LVDC 배전계통에 있어서 사고구간분리 보호협조 알고리즘에 관한 연구

강민관, 이후동, 태동현, 노대석^{*} 한국기술교육대학교 전기공학과

A Study on Protection Coordination Algorithm for Separating Fault Section in LVDC Distribution System

Min-Kwan Kang, Hu-Dong-Lee, Dong-Hyun-Tae, Dae-Seok Rho Department of Electrical Engineering, Korea University of Technology and Education

요 약 LVDC 배전계통에서 DC전원의 공급을 위한 컨버터나 DC차단기의 보호동작은 AC 보호기기 보다 훨씬 빠르기 때문에, 기존의 T-C곡선의 반 한시특성에 의한 보호기기간의 보호협조 운용이 어려운 문제점을 가지고 있다. 따라서, 본 논문에서는 LVDC 배전계통에서 사고지점에 따라 다양하게 나타날 수 있는 사고전류의 경사각 개념에 대하여 정의하 고, 이를 바탕으로 컨버터와 보호기기간의 협조동작을 신속 정확하게 수행하고, 정전구간의 범위를 최소화할 수 있는 LVDC 배전계통의 사고구간분리 보호협조 알고리즘을 제안한다. 즉, LVDC 배전계통에서의 사고전류가 선로정수에 의 해 사고지점에 따라 비례적으로 변하는 경사각의 특성을 이용하여 메인 컨버터가 탈락되기 전에 사고구간을 선택적으로 분리하도록 한다. 또한, 본 논문에서는 배전계통 상용해석 프로그램인 PSCAD/EMTDC를 이용하여 배전용 변전소, LVDC용 컨버터 그리고 LVDC 배전선로로 구성된 1.5kV급 LVDC 배전계통 모델링을 수행한다. 이를 바탕으로 사고지 점에 따른 경사각 특성 및 보호협조 운용알고리즘을 분석한 결과, 메인 컨버터가 탈락하기 전 사고구간만을 2ms 이내에 분리하고 건전구간의 수용가에 미치는 영향을 최소화 할 수 있어, 본 논문에서 제안한 사고구간분리 보호협조 운용 알고 리즘이 유용함을 확인하였다.

Abstract Current protection-coordination methods use the reverse time characteristics of the T-C curve, which is not effective for a LVDC distribution system because the protective operation time of converters and DC circuit breakers is much faster than AC protection devices. Therefore, an algorithm is proposed for fault-section isolation using the fault current slope to minimize the blackout region and coordinate between converters and protection devices in a rapid and accurate manner. The method deals with the slope characteristics of a fault current, which may depend on the fault location in an LVDC distribution system. Thus, an LVDC distribution system can be operated in a stable manner by isolating the fault section selectively before the shutdown of the main converter using slope characteristics, which change in proportion to the line impedance and fault location. A 1.5-kV LVDC distribution system was modeled to verify the effectiveness of the proposed algorithm using PSCAD/EMTDC. The system is composed of a distribution substation, LVDC converter, and distribution lines. The simulation results confirm that the proposed algorithm is a useful tool for minimizing the fault section in an LVDC distribution system.

Keywords : Fault Current, LVDC System, Protection Coordination, SCR Rectifier, Slope Characteristics

