조성, 입자크기, 그리고 입자형상을 확인하였다. 그 결과, 약 98.2 %의 순도를 갖는 γ -Al₂O₃가 합성되었으며 첨가되는 질산의 첨가비가 높을수록, 그리고 PVA 분자량이 클수록 입자크기가 감소하고 균일성 이 높아지는 것을 확인할 수 있었다. 이러한 결과로부터, PVA와 질산의 첨가비 조절에 따라 γ-Al₂O₃의 제조공정 중 입자크기 제어가 가능할 것으로 사료된다.

Abstract Alumina(Al₂O₃) is a ceramic material used in industry with a range of particle sizes and characteristics. In this study, a boehmite sol was prepared by a hydrolysis and peptizing process using the Sol-Gel method from aluminum isopropoxide (AIP). γ -Al₂O₃ was prepared by drying and calcining. To prevent particle agglomeration during the manufacturing process, four kinds of polyvinyl alcohol (PVA) with molecular weights of 9,000~10,000, 31,000~50,000, 89,000~98,000, and 130,000 were added and three concentrations of HNO₃ (0.1, 0.3, 0.5 molar ratio) were added to determine their effects on the particles. The crystal structure, composition, particle size and shape of the prepared γ -Al₂O₃ were confirmed through x-ray diffraction (XRD), x-ray fluorescence analyzer (XRF), particle size analyzer (PSA), and field emission scanning electron microscopy (FE-SEM). As a result, γ -Al₂O₃ with a purity of approximately 98.2% was synthesized, and the particle size decreased and the uniformity increased with increasing ratio of HNO₃ addition and PVA molecular weight. From these results, the particle size can be controlled during the manufacturing process of γ -Al₂O₃ by controlling the addition ratio of PVA and HNO₃.

Keywords : Sol, Gel, PVA, γ -Al₂O₃, Particle Size

Corresponding Author : Beom-Yong Ha(Yeungjin Univ.) email: hby1732@yju.ac.kr Received September 9, 2019 Accepted November 1, 2019 Published November 30, 2019

1. 서론

세라믹 재료는 열처리 공정을 거쳐 얻어지는 비금속무 기재료로 유기 및 금속과 더불어 3대 재료로 불리며 금 속재료들과는 다르게 전기를 잘 전도하지 않을 뿐 아니 라 유기 재료보다 고온에도 잘 견디는 특징을 가지고 있 으며 전자재료, 정밀기계 재료 등 다양한 용도에 쓰이고 있다. 이러한 세라믹 재료들 중 알루미나(Al₂O₃)는 실리 카와 함께 가장 널리 사용되는 세라믹 재료로 촉매 또는 촉매 지지체, 흡착제, 기능성 세라믹, 복합 재료 연마재의 보강재, 우주선, 열 마모 코팅, 석유 산업, 폐수 처리 및 표면 코팅 용 전자 구조 복합재로 사용되는 중요한 산업 자재 중 하나이다[1-6]. 특히 높은 탄성 계수, 열적 및 화 학적 안정성, 고강도, 인성 및 우수한 유전 특성과 같은 특수한 특성을 나타낼 뿐만 아니라 장력 또는 굽힘 조건 하에서 뛰어난 성능을 나타낸다. 이러한 알루미나는 η-, γ -, δ -, θ -, β -, κ -, χ - 및 α - 알루미나와 같은 다양한 준안정 결정구조로 존재하며 Gitzen의 연구에 의하면 알 루미나의 결정구조는 소성온도에 따라 변형되는데, γ -Al₂O₃는 800 ℃ 이상에서 소성 될 때 δ-Al₂O₃로 변형 되며 δ-Al₂O₃는 1000 ℃ 이상에서 소성 될 때 θ-Al₂O₃ 로 변형되고 이것은 1100 °C 이상에서 소성 될 때 α -Al2O3로 변형된다고 하였다. 이때 불순물의 존재 또는 입자 크기, 가열 속도 및 대기와 같은 요인들은 알루미나 의 상변화의 순서에 영향을 미친다고 하였다[7]. 이들 중 γ-Al2O3는 우수한 열적 및 화학적 안정성, 높은 비표면 적 및 화학적 활성 중심의 분포와 같은 탁월한 특성을 나 타내기 때문에 촉매 담체로서 사용되어 지기도 한다[8].

