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미분구적법을 이용 중면신장 및 회전관성의 영향을 고려한 
원형아치의 고유진동해석
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Abstract  Curved beams are increasingly used in buildings, vehicles, ships, and aircraft, which has resulted
in considerable effort being directed toward developing an accurate method for analyzing the dynamic 
behavior of such structures. The stability behavior of elastic circular arches has been the subject of a
large number of investigations. One of the efficient procedures for the solution of ordinary differential
equations or partial differential equations is the differential quadrature method DQM. This method has
been applied to a large number of cases to overcome the difficulties of the complex computer 
algorithms, as well as excessive use of storage due to conditions of non-linear geometries, loadings, or
material properties. This study uses DQM to analyze the in-plane vibration of the circular arches 
considering the effects of midsurface extension and rotatory inertia. Fundamental frequency parameters
are calculated for the member with various parameter ratios, boundary conditions, and opening angles. 
The solutions from DQM are compared with exact solutions or other numerical solutions for cases in 
which they are available and given to analyze the effects of midsurface extension and rotatory inertia
on the frequency parameters of the circular arches. 

요  약  빌딩, 자동차, 선박, 항공기 등에서 원형 아치의 사용 증가로 인해 이러한 구조물의 동적 거동 해석에 있어 괄목할
만한 성과가 있어 왔다. 탄성 원형 아치의 안정성 거동 해석분야는 많은 연구자들의 관심분야였다. 전통적으로 미분방정
식의 해법은 유한차분법 혹은 유한요소법으로 해결해왔다. 복잡한 기하학적 구조 및 하중으로 인한 과도한 컴퓨터 용량
의 사용과 복합알고리즘 프로그램의 어려움을 극복하기 위하여 미분구적법(DQM)이 많은 분야에 적용되어왔다. 상미분
방정식 혹은 편미분방정식의 해를 구하기 위한 효율적인 방법 중의 하나는 미분구적법이다. 또한 비선형 구조, 하중, 
혹은 재료 물성 치로 인한 과도한 컴퓨터 용량의 사용과 복합알고리즘 프로그램의 어려움을 극복하기 위하여 미분구적법
(DQM)이 지금도 많이 사용된다. 본 연구에서는, DQM을 이용하여 중면 신장 및 회전 관성의 영향을 고려한 원형 아치
의 내 평면 진동을 분석하였다. 다양한 매개변수 비, 경계 조건, 그리고 열림 각에 따른 기본 진동수를 계산하였다. DQM 
결과는 활용 가능한 다른 엄밀해 혹은 다른 수치해석과 비교하였다. 해석결과에 따르면 DQM은, 적은 격자점을 사용하
고도, 엄밀해 결과와 일치함을 보여주었고, 중면 신장 및 회전 관성이 원형 아치의 기본 진동수에 미치는 영향을 분석할
수 있게 했다. 
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1. Introduction

The increasing use of circular arches in many 
structures, such as buildings, bridges, and aircraft 
leads to significant effort into developing a more 
accurate method for the dynamic analysis of the 
structures. Accurate knowledge of the vibration 
response of circular arches is very important in 
many applications for the analysis of the design 
of the structures. The early researchers on the 
in-plane vibration of arches were Hoppe[1] and 
Love[2]. Love[2] developed on Hoppe's theory by 
permitting for stretching of the ring. Lamb[3] 
studied the statics of arches with various end 
conditions and the vibrations of arches of small 
curvature. Den Hartog[4] adopted the 
Rayleigh-Ritz method for calculating the lowest 
frequency of circular arches with various 
boundary conditions, and his research was 
improved by Volterra and Morell[5] for the 
dynamics of circular arches in the form of 
catenaries, parabolas, or cycloids. Archer[6] 
worked out for a mathematical research of the 
inextensional vibrations of the circular arche of 
a small cross section area with the differential 
equations given in Love[2] with damping effects. 
Nelson[7] used the Rayleigh-Ritz method with 
Lagrangian multipliers for the vibration of the 
circular ring segment with simply supported 
boundary conditions. Auciello and De Rosa[8] 
showed a critical brief review of the in-plane 
vibrations of circular arches and presented a 
number of other approaches. 

