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Abstract Curved beams are increasingly used in buildings, vehicles, ships, and aircraft, which has resulted
in considerable effort being directed toward developing an accurate method for analyzing the dynamic
behavior of such structures. The stability behavior of elastic circular arches has been the subject of a
large number of investigations. One of the efficient procedures for the solution of ordinary differential
equations or partial differential equations is the differential quadrature method DQM. This method has
been applied to a large number of cases to overcome the difficulties of the complex computer
algorithms, as well as excessive use of storage due to conditions of non-linear geometries, loadings, or
material properties. This study uses DQM to analyze the in-plane vibration of the circular arches
considering the effects of midsurface extension and rotatory inertia. Fundamental frequency parameters
are calculated for the member with various parameter ratios, boundary conditions, and opening angles.
The solutions from DQM are compared with exact solutions or other numerical solutions for cases in
which they are available and given to analyze the effects of midsurface extension and rotatory inertia
on the frequency parameters of the circular arches.
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1. Introduction

The increasing use of circular arches in many
structures, such as buildings, bridges, and aircraft
leads to significant effort into developing a more
accurate method for the dynamic analysis of the
structures. Accurate knowledge of the vibration
response of circular arches is very important in
many applications for the analysis of the design
of the structures. The early researchers on the
in-plane vibration of arches were Hoppelll and
Lovel2]. Lovel2] developed on Hoppe's theory by
permitting for stretching of the ring. Lambl3]
studied the statics of arches with various end
conditions and the vibrations of arches of small
Hartogl4] the
Rayleigh-Ritz method for calculating the lowest

curvature.  Den adopted

frequency of circular arches with various

boundary conditions, and his research was
improved by Volterra and Morell[5] for the
dynamics of circular arches in the form of
Archer(6]

worked out for a mathematical research of the

catenaries, parabolas, or cycloids.
inextensional vibrations of the circular arche of
a small cross section area with the differential
equations given in Love[2] with damping effects.
Nelson[7] used the Rayleigh-Ritz method with
Lagrangian multipliers for the vibration of the
circular ring segment with simply supported
boundary conditions. Auciello and De Rosal8]
showed a critical brief review of the in-plane
vibrations of circular arches and presented a
number of other approaches.

A rather efficient procedure for the solution of
differential the

quadrature method which was suggested by

equations is differential
Bellman and Casti[9]. It was also used to the
static research of structural members by Jang et
al.[10] for the first time. The flexibility of the
DQM
progressively apparent by the publications of

to structural analysis is becoming

recent years. Kang and Han[11] used the DQM to

the vibration analysis of a curved beam with
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shear deformable beam theories, and Kang[12]
used the method for the vibration analysis of
thin-wall curved beams. Kang and Kim[13] and
Kang and Park[14] analyzed asymmetric curved
beams for the vibration and the buckling using
the DQM, respectively. Recently, Kang[15] studied
extensional buckling analysis of curved beams,
and Kangl[16]
vibrations of asymmetric curved beams using
DQM, This method is applied to the study to

also  analyzed extensional

analyze the in-plane vibrations of circular arches
including the effects of midsurface extension,
considered, with  various

previously  not

conditions, slenderness ratios, and opening
angles. The results are compared with exact
analytic solutions and numerical solutions by
other methods (FEM, Galerkin, or CD.M.) and
also compared with solutions excluding the
effects of mid surface extension and rotatory

inertia.

2. Governing Differential Equations

The circular arch is shown in Fig. 1. A position
on the centroidal axis is specified by the angle 6,
started from the left support of the arch. The
tangential and the radial displacements of an
arch axis are v and w, respectively. The radius of

the centroidal axis is a.

Fig. 1. Coordinate system for circular arch
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2.1 In-Plane Inextensional Vibrations of
Circular Arches

A mathematical research of the free in-plane
inextensional vibrations of the circular arch with
a small cross section area is worked out starting
with the basic differential equations as given by
Lovel2]. From Lovel2], the analysis is simplified
by assuming focus to problems where there is no
extensibility of the center line of the arche. This
condition shows that v and w are related by

ov
Y] )

If shear deformation and rotatory inertia are

w=

neglected, the governing differential equation for
the free in-plane vibrations of the circular arch,

in terms of the tangential displacement v, can be

written as
EIl 8% o'  o% 02 0%
Tl T ot Em e slem ] @
a a6 a0 a6 ot a6
or
vmf ,Uiv U” m a4 (.L)2 v
T2t 5= EI 2 v G
A 0y 0 05
in which each prime represents one

differentiation with respect to the dimensionless

coordinate X.