한편, 최근의 기술발전에 따라 나노 크기의 재료의 제 조가 가능해지면서 반도체, 발광 소자 등이 나노단위로 작아지고 있다. 이러한 나노 입자의 장점은 적절한 재료 를 벌크에서 나노미터(nm) 크기로 줄임으로써 얻을 수 있는 무수한 특성에 있으며 이러한 특성들 중 나노입자 의 매우 큰 비표면적은 촉매 담체로 사용되는 알루미나 에 있어서 중요한 요인이 되고 있다[9]. 이에 따라 최근 이들 나노 입자의 다양한 성질을 고려한 알루미나 나노 입자의 제조를 위한 많은 연구가 이루어지고 있다 [10-12]. 알루미나 나노 입자의 물리적 및 기계적 특성들 은 입자 크기, 형태, 표면 및 상 동질성에 크게 좌우되기 때문에 적절한 제조 조건들을 선택함으로써 성질을 제어 할 수 있으나 알루미나가 반도체 등의 정밀 산업에 이용 되기 위해서는 고순도가 요구되며 이러한 순도가 높고 입자크기가 작은 알루미나의 합성에는 알콕사이드를 이 용한 졸-겔(Sol-Gel) 방법이 가장 적합한 것으로 알려져 있다. 졸-겔 방법은 알루미늄 알콕사이드를 가수 분해 후 해교(peptization)하여 콜로이드성 현탁액 또는 졸을 제 조하는 단계와 용매 증발에 의해 졸은 겔화되고 이를 소 성하여 금속 산화물로 얻는 단계로 나눌 수 있으며 이때 입자의 크기는 공정상에서 고분자 물질을 사용하여 조절 할 수 있다. 이때 사용되는 고분자 물질 중 하나인 폴리 비닐알콜(PVA; Polyvinylalcohol)은 폴리아세트산비닐 을 알칼리, 산, 암모니아수 등에서 비누화함으로써 얻어 지는 고분자 화합물이며 습식 방사를 이용한 섬유, 도료, 접착제, 유화제 등 광범위한 용도 이외에도 최근 수용액 필름이 만들어지며 세제. 농약 등의 유닛 포장에도 이용 되고 있다. 또한 졸-겔 방법으로 제조 된 박막의 품질을 향상시키는 것으로 보고되어 세라믹 산업에서 바인더로 흔히 사용되는 선형 고분자이다. 이러한 PVA를 졸-겔법 을 이용해 알루미나를 합성할 때 첨가할 경우 소성과정 에서 발생하는 알루미나 입자의 응집현상을 막아주는 효 과가 있다고 보고되어 있다.

본 연구에서는 Aluminum isopropoxide(AIP)를 출 발 원료물질로 Sol-Gel법에 의해 가수분해 및 해교과정 을 거쳐 먼저 boehmite 졸을 제조하고 이를 상온에서 젤화시킨 후 건조 및 하소시켜 γ-Al₂O₃를 제조하였다. 이러한 γ-Al₂O₃ 제조 과정에서 입자의 응집현상을 방지 하는 PVA를 분자량 별로 첨가하고 해교제인 질산을 다 양한 몰비로 첨가하여 γ-Al₂O₃의 제조에 미치는 영향을 확인하고자 하였으며 이를 위해 기기분석을 통해 결정구 조, 조성 및 입자크기, 입자형상 등을 확인하여 γ-Al₂O₃ 의 입자에 미치는 영향과 입자크기 제어 가능성을 확인 하고자 하였다.