1. 서론

최근, 전 세계적으로 환경오염 문제를 해결하고 지속 가능한 에너지를 확보하기 위하여, 신재생에너지전원, 친 환경 운송수단 그리고 디지털 기기 등, DC에 기반 한 전 원 및 부하가 다양한 형태로 배전계통에 도입되고 있다 [1]. 이러한 DC전원과 부하들은 별도의 전력변환기를 통 해 AC 배전망에 연계되므로, 여러 단계의 변환 손실로 인한 계통의 운용효율이 저하하게 된다. 그러나, 변환단 계의 감소로 효율적인 공급이 가능하며, 통신선의 유도장 해가 없고, 설비 및 기자재의 절연레벨을 낮출 수 있는 DC 배전망이 적극적으로 실용화되고 있다. 이러한 DC 배전은 계통운용의 유연성과 효율을 향상시키기 위한 기 술이며, 현재 부분적으로 상용화되고 있지만, DC기기의 개발뿐만 아니라 시스템 레벨에서의 운용 및 보호협조 기술도 요구된다[2]. 특히, DC전원의 공급을 위한 컨버 터나 DC차단기의 보호동작이 기존의 AC배전망의 보호 기기 보다 훨씬 빠르기 때문에, 보호기기간의 보호협조 운용을 어렵게 하는 문제점을 가지고 있다[3, 4]. 즉, 컨 버터 내부의 보호용 퓨즈나 전력반도체 스위치의 블로킹 기능이 동작하기 전에 사고전류를 차단시키기 위해서는 DC 차단기의 높은 동작속도가 요구되기 때문에, 기존의 방식은 차단기간의 보호협조 운용을 어렵게 하고 있다.

따라서, 본 논문에서는 컨버터와 보호기기간의 협조동 작을 신속하고 정확하게 수행하기 위하여, 선로사고 시 정전구간의 범위를 최소화하기 위한 방안으로, 사고전류 의 경사각 특성을 이용한 LVDC 배전계통의 사고구간분 리 보호협조 운용방안을 제안한다. 즉, LVDC 배전계통 에서의 사고전류가 선로정수에 의해 사고지점에 따라 비 례적으로 변하는 경사각의 특성을 이용하면, 메인 컨버터 가 탈락되기 전에 사고구간만을 선택적으로 분리하여, LVDC 배전계통을 정상적으로 운용할 수 있다. 또한, 본 논문에서는 제안한 보호협조 운용방안의 유효성을 검증 하기 위하여, 배전계통 상용해석 프로그램인 PSCAD/ EMTDC를 이용하여 1.5kV급 LVDC 배전계통 모델링을 수행한다.

2. LVDC 배전계통의 보호협조 특성분석

일반적으로, LVDC 배전계통은 Fig. 1과 같이 3상 AC 전원을 LVDC로 변환하는 AC/DC 메인 컨버터를 중심으로 수지형의 분기선로에 신재생에너지전원, ESS, DC 부하가 DC/DC 컨버터를 통해 연계되고, AC부하는 DC/AC 인버터를 통해 연계된 형태이다[5]. 이러한 구성 은 멀티터미널 방식에 비하여 낮은 공급신뢰도를 갖지만, 사고검출 및 보호가 용이하며 비교적 적은 비용으로 구 현이 가능하다.[6] 그러나, 계통전원을 한 대의 메인 컨버 터로만 공급하기 때문에, 운용 중에 선로측에서 사고가 발생하면, 메인 컨버터의 공급용량을 초과하는 사고전류 가 흘러, 메인 컨버터가 급격하게 탈락할 수 있다. 이것은 전력반도체소자를 사용하는 컨버터의 특성상 내부설비를 보호하기 위하여, 수 ms 단위의 짧은 시간 이내에 보호 회로가 동작하기 때문이다[7, 8], 그러므로, 보호기기간 에 협조시간차를 두어 사고구간을 판별할 시간적인 여유 가 없어, 기존의 방법으로는 LVDC 배전계통에서의 보호 협조가 어려운 실정이다. 따라서, 본 논문에서는 LVDC 배전계통에 대하여 사고전류의 시간대비 변화율인 경사 각 특성을 이용하여, 신속하게 사고구간을 선택적으로 분 리하는 보호협조 운용방안을 제시하고자 한다.