X= -
9[]

4

E is the Young's modulus of elasticity, I is the
moment of inertia of areas, m is the mass per
unit length, 6, is the opening angle, and o is the
circular frequency.

Rao and Sundararajan[17] developed the free
in-plane inextensional vibration of a circular
ring with the effect of rotatory inertia. The
differential equations with the effect of rotatory
inertia can be written as

] ma4w2 (_920(1)2 Uiv
EI 57 ph

vi v ”
v v v
+2—t —=
8 ot 42
0 0 0

(—293(%)2+1)%+(—eg(§)2—1)v) ©)

where s(=af,) is the length of the arch axis, and

r is the radius of gyration of areas (r= v7/4).
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If the circular arch is clamped at =0 and 6=6,,

the boundary conditions can be written as

v=20 ©)
w— %: 0 )
52
or
U(O) :v'(O) =" (0) :U(g[))

=v'(6,) =v"(6,) =0 )

If the arch is simply supported at 6=0 and 6=

6,, then the boundary conditions can be
expressed in the following form as
v=10 (10)
w — Z—Z =0 1D
w
e +w=0 12)
or
v(0) =v"(0) =v""(0) :U(HO) :v'(é’o)
=v""(6,) =0 (13)

If the arch is clamped at 6=0 and simply
supported 6=6,, then the boundary conditions
can be expressed in the following form as
v(0) =v"(0) =0"(0) =v(8,) =v"(,)
=v""(6,) =0 (14

2.2 In-Plane Extensional Vibrations of
Circular Arches

Veletsos et al.[18] applied the theory which

considered the extension of the arch axis

neglecting the effect of rotatory inertia to

analyze the vibrations of the arches. The
differential equations for the free in-plane
vibrations of the system, described by

specializing Flugge's equations for the cylindrical

shell[19], are

2 ”

w w 1 ,5; 1,59
—+2—+[1+— (=) lw+— (=)
o 0% 0 T b T
4 2
ma w
= w (15)
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in which each prime represents one differentiation
with regard to the dimensionless distance X.

Austin and Veletsos[20] presented the analysis
of the in-plane vibrational characteristics of
circular arches and the simple approximate
procedure for calculating the frequencies of the
arches based on the theory which contained the
effect of rotatory inertia.

The differential equations with the effects of

rotatory inertia, obtained from Federhofer's
system, are

w ’ S g U

L2 1 () w+ ()

) o; Byr Ogr " b,
142

_(_ L 9 7 L 9 'y a w

== () w +w () 00) =% 17

'lU/ 7]”

7+7

o

(Dt~ (L2 (@D ™ (1g)

s s s EI

The boundary conditions for both ends
clamped, both ends simply supported, and
clamped - simply supported ends are,
respectively,

v(0) =w(0) =w'(0) =v(6,)

7w(90)7w'(6’0)20 (19

v(0) =w(0) =w" (0) :v(ﬁo)

=w(h,) =w"(6,) =0 (20)

v(0) =w(0) =w’(0) =U(90)

:w(QU :w”(QU) =0 21

3. Application

The DQM is used for the analysis of the free
in-plane vibrations of a circular arche including
the effects of mid surface extension and rotatory
The DQM of the
differential equations and boundary conditions

inertia. approximations

are presented.
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Applying the DQM to Egs. (15) and (16) gives

%ED“WJJr EB W+ +— ( )W,
90]21 90] 1 0 r
1,549 4 - ma'e?
eg(r);A,jV;— =W 22)
—( EA Wi+ — Z _mas?
0?)] [)J K 7 ET '
(23)

Similarly, applying the DQM to Egs. (17) and (18)

gives

N

Z W+ 22B.W+[1+i2(i)2] :