2. 실험

2.1 시약 및 장치

본 실험에서는 출발 원료 물질로 알루미늄 알콕사이드 가운데 aluminum isopropoxide (AIP, 98 %, Al(OC₃H₇)₃, SAMCHUN)를 사용하였으며 해교제로는 질산(60.0 %, HNO₃, SAMCHUN)을 사용하였다. 첨가 되는 PVA는 Sigma社 제품으로 M.W 9000~10000, 31000~50000, 89000~98000, 130000의 다양한 분 자량을 갖는 PVA를 실험에 적용하였다.

한편 실험에 사용된 장치는 Fig. 1과 같이 heating

mantle과 magnetic stirrer를 이용해 가열 및 교반을 진행하였으며 실험 과정에서 용액의 증발 방지를 위해 환류 냉각기를 이용하였다. 겔의 건조를 위해서는 건조오 븐을 사용하였고 고체화된 시료를 소성하는데는 Barnstead사의 Furnace를 이용하였다.

Fig. 1. Experimental apparatus for reaction

2.2 실험방법

다양한 알루미늄 알콕사이드 가운데 aluminum isopropoxide(AIP)를 출발 원료물질로 사용하여 AIP와 증류수의 비율을 1:100으로 혼합하고 가수분해를 진행 하였다. 이 과정에서 다양한 분자량의 PVA 10 wt %를 첨가해 혼합용액을 제조하였다. 그 후 Heating mantle 을 사용하여 90 ℃의 온도를 유지시킨 다음 1시간 동안 교반시켜 가수분해 반응을 지속하였다. 이때 반응으로 생 성된 휘발성 물질과 증류수의 증발로 인한 손실 및 겔화 를 막기 위해 환류 냉각기를 부착하였다. 가수분해 반응 후 해교제로서 질산을 사용하여 입자의 효과적 분산과 알루미늄 착화합물을 형성하지 않도록 하였으며 AIP 1 mol에 대해 각각 0.1, 0.3, 0.5 몰비(mole ratio)로 용액 에 첨가, 혼합하였는데 90 ℃에서 24시간 동안 교반을 지속해 해교가 완전히 일어나도록 하여 Boehmite sol이 제조되었다. 이렇게 제조된 sol을 비이커에 옮겨 담은 뒤 상온에서 24시간 동안 교반하여 겔(Gel)화하였고 100 ℃의 건조 오븐에서 24시간 건조시켜 고체화하였다. 마 지막으로 600 ℃에서 1시간 하소시켜 최종 γ-Al₂O₃ 분 말을 제조하였으며 이상의 실험과정을 Fig. 2에 요약하 였다.

Fig. 2. Flow diagram for experiment

2.3 기기분석

알루미나 합성 과정에서 PVA 첨가에 따른 영향을 γ -Al₂O₃의 결정구조 측면에서 확인하기 위하여 X-선 회 절분석기(XRD, Rigaku, MiniFlex 600, Japan)를 사용 하여 결정상 분석을 실시하였다. 또한 합성한 γ-Al₂O₃의 조성을 확인하기 위해서 X-선 형광분석기(XRF, Rigaku, ZSX primus, japan)를 이용하여 분석하였다. 첨가된 PVA의 분자량에 따라 응집이 방지된 정도를 확 인하기 위해서 입도분석기(PSA, Otsuka Electronics, ELS- Z2)를 사용하여 입자들의 크기 및 분포를 분석하 였다. 최종적으로 제조된 γ-Al₂O₃ 분말형태와 입자 크기 는 주사전자현미경(FE-SEM, TESCAN MIRA3)을 이용 하여 확인하였다.