Fig. 1. Configuration of LVDC distribution system

3. 사고구간분리 보호협조 알고리즘

3.1 사고전류 경사각의 정의

기존의 AC 배전계통에서는 반한시의 T-C 특성곡선 을 이용하여 보호기기간의 협조시간차에 따라, 전위 보호 기기가 후비 보호기기보다 먼저 동작하여, 해당 사고구간 을 분리하는 보호협조 방법을 채용하고 있다. 그러나, 수 십 ~ 수백 ms 단위(Cycle)의 협조시간차를 가지는 AC 배전계통의 보호협조방식과 달리, LVDC 배전계통에서 는 메인 컨버터의 보호장치 또는 DC차단기가 수 ms 이 내의 빠른 속도로 동작하여, 보호협조 시간차를 확보하기 어려운 실정이다[9]. 따라서, 본 논문에서는 사고발생 직 후 급격히 상승하는 사고전류의 변화율인 경사각의 개념 을 활용하여, 보호협조 시간차를 확보하는 보호협조 운용 알고리즘을 제안하고자 한다. 여기서, 사고전류의 경사각 은 식 (1)과 같이 나타낼 수 있으며, 일정 시간동안 사고 전류에 대한 변화율을 의미한다.

$$S_{f,c}(t) = \frac{I(t) - I(t_s)}{t - t_s}$$
(1)

여기서, $S_{f,c}(t)$: 사고전류의 경사각[kA/s], I(t): 사고전 류의 크기[kA], $I(t_s)$: 초기 시간대의 사고전류의 크기 [kA], t: 운용 시간대, t_s : 초기 시간대

한편, LVDC 배전계통에서 사고 시 발생할 수 있는 사 고전류의 크기와 경사각은 사고지점에 따라 서로 다른 선로정수를 가지므로, Fig. 2와 Fig. 3과 같이 다양한 형 태로 나타날 수 있다. 여기서, Fig. 2는 사고전류 특성이 고, Fig. 3은 사고전류의 경사각 특성을 나타낸 것이며, 각 그림에서 ①, ②는 각각 LVDC 선로의 직하지점 구간 과 말단지점 구간에서 단락사고가 발생한 경우를 나타낸 다. Fig. 2의 ①과 같이, 직하사고의 경우 사고지점까지의 낮은 임피던스로 인하여 매우 큰 사고전류가 발생하며, Fig. 2의 ②와 같이, 말단사고의 경우에는 선로가 가지는 임피던스 성분에 의해 Fig. 2의 ①의 경우보다 상대적으 로 작은 사고전류가 흐르지만 변동량은 적게 된다. 또한, Fig. 3의 ①과 같이, 선로 직하지점 구간에서의 사고전류 의 경사각 $(S_{t,c}(t))$ 은 t_{\wedge} 시간대(Fig. 2의 $t-t_{s}$)에서 사 고전류의 초기 변동량으로 인해 큰 값을 가지게 된다. 한 편, Fig. 3의 ② 와 같이, 말단지점 구간에서의 사고전류 의 경사각은 선로가 가지는 임피던스 성분에 의해 Fig. 3 의 ①의 경우보다 상대적으로 작게 나타난다. 따라서, 사 고지점에 따라 비례적으로 변하는 경사각의 특성을 이용 하여 차단기의 보호협조를 설정하면, 빠른 시간 내에 사 고구간의 선택적인 분리가 가능하며, 이에 따라 컨버터의 정격용량을 초과하기 전에 사고가 제거되어, 컨버터는 계 속해서 정상적으로 운용할 수 있게 된다.

Fig. 2. Fault current characteristics depending on fault location

Fig. 3. Slope characteristics of fault current depending on fault location

3.2 사고전류의 경사각 특성을 이용한 보호협조 운용방안

본 논문에서는 상기에서 제시한 사고전류의 경사각 특 성을 고려하여, 사고구간을 신속하게 분리하는 LVDC 배 전계통의 보호협조 운용방안을 제안한다. 먼저, 배전계통 의 선종, 선로의 긍장, 공급전압 등을 고려하여 보호구간 을 설정한다. 그리고, 사고의 발생 유무를 판단하기 위한 수용가부하 전류의 경사각(*S*_{1, c})은 식 (2)를 이용하여 산 정한다.

$$S_{l,c} = \frac{P_{l,p}}{V_{LVDC} \cdot t_r} \tag{2}$$

여기서, $S_{l,c}$: 수용가부하 전류의 최대 경사각[kA/s], $P_{l,p}$: 최대 수용가부하 용량[kW], V_{LVDC} : LVDC 선로의 공급전압[V], t_r : 최대 부하전류까지 도달시간[s]