[)J 0Jj=1 90 r
IENEAL) Sy

o3 =T EI

r 2N L
(‘(Z);BWVJ”W"O(S);AUVJ) 24)
1 N 1 <
AW =LY BV =
Ooi=1 Ooj=1
ma g (TP AW -G @9)
77 ol P2 ij ;i o\ gV
The boundary conditions for both ends

clamped, shown by Eq. (19), can be written in
differential quadrature form as below

v, =0 at X=0 (20)
vy=0 at X=1 (27)
w, =0 at X=0 (28)
wy= 0 at X=1 (29)
v
ZA2jwj: 0 at X=0+4 (30)
j=1
N
YA 1w, =0 at X=1-6 (31)

i=1
Similarly, the boundary conditions for both
ends simply supported, given by Eq. (20), can be

written in differential quadrature form as below:

v, =0 at X=0 (32)
vy=0 at X=1 (33)
w, =0 at X=0 (34)
wy= 0 at X=1 (35)



Free Vibration Analysis of Circular Arches Considering Effects of Midsurface Extension and Rotatory Inertia Using the Method of Differential Quadrature

N
Y Byw;=0 at X=0+6 (36)
j=1
N
EB(N—l)jwj: 0 at X=1-¢ (37)

j=1

Those linear algebraic equations with the
proper boundary conditions can be calculated
for the free in-plane extensional vibrations of a

circular arch with the effects of rotatory inertia.

4. Results and Comparisons

On the basis of the applications, the fundamental
frequency parameter A =w(ma'/EN"? of the

free in-plane inextensional and extensional
vibrations of the circular arch with the effects of
rotatory inertia is calculated by the DQM and is
showed together with exact solutions and other
numerical solutions for cases in which those are
available. All results are calculated with thirteen

grid points along the dimensionless coordinate

Figs. 2 and
3 show the convergence studies with regard to

axis, and the value of § is 1x10°.

the number of discrete grid points N and the
small distance parameter 0, respectively. Fig. 2
presents that the accuracy of the solution by the
DQM increases with increasing the number of
grid points N and passes over a maximum. Then,
the instabilities of the solutions arise if the gird
point N becomes too big. The optimum value for
N is to be 11 and 13 points for this case. Fig. 3
presents the sensitivity of the solutions by the
DQM to the choice of ¢. The optimal choice of
value for ¢ is to be 1X107° to 1x10°% which is
gained by trial and error. The accuracy of the
solution by the DQM decreases due to instabilities if
a small distance § becomes too small.

The frequency parameter of the free in-plane
inextensional vibrations of the circular arch
neglecting the effects of rotatory inertia is
calculated by the DQM and is showed together

with solutions from other methods: the exact

13

solution by Archer[6], he Lagrangian multiplier
Galerkin,
element methods. The results are summarized in
Tables 1 and 2. Auciello and De Rosal8]
calculated the natural frequencies of the arch
using the SAP IV and the SAP 90 finite element
methods (FEM) with 60 elements. Tables 1 and 2
also show that the numerical solutions by the

technique by Nelsonl[7], or finite

DQM are in good agreement with the solutions
by exact or by other numerical methods. The

of

inextensional vibrations of the arch including the

frequency parameters the free in-plane
effects of rotatory inertia with simply supported
and clamped ends are also calculated by the DQM,
and the results are presented in Tables 3 and 4.
In Tables 5 and 6, the frequency parameters of
the extensional vibrations excluding the effects
of rotatory inertia with simply supported and
clamped ends are showed.
of the

extensional vibrations of the arch including the

Finally, the frequency parameters
effects of rotatory inertia with simply supported,
clamped, and clamped-simply supported ends
are summarized in Tables 7~9. Fig. 4 shows the
of

parameters for the inextensional and extensional

comparisons fundamental frequency
vibrations of the arch with or without the effects
of rotatory inertia.