A rather efficient procedure for the solution of 
differential equations is the differential 
quadrature method which was suggested by 
Bellman and Casti[9]. It was also used to the 
static research of structural members by Jang et 
al.[10] for the first time. The flexibility of the 
DQM to structural analysis is becoming 
progressively apparent by the publications of 
recent years. Kang and Han[11] used the DQM to 
the vibration analysis of a curved beam with 

shear deformable beam theories, and Kang[12] 
used the method for the vibration analysis of 
thin-wall curved beams. Kang and Kim[13] and 
Kang and Park[14] analyzed asymmetric curved 
beams for the vibration and the buckling using 
the DQM, respectively. Recently, Kang[15] studied 
extensional buckling analysis of curved beams, 
and Kang[16] also analyzed extensional 
vibrations of asymmetric curved beams using 
DQM, This method is applied to the study to 
analyze the in-plane vibrations of circular arches 
including the effects of midsurface extension, 
previously not considered, with various 
conditions, slenderness ratios, and opening 
angles. The results are compared with exact 
analytic solutions and numerical solutions by 
other methods (FEM, Galerkin, or C.D.M.) and 
also compared with solutions excluding the 
effects of mid surface extension and rotatory 
inertia. 

2. Governing Differential Equations

The circular arch is shown in Fig. 1. A position 
on the centroidal axis is specified by the angle  , 
started from the left support of the arch. The 
tangential and the radial displacements of an 
arch axis are  and  , respectively. The radius of 
the centroidal axis is a.

Fig. 1. Coordinate system for circular arch



Free Vibration Analysis of Circular Arches Considering Effects of Midsurface Extension and Rotatory Inertia Using the Method of Differential Quadrature

11

2.1 In-Plane Inextensional Vibrations of 
Circular Arches

A mathematical research of the free in-plane 
inextensional vibrations of the circular arch with 
a  small cross section area is worked out starting 
with the basic differential equations as given by 
Love[2]. From Love[2], the analysis is simplified 
by assuming focus to problems where there is no 
extensibility of the center line of the arche. This 
condition shows that v and w are related by

  

 (1)

If shear deformation and rotatory inertia are 
neglected, the governing differential equation for 
the free in-plane vibrations of the circular arch, 
in terms of the tangential displacement v, can be 
written as



 






 

 
  (2)

or















″

 

″
 (3)

in which each prime represents one 
differentiation with respect to the dimensionless 
coordinate . 

 

 (4)

E is the Young's modulus of elasticity, I is the 
moment of inertia of areas, m is the mass per 
unit length,   is the opening angle, and ω is the 
circular frequency.

Rao and Sundararajan[17] developed the free  
in-plane inextensional vibration of a circular 
ring with the effect of rotatory inertia. The 
differential equations with the effect of rotatory 
inertia can be written as















″




 













 




″





  (5)

where    is the length of the arch axis, and 
 is the radius of gyration of areas (  ).

If the circular arch is clamped at =0 and = , 
the boundary conditions can be written as
   (6)

  


  (7)




    (8)

or
  ′   ″                      
     ′   ′′    (9)
  If the arch is simply supported at =0 and =

 , then the boundary conditions can be 
expressed in the following form as
   (10)

 


  (11)





    (12)

or
  ′   ″ ′     ′           

       ″ ′    (13)
If the arch is clamped at =0 and simply 
supported = , then the boundary conditions 
can be expressed in the following form as      
  ′   ′′     ′ 

       ″ ′    (14)

2.2 In-Plane Extensional Vibrations of 
Circular Arches

Veletsos et al.[18] applied the theory which 
considered the extension of the arch axis 
neglecting the effect of rotatory inertia to 
analyze the vibrations of the arches. The 
differential equations for the free in-plane 
vibrations of the system, described by 
specializing Flugge's equations for the cylindrical 
shell[19], are           





″ ″




″


















＇




 (15) 
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






″




′
 


 (16)

in which each prime represents one differentiation 
with regard to the dimensionless distance X.