3. 실험결과 및 고찰

3.1 제조된 γ-Al₂O₃의 결정구조 분석 결과

Fig. 3은 AIP와 질산의 몰비를 0.1로 설정한 후 분자 량 9000 ~ 10000, 31000 ~ 50000, 89000 ~ 98000인 PVA를 다양하게 첨가해 제조한 γ-Al₂O₃ 분말의 결정상 을 X-선 회절분석기(XRD)로 분석한 결과이다. 제조된 시료는 ICDD 파일에서 나타나는 12개의 피크와 비교해 본 결과, 2*θ*일 때 각 51° (331), 57° (422), 76° (620), 79° (533) 네 개의 피크는 나타나지 않았지만 19.66° (111), 32.48° (220), 36.86° (311), 39.37° (222), 45.79° (400), 61.04° (511), 66.70° (440), 84.86° (444)에서 나타난 피크가 DB와 일치하는 것을 확인할 수 있었다. 따라서 γ-Al₂O₃가 성공적으로 합성된 것을 확인하였고, 다양한 분자량의 PVA 첨가는 γ-Al₂O₃ 결정구조 형성 시 영향을 미치지 않는다는 것을 알 수 있었으며 첨가한 PVA의 분자량에 따라 피크의 높이가 약간의 차이를 띄 는 것을 보아 결정구조 간의 간격에는 영향을 미친다는 것을 확인할 수 있었다.

Fig. 3. XRD spectra of the samples synthesized with 0.1 mole fraction HNO₃ at addition of PVA M.W (a) 9000~10000, (b) 31000~50000, (c) 89000~98000.

3.2 제조된 γ-Al₂O₃의 조성분석 결과

Table. 1은 실험을 통해 제조된 γ-Al₂O₃ 시료의 조성 을 확인하기 위한 X-선 형광분석기(XRF) 분석결과이다. 제조된 γ-Al₂O₃는 약 98.2 %의 순도를 가지며 불순물로 는 P, S, Ca, Na 등이 확인되었다.

Table	1.	XRF	analysis	results	of	γ -Al ₂ O ₃	synthesized
-------	----	-----	----------	---------	----	--	-------------

Component	Result(wt%)
Al ₂ O ₃	98.263
Na ₂ O	0.5711
P ₂ O ₅	0.7306
SO3	0.0626
CaO	0.3730

3.3 제조된 γ-Al₂O₃의 입도 분석결과

Fig. 4와 5는 AIP 대비 질산의 몰비를 0.1로 혼합한 후 분자량 9000 ~ 10000, 31000 ~ 50000, 89000 ~ 98000, 130000인 PVA를 각각 첨가해 제조한 γ-Al₂O₃ 분말들의 입도분포를 입도분석기(PSA)를 이용하여 분석 한 결과와 주사전자현미경(FE-SEM)을 이용한 형상 분석 결과이다.

Fig. 4. Particle size distribution of the samples synthesized with 0.1 mole fraction HNO_3 at addition of PVA (a) M.W 9000~10000, (b) 31000~51000, (c) 89000~98000, (d) 130000

Fig. 5. FE-SEM micrographs of the samples synthesized with 0.1 mole fraction HNO₃ at a PVA (a) M.W 9000~10000, (b)31000~50000, (c) 89000~98000, (d) 130000.

(a)는 제조된 알루미나 입자가 주로 750 nm 크기에 분포하지만 전반적으로 고루 분포된 크기를 나타내고 있 다. (b) 시료는 400 nm 부근에서 피크가 나타나며 전체 적인 분포가 입자크기가 감소하는 방향으로 이동했음을 확인할 수 있다. (c) 시료의 경우 80 nm 수준의 입자도 존재하고 있으나 전체적인 분포는 (b)와 유사하나 그래 프가 다소 좌측으로 가파른 굴곡이 형성된 것으로 보아 입자크기가 점차 작아지는 경향을 보였다. 한편, (d) 시료 는 대부분의 입자크기가 250~450 nm로서 나타나 분 자량이 큰 PVA를 첨가할수록 작아진 입도분포를 확인할 수 있었다. 동일한 조건에서 제조된 γ-Al₂O₃의 FE-SEM 분석결과에서도 입도분석 결과와 같이, 첨가 분자량이 클 수록 작은 입자의 분포가 많아지는 것을 확인할 수 있다. 이는 Neethumol Varghese 등의 연구에서, PVA를 첨 가하였을 때 알루미나 입자의 분산도가 좋아져 작은 입 자들이 서로 엉키며 응집되지 않고 다량 분포하는 형상 을 보인 SEM 분석결과 보고서를 기반으로 응용하여 수 행한 실험결과이다[9].