또한, 보호구간별로 배전선로의 긍장과 선로정수를 바 탕으로 사고전류의 경사각 특성을 고려하여, Fig. 4와 같 이 사고 시 해당 구간의 보호기기가 차단될 수 있도록 동 작범위(*S*_(*k*-1)~*S*_{*k*})를 상정한다.

protection coordination

한편, 사고발생의 유·무를 판단하기 위한 보호기기의 (+)극, (-)극, 중성선 전류의 경사각($S_{p,k}(t)$, $S_{n,k}(t)$, $S_{m,k}(t)$)은 식 (3) ~ 식 (5)와 같이 나타내고 사고의 종 류(P-P, P-N, N-P)를 판단하기 위하여, 경사각의 편차 ($e_{pp,k}, e_{pn,k}, e_{np,k}$)는 식 (6) ~ 식 (8)과 같이 나타낼 수 있다.

$$S_{p,k}(t) = \frac{I_{p,k}(t) - I_{p,k}(t_s)}{t - t_s}$$
(3)

$$S_{n,k}(t) = \frac{I_{n,k}(t) - I_{n,k}(t_s)}{t - t_s}$$
(4)

$$S_{m,k}(t) = \frac{I_{m,k}(t) - I_{m,k}(t_s)}{t - t_s}$$
(5)

$$e_{m,k}(t) = |S_{n,k}(t)| - |S_{m,k}(t)|$$
(6)

$$e_{m,k}(t) = |S_{n,k}(t)| - |S_{n,k}(t)|$$
(7)

$$e_{np,k}(t) = |S_{n,k}(t)| - |S_{m,k}(t)|$$
(8)

여기서, $S_{p,k}(t)$, $S_{n,k}(t)$, $S_{m,k}(t)$: t 시간대에서 k번 째 구간 보호기기의 (+)극, 중성선, (-)극 전류의 경사각 [kA/s], $I_{p,k}(t)$, $I_{n,k}(t)$, $I_{m,k}(t)$: t 시간대에서 k번째 구간 보호기기의 (+)극, 중성선, (-)극 전류[kA], $e_{pp,k}$: k번째 구간의 (+)극과 (-)극 전류의 경사각 편차, $e_{pn,k}$: k번째 구간의 (+)극과 중성선측 전류의 경사각 편차, $e_{np,k}$: k번째 구간의 (-)극과 중성선측 전류의 경사각 편차

상기의 식 (3) ~ 식 (8)을 바탕으로, LVDC 배전계통 에서의 사고발생 유·무(δ_k(t)) 및 사고종류(λ_k(t))의 판 별은 식 (9)와 식 (10)과 같이 나타낼 수 있다. 즉, 산정된 (+)극 또는 (-)극 전류의 경사각(S_{p,k}(t), S_{m,k}(t))이 수 용가부하의 최대 경사각(S_{l,c})을 초과하면, 사고가 발생한 것으로 판단한다. 또한, 발생된 사고의 종류는 각 극의 경 사각을 비교한 편차(e_{pp,k}, e_{pn,k}, e_{np,k})로부터 사고의 종 류를 판별하며, (+)극과 (-)극 전류의 경사각이 동일하면 P-P 사고, (+)극과 중성선의 경사각이 동일하면 P-N 사 고, (-)극과 중성선의 경사각이 동일하면 N-P 사고로 판 단한다.

$$\delta_{k}(t) = \begin{cases} 1 & \text{if } |S_{p,k}(t)| > S_{l,c} \text{ or } |S_{m,k}(t)| > S_{l,c} \\ 0 & otherwise \end{cases}$$
(9)
$$\lambda_{k}(t) = \begin{cases} 1 & \text{if } \delta_{k}(t) = 1 \text{ and } e_{pp,k}(t) \le \Delta \\ -1 & \text{if } \delta_{k}(t) = 1 \text{ and } (e_{pn,k}(t) \le \Delta \text{ or } e_{np,k}(t) \le \Delta) (10) \\ 0 & otherwise \end{cases}$$