Austin and Veletsos[20] presented the analysis 
of the in-plane vibrational characteristics of 
circular arches and the simple approximate 
procedure for calculating the frequencies of the 
arches based on the theory which contained the 
effect of rotatory inertia.

The differential equations with the effects of 
rotatory inertia, obtained from Federhofer's 
system,  are





″″




″








′

  

″




′
 (17)

 
′




″

 


′


 






 (18)

  The boundary conditions for both ends 
clamped, both ends simply supported, and 
clamped - simply supported ends are, 
respectively,                          
  ′                       
 ′    (19)
  ″                     

   ″    (20) 
  ′   
 ′′    (21)

3. Application

The DQM is used for the analysis of the free 
in-plane vibrations of a circular arche including 
the effects of mid surface extension and rotatory 
inertia. The DQM approximations of the 
differential equations and boundary conditions 
are presented.

Applying the DQM to Eqs. (15) and (16) gives

 



 








 












   

      












 


 (22) 








 








 




 




(23)
Similarly, applying the DQM to Eqs. (17) and (18) 
gives

 



 








 



























 










 






 (24)

 



 








 




 

 














 (25)

The boundary conditions for both ends 
clamped, shown by Eq. (19), can be written in 
differential quadrature form as below:
           at   (26)
          at   (27)
          at   (28)
         at   (29)






     at   (30)






   at   (31)  

Similarly, the boundary conditions for both 
ends simply supported, given by Eq. (20), can be 
written in differential quadrature form as below:
              at   (32)
             at   (33)
             at   (34)
             at   (35)
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




        at   (36)  






     at   (37)  

Those linear algebraic equations with the 
proper boundary conditions can be calculated 
for the free in-plane extensional vibrations of a 
circular arch with the effects of rotatory inertia.

4. Results and Comparisons

On the basis of the applications, the fundamental 
frequency parameter   of the 
free in-plane inextensional and extensional 
vibrations of the circular arch with the effects of 
rotatory inertia is calculated by the DQM and is 
showed together with exact solutions and other 
numerical solutions for cases in which those are 
available. All results are calculated with thirteen 
grid points along the dimensionless coordinate 
axis, and the value of  is ×.  Figs. 2 and 
3 show the convergence studies with regard to 
the number of discrete grid points N and the 
small distance parameter , respectively. Fig. 2 
presents that the accuracy of the solution by the 
DQM increases with increasing the number of 
grid points N and passes over a maximum. Then, 
the instabilities of the solutions arise if the gird 
point N becomes too big. The optimum value for 
N is to be 11 and 13 points for this case. Fig. 3 
presents the sensitivity of the solutions by the 
DQM to the choice of . The optimal choice of 
value for  is to be × to × which is 
gained by trial and error. The accuracy of the 
solution by the DQM decreases due to instabilities if 
a small distance  becomes too small. 

The frequency parameter of the free in-plane 
inextensional vibrations of the circular arch 
neglecting the effects of rotatory inertia is 
calculated by the DQM and is showed together 
with solutions from other methods: the exact 

solution by Archer[6], he Lagrangian multiplier 
technique by Nelson[7], Galerkin, or finite 
element methods. The results are summarized in 
Tables 1 and 2. Auciello and De Rosa[8] 
calculated the natural frequencies of the arch 
using the SAP IV and the SAP 90 finite element 
methods (FEM) with 60 elements. Tables 1 and 2 
also show that the numerical solutions by the 
DQM are in good agreement with the solutions 
by exact or by other numerical methods. The 
frequency parameters of the free in-plane 
inextensional vibrations of the arch including the 
effects of rotatory inertia with simply supported 
and clamped ends are also calculated by the DQM, 
and the results are presented in Tables 3 and 4. 

In Tables 5 and 6, the frequency parameters of 
the extensional vibrations excluding the effects 
of rotatory inertia with simply supported and 
clamped ends are showed. 