한편, Fig. 6과 7은 AIP와 질산의 몰비를 0.3으로 혼 합한 후 분자량 9000~10000, 31000~50000, 89000~98000인 PVA를 첨가해 합성한 γ-Al₂O₃ 분말 들의 입도분포 분석결과와 FE-SEM 분석결과이다. (a)~(d)까지의 입도분포와 입자크기는 AIP 대비 질산 0.1 몰비를 혼합하였을 때와 유사하나 (d)의 경우, 0.1 몰비 혼합시의 130000 PVA 첨가 보다 다소 넓은 입도 분포 영역을 보이고 있는 특징을 나타내었다. 그러나 입 도분포 분석결과가 전반적으로 0.1 몰비 대비 입도분포 가 다소 좌측으로 이동한 그래프 형상과 피크의 기울기 가 좌측으로 급격한 경사를 형성하는 것을 보았을 때, 질 산의 첨가비율이 높을수록 입자의 크기와 분포는 작아지 는 경향을 확인할 수 있었다.

Fig. 6. Particle size distribution of the samples synthesized with 0.3 mole fraction HNO_3 at addition of PVA (a) M.W 9000~10000, (b) 31000~51000, (c) 89000~98000, (d) 130000

Fig. 7. FE-SEM micrographs of the samples synthesized with 0.3 mole fraction HNO₃ at a PVA (a) M.W 9000~10000, (b) 31000~50000, (c) 89000~98000, (d) 130000.

Fig. 8. Particle size distribution of the samples synthesized with 0.5 mole fraction HNO_3 at addition of PVA (a) M.W 9000~10000, (b) 31000~51000, (c) 89000~98000, (d) 130000.

Fig. 9. FE-SEM micrographs of the samples synthesized with 0.5 mole fraction HNO₃ at a PVA (a) M.W 9000~10000, (b) 31000~50000, (c) 89000~98000, (d) 130000.

질산의 첨가비율이 높을수록 입자의 크기와 분포는 작 아지는 경향을 보다 더 명확히 확인하기 위해 더 높은 몰 비(0.5)의 질산을 첨가한 실험을 수행하였다. Fig. 8과 9 는 AIP와 질산의 몰 비를 0.5로 설정한 후 상기실험과 동일한 분자량의 PVA를 첨가해 합성한 γ-Al₂O₃ 분말들 의 입도분포와 입자형상을 나타낸 것으로서, (a)~(d) 모 든 시료의 입도크기 분포가 0.1 및 0.3 몰비의 실험과 비 교하였을 때 보다 상당히 크기가 작아진 그래프 좌측에 분포하고 있음을 알 수 있었으며 그 분포 범위도 상당히 좁혀진 피크형태를 나타내고 있음을 확인할 수 있었다. 입자형상 또한 0.1 및 0.3 몰비의 질산을 첨가한 입자에 비해 보다 균일하고 작은 크기의 입자형상을 나타내고 있음을 확인하였다. 이는 Lee 등의 연구에서 질산의 첨 가량이 증가함에 따라 알루미나의 입자크기가 작아지는 결과가 일치하고 있으며, 다량의 질산에 의해 더 작게 해 교된 입자가 건조과정에서 PVA와 구조를 이루게 되고 이후 소성과정에서 PVA가 증발하고 남은 공간들이 입자 들의 응집을 방지하는 효과에 기인한다고 사료된다[13].