여기서, $\delta_k(t)$: k번째 구간에서의 사고발생 유무, $\lambda_k(t)$: k번째 구간에서의 사고종류, Δ : 허용편차범위

한편, 상기의 식 (9)와 식 (10)을 바탕으로 사고구간을 분리하기 위한 보호기기의 동작신호 $(Z_k(t))$ 는 식 (11)과 같이 나타낼 수 있다. 즉, P-P 사고 시 k번째 구간의 보 호기기에서 산정된 (+)극 전류의 경사각 $(S_{p,k}(t))$ 이 동작 범위 $(S_{(k-1)} \sim S_k)$ 에 들어오거나, 중성선 전류의 경사각 $(S_{n,k}(t))$ 이 P-N 또는 N-P 사고의 동작범위 $(S_{(k-1)}/2 \sim S_k/2)$ 에 들어오면, 보호기기의 동작신호 $(Z_k(t))$ 를 송출 하여 해당 구간을 분리한다.

$$Z_{k}(t) = \begin{cases} 1 & \text{if } (\lambda_{k}(t) = 1 \text{ and } S_{k} \leq |S_{p,k}(t)| < S_{k-1}) \\ & \text{or } (\lambda_{k}(t) = -1 \text{ and } \frac{S_{k}}{2} \leq |S_{n,k}(t)| < \frac{S_{k-1}}{2}) \\ & 0 & otherwise \end{cases}$$
(11)

여기서, $Z_k(t)$: k번째 구간의 보호기기 동작신호, k: 구 간번호

따라서, 상기에서 제시한 LVDC 배전계통의 보호협조 운용방안은 Fig. 5와 같이 나타낼 수 있다. 이 그림에서 와 같이, 각 보호구간에서 발생하는 경사각에 따라, 해당 구간의 보호기기가 동작하여 사고구간을 분리하게 된다.

Fig. 5. Operation method of protection coordination using slope characteristics of fault currents

즉, Fig. 5의 3번 보호구간(section #3)에서 사고가 발생하는 경우, 사고전류의 경사각은 3번 보호기기(CB3) 의 동작범위($S_2 \sim S_3$)에 들어오지만 1번과 2번 보호기기 (CB1, CB2)의 동작범위($S_1 초과, S_1 \sim S_2$)에는 도달하지 못하므로, 3번 보호기기만 동작하여 선로가 분리되고, 1 번과 2번의 보호기기는 동작하지 않아, 사고구간을 분리 할 수 있다. 이러한 보호협조 방안은 전위와 후비 보호기 기간의 협조를 확실하게 하며, 최대한 빠른 속도로 사고 구간을 선택적으로 분리할 수 있어, 건전구간의 수용가들 은 안정적으로 전력을 공급받을 수 있다.

3.3 사고구간분리 보호협조 알고리즘

상기의 사고전류의 경사각 특성을 고려하여 최대한 빠 른 속도로 사고구간을 분리하는 LVDC 배전계통의 보호 협조 운용알고리즘은 다음과 같다. 먼저, 공급전압, 선종, 긍장, 부하량 등의 LVDC 배전계통의 데이터를 입력하 고, 식 (2)를 이용하여 수용가부하 전류의 최대 경사각 (*S_{l,c}*)을 산정한다. 다음에는, 보호구간별(section #1 ~ section #k) 사고전류의 경사각 특성을 고려하여, P-P 사고를 기준으로 보호기기의 동작범위(*S*₁~*S_k*)를 설정하 고, 사고의 종류를 판별하기 위한 허용편차(*Δ_k*(*t*))를 상 정한다. 또한, 각 구간별로 보호기기의 (+)극, (-)극, 중성 선의 전류를 분석한다.