Finally, the frequency parameters of the 
extensional vibrations of the arch including the 
effects of rotatory inertia with simply supported, 
clamped, and clamped-simply supported ends 
are summarized in Tables 7~9. Fig. 4 shows the 
comparisons of fundamental frequency 
parameters for the inextensional and extensional 
vibrations of the arch with or without the effects 
of rotatory inertia.

From Tables 1~9 and Fig 4, the fundamental 
frequency parameters of the arche with both 
ends clamped  are much higher than those of the 
arch with simply supported ends and 
clamped-simply supported ends, and the 
fundamental frequency parameters are increased 
by decreasing the angles for both inextensional 
and extensional vibrations. The fundamental 
frequencies of the free in-plane inextensional 
vibrations are higher than those of the in-plane 
extensional vibrations, and the frequency 
parameters of the in-plane vibrations neglecting 
the effects of rotatory inertia are also little 
higher than those of the in-plane vibrations 
including the effects of rotatory inertia for both 
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inextensional and extensional vibrations. The 
difference of fundamental frequency values is 
reduced by increasing the slenderness ratio. As 
the slenderness ratio becomes higher than 300, 
the difference of the fundamental frequency 
values becomes less than 0.1 percent. The 
frequency parameters with clamped boundary 
conditions are much affected by the slenderness 
ratio than any other boundary conditions. In 
Table 10, the first four frequency parameter, 
 , of the free in-plane extensional 
vibrations of the arch neglecting the effects of 
rotatory inertia is calculated by the DQM.

Fig. 2. Fundamental frequency parameter   
for free in-plane inextensional vibrations of 
the circular arch with both ends simply 
supported and a range of N;    =  and 
 × 

Fig. 3. Fundamental frequency parameter   
for free in-plane inextensional vibrations of 
the circular arch with both ends simply 
supported and a range of  ;     and N=11 

Table 1. Fundamental frequency parameter   
for in-plane inextensional vibrations of the 
circular arch with simply supported ends

 , 
Deg.

λ ω  
Archer[6]
(Exact)

Galerkin Rayleigh-
Ritz

 SAP   
IV 

 FEM

DQM

30 228.1 222.3 222.3 222.3
60 55.22 53.73
90 23.29 22.62
120 12.22 11.84
150  7.19 6.95
180 4.38 4.53 4.38

Table 2. Fundamental frequency parameter   
for in-plane inextensional vibrations of the 
circular arch with clamped ends


λ ω

Nelson
[7]

Galerkin Rayleigh-
Ritz

SAP   
IV 

FEM

DQM

30 141.5 141.53 141.53 141.5
60 33.63 33.72 33.62
90 13.76 13.76 13.76
120 6.928 6.927
150  3.860 3.859
180 2.267 2.268 2.267

Table 3. Fundamental frequency parameter   
for free in-plane inextensional vibrations of 
the circular arch with simply supported ends 
including effects of rotatory inertia


 s/r

30 50 100 300

30 138.71 140.47 141.27 141.51
60 32.999 33.397 33.569 33.621

90 13.543 13.683 13.744 13.762
120 6.8364 6.8939 6.9188 6.9261

150 3.8177 3.8430 3.8550 3.8583
180 2.2474 2.2599 2.2652 2.2667

  

Table 4. Fundamental frequency parameter   
for free in-plane inextensional vibrations 
of the circular arche with clamped ends 
including effects of rotatory inertia


s/r

30 50 100 300
30 217.06 220.39 221.86 222.30

60 52.547 53.0 53.627 53.725
90 22.184 22.463 22.584 22.620

120 11.653 11.776 11.829 11.845
150 6.8644 6.9241 6.9497 6.9574

180 4.3361 4.3668 4.380 4.3839
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Table 5. Fundamental frequency parameter   
for free in-plane extensional vibrations of the 
circular arch with simply supported ends