이러한 결과로부터, 질산의 첨가비율이 높을수록, 첨 가되는 PVA의 분자량이 클수록 생성되는 γ-Al₂O₃ 분말 의 입도는 작아지는 것을 확인할 수 있었으며 질산 및 PVA의 첨가량에 따라 입도의 제어가 가능할 것으로 기 대된다. Fig. 10은 질산의 첨가량 변화와 첨가한 PVA의 분자량 변화에 따른 입자들의 평균 입자 크기를 그래프 로 요약한 것이다.

Fig. 10. Mean diameter of the samples synthesized with various conditions.

4. 결론

본 연구에서는 Aluminum alkoxide를 출발 원료물 질로 하는 졸-겔법을 이용하여 γ-Al₂O₃을 제조하였으며 제조 과정 중 입자 응집의 방지를 위해 9,000 - 10,000, 31,000 - 50,000, 89,000 - 98,000, 130,000의 분자량 을 갖는 4종류의 PVA를 첨가하고 해교제로서 사용되는 질산을 0.1, 0.3, 0.5 몰비로 첨가하여 γ -Al₂O₃의 제조 시 입자크기와 입도분포에 미치는 영향을 확인하고자 하 였다. 이를 위해 다양한 기기분석을 실시하였으며 XRD 및 XRF 분석을 통해 약 98.2%의 순도를 갖는 γ -Al₂O₃ 가 합성되었음을 확인할 수 있었다. 이렇게 합성된 γ -Al₂O₃의 입자크기, 형상, 입도분포 등은 입도분석기 (PSA) 및 주사전자현미경(FE-SEM)을 통해 얻을 수 있었 으며 제조 과정 중 첨가되는 해교제(질산)의 첨가비가 높 을수록, 응집 방지를 위해 첨가되는 PVA의 분자량이 높 을수록 입자는 작고 균일하게 형성되는 것을 확인할 수 있었다.

이러한 실험결과를 통해 γ-Al₂O₃는 첨가되는 해교제 와 PVA의 첨가량(몰비)과 분자량에 의해 입자를 제어할 수 있을 것으로 사료되며 다양한 용도에 맞는 상업적 대 량생산 시 용이한 입자제어 공정의 조건이 될 수 있을 것 으로 기대된다.

References

- [1] Y. E. Qi, Y. S. Zhang, L. T. Hu, "High-tempera -ture self-lubricated properties of Al2O3/Mo laminated composites", *Wear*, Vol.280-281, pp.1-4, March 2012. DOI: <u>https://doi.org/10.1016/j.wear.2012.01.010</u>
- [2] T. D. Isfahani, J. Javadpour, A. Khavandi, R. Dinnebier, M. Goodarzi, H. R. Rezaie, "Mechanochemical synthesis of alumina nanoparticles: Formation mechanism and phase transformation", *Powder technology*, Vol.229, pp.17-23, October 2012. DOI: <u>https://doi.org/10.1016/j.powtec.2012.05.034</u>
- [3] B. Huang, C. H. Bartholomew, S. J. Smith, B. F. Woodfield, "Facile solvent-deficient synthesis of mesoporous *r*-alumina with controlled pore structures", *Microporous and Mesoporous Materials*, Vol.165, pp.70-78, January 2013. DOI: https://doi.org/10.1016/j.micromeso.2012.07.052
- [4] A. R. Ibrahim, L. Zhu, J. Xu, Y. Hong, Y. Su, H. Wang, J. Li, "Synthesis of mesoporous alumina with CO 2 expanded carbonation and its catalytic oxidation of cyclohexanone", *The Journal of Supercritical Fluids*, Vol.92, pp.190-196, August 2014. DOI: https://doi.org/10.1016/j.supflu.2014.05.021
- [5] M. Ranjbar, M. Yousefi, "Sonochemical Synthesis and Characterization of a Nano-Sized Lead (II) Coordination Polymer: A New Precursor for the Preparation of PbO Nanoparticles", *International*

Journal of Nanoscience and Nanotechnology, Vol.12, No.2, pp.109-118, Spring 2016.