한편, 식 (9)에 의하여 사고발생 유무를 판별하고, 사 고가 발생한 경우($\delta_k(t) = 1$)에는 사고의 종류를 판단하 기 위해, P-P 사고($\lambda_k(t) = 1$), P-N 또는 N-P 사고 ($\lambda_k(t) = -1$)인가를 식 (10)을 이용하여 판정한다. 또한, P-P 사고인 경우, 각 구간(section #1 ~ section #k)에 대하여 식 (11)에 의하여 (+)극 전류의 경사각($S_{p,k}(t)$) 이 해당 구간(k)의 보호기기 동작범위($S_{(k-1)} \sim S_k$)에 들 어오면, k번째 구간의 보호기기를 동작($Z_k(t) = 1$)시켜 사고구간을 분리한다. 한편, P-N 또는 N-P 사고인 경우,

Fig. 6. Protection coordination algorithm for separating fault section

각 구간(section #1 ~ section #k)에 대하여 식 (11)에 의하여 중성선 전류의 경사각($S_{n,k}(t)$)이 해당 구간(k)의 보호기기 동작범위($S_{(k-1)}/2 \sim S_k/2$)에 들어오면, k번째 구간의 보호기기를 동작($Z_k(t) = 1$)시켜 사고구간을 분 리한다. 따라서, 상기의 절차를 플로우차트로 나타내면 Fig. 6과 같이 나타낼 수 있다.

4. PSCAD/EMTDC에 의한 LVDC 배전계통의 모델링

4.1 배전용 변전소 모델링

PSCAD/EMTDC를 이용하여 배전용 변전소의 모델 링을 수행하면 Fig. 7과 같이 나타낼 수 있다. 여기서, 배 전용 변전소의 주변압기는 3권선 Yg-Yg-D 결선방식이 며, 3차 권선은 제3고조파를 제거를 위하여 델타 결선방 식을 채용한다. 또한, 주변압기 2차측은 배전계통의 지락 전류를 제한하기 위한 0.6[*Q*]의 NGR(neutral ground resistor)이 설치된 것으로 상정한다.

Fig. 7. Modeling of main transformer in substation

4.2 LVDC 컨버터 모델링

컨버터는 Fig. 8과 같이 정류기용 변압기, SCR 정류 기, L-C 필터 등으로 구성된다. 여기서, 정류기용 변압기 는 3권선 Yg-Y-△ 결선방식을 채용하여, Y측과 △측 의 SCR 정류기의 입력은 30°의 위상차를 가지게 된다. 이것은 Y측과 △측의 SCR 정류기의 입력위상을 다르 게 하여, AC측에 발생하는 고조파의 함유율을 저감시키 기 위해 사용된다. 또한, SCR 정류기는 3상 AC전력을 DC로 변환하기 위한 6-pulse bridge의 사이리스터 소 자들로 구성되고, L-C 필터는 정류된 DC측 출력의 리플 을 저감시키는 역할을 수행한다.

Fig. 8. Modeling of LVDC converter

4.3 전체 LVDC 배전계통 모델링

상기에서 제시한 모델링을 바탕으로, 배전용 변전소, 컨버터, 선로로 구성된 방사형 구조의 전체 배전계통을 나타내면 Fig. 9와 같다. 여기서, 배전용 변전소는 기존 의 AC 배전계통과 동일하게 22.9kV의 전원을 공급하고, 컨버터는 AC를 DC 전원으로 변환하여 bi-pole, 비접지 방식으로 1.5kV(±750V)의 전압을 공급한다.

Fig. 9. Modeling of LVDC distribution system

5. 시뮬레이션 결과 및 분석

5.1 시뮬레이션 조건

본 논문에서 제안한 LVDC 배전계통에 있어서 사고구 간분리 보호협조 알고리즘의 특성을 분석하기 위한 시뮬 레이션 조건은 Table 1과 같이 나타낼 수 있다. 여기서, LVDC 배전선로의 총 긍장은 6[km]이고, 선종은 HF-EMSG 300mm²를 상정한다. 또한, 각 보호구간별 보호기기의 동작범위는 Table 1과 같이 각각 430[kA/s] 이상, 215~430[kA/s], 144~215[kA/s]로 설정하고, 144[kA/s] 이하는 동작하지 않는 것으로 가정한다. 여기 서, 부하전류의 경사각은 컨버터의 정격전류가 1,667[A] 인 것과 전동기의 기동계수를 고려하여 7배 정도인 11.7[kA/s]로 상정하고, 차단 동작시간은 2[ms]로 가정 한다. 한편, 보호구간은 총 긍장 6[km]를 각각 2[km]씩 분할하고, 사고 분리를 위한 DC 차단기가 설치되어 있는 것으로 상정한다.