s/r

30 50 100 300
30 62.23 92.40 141.5 141.5

60 26.75 33.55 33.61 33.62
90 13.61 13.71 13.75 13.76

120 6.835 6.895 6.919 6.926
150 3.086 3.840 3.854 3.858

180 2.240 2.257 2.264 2.266

Table 6. Fundamental frequency parameter   
for free in-plane extensional vibrations of the 
circular arch with clamped ends


 s/r

30 50 100 300
30 93.871 113.09 175.75 222.40

60 30.753 43.565 53.692 53.743
90 17.625 22.437 22.584 22.624

120 11.419 11.713 11.817 11.846
150 6.6836 6.8678 6.9374 6.9571

180 4.2121 4.3256 4.3706 4.3835

Table 7. Fundamental frequency parameter   
for free in-plane extensional vibrations of 
the circular arch with simply supported ends 
including effects of rotatory inertia


 s/r

 30 50 100 300

30 61.896 92.224 141.25 141.51
60 26.619 33.329 33.554 33.621

90 13.406 13.635 13.732 13.761
120 6.7501 6.8629 6.9113 6.9257

150 3.7686 3.8260 3.8507 3.8580
180 2.2216 2.2505 2.2629 2.2666

Table 8. Fundamental frequency parameter   
for free in-plane extensional vibrations of the 
circular arch with clamped ends including 
effects of rotatory inertia


s/r

30 50 100 300
30 93.239 112.82 175.63 222.34

60 30.548 43.450 53.580 53.730
90 17.509 22.282 22.543 22.619

120 11.262 11.646 11.799 11.844
150 6.6077 6.8354 6.9288 6.9561

180 4.1718 4.3081 4.3661 4.3830

Table 9. Fundamental frequency parameter   
for free in-plane extensional vibrations of the 
circular arch with clamped-simply supported 
ends including effects of rotatory inertia


s/r

30 50 100 300
30 73.583 98.367 166.05 178.81
60 27.454 54.601 42.748 42.927
90 16.037 17.565 17.804 17.865
120 8.7782 9.0693 9.1766 9.2068
150 5.0839 5.2239 5.2811 5.2975
180 3.1366 3.2122 3.2439 3.2530

Table 10. Frequency parameter   for 
free in-plane extensional vibrations of the 
circular arch with simply supported ends 
including higher frequencies

s/r   n=1 n=2 n=3 n=4

11.78
17.28
23.56
47.12
117.8
251.3
377.0

90

18.08
25.25
33.32
33.82
33.94
33.96
33.96

71.53
83.19
81.49
144.9
151.9
152.2
152.3

89.78
113.8
153.9
171.5
345.6
349.5
349.8

148.6
215.1
226.0
351.4
414.4
652.7
627.0

7.85
15.71
47.12

  180
18.26
21.36
22.27

39.18
66.53
133.6

74.73
133.2
205.8

-
167.5
339.9

  

  

(a) S/r = 30

  

(b) S/r = 50
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(c) S/r = 100

  

(d) S/r = 300  

Fig. 4. Comparison of fundamental frequency parameter 
  for free in-plane 
inextensional and extensional vibrations of 
the circular arch by DQM with   

5. Conclusions

The DQM was applied to calculate the 
eigenvalues of the differential equations for the 
free in-plane inextensional and extensional 
vibrations of the circular arch including the 
effects of rotatory inertia. The results including 
the effects of midsurface extension and rotatory 
inertia, previous not presented, are showed with 
the various boundary conditions, opening angles, 
or slenderness ratios. For some cases, the effects 
of midsurface extension and rotatory inertia can 
affect the frequencies of the circular arch 
significantly. Therefor, the research for the 
extensional vibrations of circular arches 

including the effects of rotatory inertia  is import 
for the analysis of the circular arches.

The differential quadrature method also 
presents the solutions which agree excellent with 
the exact solutions and the numerical solutions 
by other methods and which  require only a few 
number of grid points (thirteen points) for this 
study. The DQM may also be extended to arches 
of other profiles. However, the DQM can not be 
used for the complicated structures which have 
not the differential equations.
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