- [6] M. Almasi Kashi, A. Ramazani, "Ordered Nanoporous Alumina Membranes Formed in Oxalic/Phosphoric Acid Using Hard Anodization", *International Journal of Nanoscience and Nanotechnology*, Vo.6, No.2, pp.78–87, Spring 2010.
- [7] Gitzen, W.H, Alumina as a Ceramic Material, Published in the American Ceramic Society, Inc., Columbus, Ohio, USA, p.7, 1970.
- [8] Khamirul Amin Matori, Loy Chee Wah, Mansor Hashim, Ismayadi Ismail and Mohd Hafiz Mohd Zaid, "Phase Transformations of α-Alumina Made from Waste Aluminum via a Precipitation Technique", *Int. J. Mol. Sci.* 2012, Vol.13, No.12, pp.16812-16821, December 2012. DOI: <u>https://doi.org/10.3390/ijms131216812</u>
- [9] Neethumol Varghese, Manjusha Hariharan, Dr.A. Benny Cherian, Dr.P.V. Sreenivasan, Jenish Paul, PVA-Assisted Synthesis and Characterization of Nano α-Alumina, *International Journal of Scientific and Research Publications*, Vol.4, No.10, October 2014.
- [10] B. An, W. Wang, G. Ji, S. Gan, G. Gao, J. Xu, G. Li, "Preparation of nano-sized α-Al2O3 from oil shale ash", Energy, Vol.35, No.1, p.45-49, January 2010. DOI: <u>https://doi.org/10.1016/j.energy.2009.08.027</u>
- [11] Y. S. Yoo, K. Y. Park, K. Y. Jung, S. B. Cho, "Preparation of α-alumina nanoparticles via vapor-phase hydrolysis of AlCl3", *Mater Lett.*, Vol. 63, No.21, pp.1844-1846, August 2009. DOI: https://doi.org/10.1016/j.matlet.2009.05.050
- [12] Yi J, Sun Y, Gao J, Xu C, "Synthesis of crystalline a -Al2O3 with high purity", *Transaction of Nonferrous Met. Soc of China*, Vol.19, No.5, pp.1237-1242, October 2009. DOI: https://doi.org/10.1016/S1003-6326(08)60435-5
- [13] B. W. Lee, H. J. Lim, I. P. Lee, C. Y. Ahn, "Effect of type of peptizing agents used for preparation of alumina sols on the properties of coating films", Korea Chem. Eng. Res, Vol. 54, No. 6, pp.767-774, October 2016. DOI: <u>https://doi.org/10.9713/kcer.2016.54.6.767</u>

엄 명 헌(Myeong-Heon Um)

[정회원]

1987년 2월 : 단국대학교 일반대 학원 화학공학과 (공학석사)
1991년 8월 : 단국대학교 일반대 학원 화학공학과 (공학박사)
2005년 3월 ~ 현재 : 국립공주대

학교 화학공학부 교수

〈관심분야〉 무기소재, 무기공업화학

김 나 은(Na-Eun Kim)

[정회원]

- 2019년 2월 : 국립공주대학교 화 학공학부 (학사)
- 2019년 7월 ~ 현재 : 한국가스안 전공사

〈관심분야〉 무기공업화학, 가스

하 범 용(Beom-Yong Ha)

[정회원]

2000년 2월 : 단국대학교 일반대 하원 화학공학과 (공학석사)
2007년 2월 : 단국대학교 일반대 학원 화학공학과 (공학박사)
2012년 8월 ~ 현재 : 영진전문대 학교 신재생에너지전기계열 교수

<관심분야> 태양광, 먹는물 수질, 신재생에너지