Table 1. Simulation conditions

items		contents
LVDC converter	rated capacity(P_{main})	2.5[MW]
	rated voltage(V_{MV}) and current	1,500[V], 1,667[A]
	margin of capacity(α)	300% (<i>I_{main, oc}</i> : 1,667[A])
distribution line	type	HF-EMSG 300mm² (R:0.0227[Ω/km], L:0.87[mH/km])
	length	6[km]
protection devices	operation ranges	CB1(S_1): over 430[kA/s], CB2($S_1 \sim S_2$): 215~430[kA/s], CB3($S_2 \sim S_3$): 144~215[kA/s]
	slope of load current($S_{l,c}$)	11.7[kA/s] (<i>I</i> _{<i>l</i>,<i>p</i>} : 1,667[A])
	operation time	2[ms]

5.2 사고지점에 따른 사고전류의 크기 및 경사각 특성

Table 1의 시뮬레이션 조건에 따라, LVDC 배전선로 에서의 사고지점별 P-P 및 P-N 사고에 대한 사고전류의 크기 및 경사각 특성을 나타내면 Fig. 10과 같다. 여기서, Fig. 10(a)는 사고지점별 P-P 및 P-N 사고에 대한 사고 전류의 크기를 나타낸 것이고, Fig. 10(b)는 사고지점별 사고전류의 경사각 특성을 나타낸 것이다. 먼저, Fig. 10(a)에서와 같이, 사고전류의 크기는 사고지점까지의 임피던스 특성에 따라 2.6~21.8[kA]로 발생하며, 모든 지점에서 구간 컨버터의 과부하내량을 초과하는 사고전 류가 흐르는 것을 알 수 있다. 또한, Fig. 10(b)에서와 같 이, 사고지점별 경사각 크기는 선로긍장에 따라 72~860[kA/s]로 산정되며, 각 구간별로 적정하게 보호 기기의 동작범위를 설정하면 해당 사고구간만을 선택적 으로 분리할 수 있음을 알 수 있다.

(b) Slopes characteristics of fault currents

Fig. 10. Fault currents and slopes characteristics depending on fault location

5.3 사고구간분리 알고리즘에 의한 보호협조 특성

Fig. 11. Operation characteristics of protection coordination with slope of fault currents

LVDC 선로의 6[km] 지점(section #3)에서 P-P 사 고가 발생한 경우에 대하여, 본 연구에서 제안한 보호협 조 및 보호기기의 운용특성은 각각 Fig. 11과 Fig. 12와 같이 나타낼 수 있다. 여기서, Fig. 11(a)는 각각 LVDC 선로에서의 사고전류와 경사각 특성을 나타낸 것이고, Fig. 11(b)는 구간별 정전 특성을 나타낸 것이다. 먼저, Fig. 11(a)와 같이, P-P 사고가 발생하면 사고전류는 급 격하게 상승하고, 경사각은 172[kA/s]가 산정된다. 또한, Fig.11(b)와 같이 사고구간(section #3)에서는 전압이 0[V]가 되지만 건전한 구간(section #1, section #2)에 서는 정상적으로 전압이 유지됨을 알 수 있다.

한편, Fig. 11에서 산정된 경사각은 CB3의 동작범위 (144~215[kA/s])에 포함되므로, Fig. 12와 같이 CB3만 동작하고, CB1과 CB2는 동작하지 않게 된다. 따라서, 사고구간인 3번 구간(section #3)만을 분리할 수 있게 되어, 1번과 2번 구간은(section #1, section #2)은 계 속해서 전력을 공급 할 수 있다. 따라서, 경사각 특성을 이용하는 경우, 최대한 빠른 속도로 사고구간을 선택적으 로 분리할 수 있어, 제안한 보호협조 운용방안이 유용함 을 확인 할 수 있었다.