From Tables 1~9 and Fig 4, the fundamental
frequency parameters of the arche with both
ends clamped are much higher than those of the
with and
the

fundamental frequency parameters are increased

arch simply supported ends

clamped-simply supported ends, and
by decreasing the angles for both inextensional
and extensional vibrations. The fundamental
frequencies of the free in-plane inextensional
vibrations are higher than those of the in-plane

the

parameters of the in-plane vibrations neglecting

extensional vibrations, and frequency
the effects of rotatory inertia are also little
higher than those of the in-plane vibrations

including the effects of rotatory inertia for both
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The
difference of fundamental frequency values is

inextensional and extensional vibrations.

reduced by increasing the slenderness ratio. As
the slenderness ratio becomes higher than 300,
the difference of the fundamental frequency
The
frequency parameters with clamped boundary

values becomes less than 0.1 percent.
conditions are much affected by the slenderness
ratio than any other boundary conditions. In
Table 10, the first four frequency parameter,
A= w(ma'/ED"? of the free in-plane extensional
vibrations of the arch neglecting the effects of
rotatory inertia is calculated by the DQM.
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Fig. 2. Fundamental frequency parameter A = w(ma

for free in-plane inextensional vibrations of

the circular arch with both ends simply
. 0
supported and a range of N; 6, =90" and
6=1x10"°
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Fig. 3. Fundamental frequency parameter A =w(ma'/El)"/?
for free in-plane inextensional vibrations of
the circular arch with both ends simply
supported and a range of J ; 6, =90° and N=11
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Table 1. Fundamental frequency parameter A = w(ma*/EI)"/?
for in-plane inextensional vibrations of the
circular arch with simply supported ends

A= ao(mat/ED 7

0. Archer[6] | Galerkin | Rayleigh- SAP DQM

Deg. | (Exact) Ritz v
FEM

30 228.1 222.3 222.3 222.3

60 55.22 53.73
90 23.29 22.62
120 12.22 11.84
150 7.19 6.95
180 4.38 4.53 4.38

Table 2. Fundamental frequency parameter A = w(ma*/EI)"/?
for in-plane inextensional vibrations of the
circular arch with clamped ends

A= o(ma*/ED '?

00 Nelson Galerkin | Rayleigh- SAP DQM

[71 Ritz v

FEM
30 141.5 141.53 141.53 141.5
60 33.63 33.72 33.62
90 13.76 13.76 13.76
120 6.928 6.927
150 3.860 3.859
180 2.207 2,208 2.267

Table 3. Fundamental frequency parameter A = w(ma*/EI)"/?
for free in-plane inextensional vibrations of
the circular arch with simply supported ends
including effects of rotatory inertia

90 s/r
30 50 100 300

30 138.71 140.47 141.27 141.51
60 32.999 33.397 33.569 33.621
90 13.543 13.683 13.744 13.762
120 6.8364 6.8939 6.9188 6.92601
150 3.8177 3.8430 3.8550 3.8583
180 2.2474 2.2599 2.2652 2.2667

Table 4. Fundamental frequency parameter A = w(ma'/EI )1/2
for free in-plane inextensional vibrations
of the circular arche with clamped ends
including effects of rotatory inertia

0, s/t
30 50 100 300

30 217.06 220.39 221.86 222.30
60 52.547 53.0 53.627 53.725
90 22.184 22.463 22.584 22.620
120 11.653 11.776 11.829 11.845
150 6.8644 6.9241 6.9497 6.9574
180 43361 43668 4.380 4.3839
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Table 5.

Fundamental frequency parameter A = w(ma'/EIL )12
for free in-plane extensional vibrations of the
circular arch with simply supported ends

Table 9. Fundamental frequency parameter A = w(ma*/EI)"/?
for free in-plane extensional vibrations of the
circular arch with clamped-simply supported

o/ ends including effects of rotatory inertia
0,
’ 30 50 100 300 0, 3 % S/t o 0
= 5
30 6223 | 0240 1415 1415 30 73585 | 08367 | 16605 | 17881
60 26.75 33.55 33.01 33.62 60 27.454 54.601 42.748 42.927
90 13.61 13.71 13.75 13.76 90 16.037 17'265 17'822 17‘825
- - 120 8.7782 9.0693 9.17 9.2068
120 6835 6.895 6919 6.926 150 5.0839 52239 | 52811 | 52975
150 3.086 3.840 3.854 3.858 180 3.1366 32122 3.2439 3.2530
180 2.240 2.257 2.264 2.266
Table 10. Frequency parameter A=w(md"/ED"? for
Table 6. Fundamental frequency parameter A = w(ma'/ED'/? free in-plane extensional vibrations of the
for free in-plane extensional vibrations of the circular arch with simply supported ends
circular arch with clamped ends including higher frequencies
0 s/t s/t 0, n=1 n=2 n=3 n=4
0 30 50 100 300 11.78 1808 | 7153 | 8978 | 1486
30 93.871 113.09 | 17575 22240 ggg ;g;g S?ig ilgg ggé
. . . D). .
60 30.753 43.565 53.692 53.743 47.12 90 33.82 144.9 171.5 351.4
90 17.625 22437 22.584 22.624 117.8 33»92 151.9 325-6 214»4
2513 33.9 152.2 349.5 52.7
120 11419 | 11713 | 11817 | 11846 3770 306 | 1923 | 3498 | e
150 6.6836 6.8678 6.9374 6.9571 7.85 18.26 39.18 7473 _
180 42121 4.3256 4.3706 4.3835 15.71 180 21.36 66.53 133.2 167.5
47.12 22.27 133.6 205.8 339.9
Table 7. Fundamental frequency parameter A = w(ma'/ ED'? %
. . . . [ZZZ] Inextentioanl vibration without rotatory inertia
for free ln'plane extensional vibrations of Inextentioanl vibration with rotatory inirlia
s . s [ Extentioanl vibration without rotatory inertia
the ClI'Culal' arCh Wlth Slmply Supported ends Il Extentioanl vibration with rotatory inertia
including effects of rotatory inertia 2 1ar=30
6, s/t
30 50 100 300 20
30 61.896 92.224 141.25 141.51
60 26619 33329 33554 | 33621 s
90 13.406 13.635 13.732 13.7601
120 6.7501 6.8629 6.9113 6.9257
10 T
150 3.7686 3.8260 3.8507 3.8580 c-c
180 22216 2.2505 22629 2.2666 End condition
(a) S/r = 30
30
Table 8 Fundamental frequency parameter A= w(ma4/E])1/2 A Inextentioanl vibration without rotatory inertia
. - extentioanl vibration with rotatory inertia
. . . . Extenti | vibrati ithout rotat inerti
fc.>r free 1n—p1ane‘exten51onal V1brat10.ns of Fhe N -E;z:t:gz:[ o x:th";(;fof‘y‘f;’;;‘; a
circular arch with clamped ends including 7 sir=50
effects of rotatory inertia
0 s/t )
! 30 50 100 300
30 93.239 112.82 175.63 222.34
60 30548 | 43.450 53.580 | 53.730 b
90 17.509 22.282 22.543 22.619
120 11.262 11.646 11.799 11.844 10 oS - C‘C
150 66077 | 68354 69288 | 6.9561 Endiconditicn
180 4.1718 4.3081 4.3661 4.3830 (b) S/r = 50

15
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r [ZZZ Inextentioanl vibration without rotatory inertia
| E==1 Inextentioanl vibration with rotatory inertia
[ Extentioanl vibration without rotatory inertia
I Extentioanl vibration with rotatory inertia

7 s/r=300

20 o

c-C Cc-s

End condition

(0) S/r = 100

~] Inextentioanl vibration without rotatory inertia

] nextentioanl vibration with rotatory inertia
[ Extentioanl vibration without rotatory inertia

Il Extentioanl vibration with rotatory inertia

S/r=100

254

20

c-c
End condition

(d) 8/r = 300

Fig. 4. Comparison of fundamental frequency parameter
A =w(ma'/ENV? for free in-plane
inextensional and extensional vibrations of
the circular arch by DQM with 6, =90°

5. Conclusions

The DQM was to calculate the

eigenvalues of the differential equations for the

applied

free in-plane inextensional and extensional
vibrations of the circular arch including the
effects of rotatory inertia. The results including
the effects of midsurface extension and rotatory
inertia, previous not presented, are showed with
the various boundary conditions, opening angles,
or slenderness ratios. For some cases, the effects
of midsurface extension and rotatory inertia can
affect the frequencies of the circular arch
the research for the

of

significantly. Therefor,

extensional  vibrations circular  arches

16

including the effects of rotatory inertia is import
for the analysis of the circular arches.
The

presents the solutions which agree excellent with

differential quadrature method also
the exact solutions and the numerical solutions
by other methods and which require only a few
number of grid points (thirteen points) for this
study. The DQM may also be extended to arches
of other profiles. However, the DQM can not be
used for the complicated structures which have

not the differential equations.
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