Fig. 12. Operation characteristics of protection devices with slope of fault currents

6. 결론

본 논문에서는 방사형 LVDC 배전계통에 대하여 사고 시 정전구간을 최소화하기 위하여, 사고전류의 경사각 특 성에 의한 보호협조 운용방안을 제안하였다. 이에 대한 주요 연구결과를 요약하면 다음과 같다.

- (1) LVDC 배전계통에서의 사고전류 및 경사각 특성 을 분석한 결과, LVDC 컨버터는 과부하내량을 대 부분 초과하는 사고전류에 의하여 급격하게 탈락 하여 전 구간이 정전될 가능성이 있지만, 사고전 류의 경사각 특성을 고려하면, LVDC 컨버터가 동 작하기 전에 사고구간을 분리할 수 있음을 알 수 있다.
- (2) LVDC 배전계통에서의 사고지점별 사고전류 및 경사각 특성을 분석한 결과, 사고전류는 사고지점 까지의 임피던스 특성에 따라 2.6~21.8[kA]로 발

생하여, 모든 지점에서 컨버터의 과부하내량을 초 과하는 사고전류가 흐르는 것을 알 수 있고, 경사 각의 크기는 선로 긍장에 따라 72~860[kA/s]로 다양하게 산정되어, 각 구간별로 적정하게 보호기 기의 동작범위를 설정하면 해당 사고구간만을 선 택적으로 분리할 수 있음을 알 수 있다.

(3) 사고전류의 경사각 특성을 이용하여 LVDC 배전 계통의 보호협조 운용특성을 분석한 결과, 각 보 호구간에서 발생하는 경사각에 따라, 해당구간의 보호기기가 동작하여, 최대한 빠른 속도로 사고구 간만을 선택적으로 분리할 수 있어, 건전구간의 수용가들에게 안정적으로 전력을 공급할 수 있음 을 알 수 있다.

References

- [1] Ho-hyun Yoon, Young-jae Lee, Myong-chul Shin, "Analysis of Problem According to Frequency Change when Power System Interconnected with Distributed Generation using PSCAD/EMTDC," The Korean Institute of Electrical Engineers, pp.251-252, 2009.
- [2] Jun-ho Lee, Hee-Dae Jung, Joo-min Lee, Ju-yong Kim, Jin-tae Cho, "DC distribution development status and plan of KEPCO for introduction of high-efficiency distribution networks in the future", The Korean Institute of Electrical Engineers, pp.313-314, 2016.
- [3] Sang-Ick Lee, Dong-Woo Kim, Jae-Hyun Kim, Young-Bae Lim, Dae-Cheul Kang, "Design of Low-voltage DC Breaker for DC Circuit Protection", The Korean Institute of Electrical Engineers, pp.192-193, 2013.
- [4] Young-Bae Cho, Hyeong-Jun Yoo, Hak-Man Kim, Yong-Jin Won, "Operating Characteristic Analysis of Hybrid DC Circuit Breaker in VSC-HVDC System", The Korean Institute of Electrical Engineers, pp.351-352, 2013.
- [5] T. Nguyen, H. Yoo, and H. Kim, "A comparison study of LVDC and MVAC for deployment of distributed wind generations," in Proc. of 2016 IEEE International Conference on Sustainable Energy Technologies (ICSET), Hanoi, pp.138-141, 2016. DOI: https://doi.org/10.1109/ICSET.2016.7811770
- [6] Duck-Su Lee, Jong-Hyun Lee, Seong-Yong Lee, Soo-Nam Kim, "A Study on protection method of LVDC distribution system considering AC/DC converter's fault current supply characteristics", The Korean Institute of Electrical Engineers, pp.2343-2344, 2020.
- [7] S. Z. Jamali, S. B. A. Bukhari, M. O. Khan, M. Mehdi, C. H. Noh, G. H. Gwon, and C. H. Kim, "Protection

Scheme of a Last Mile Active LVDC Distribution Network with Reclosing Option," Energies, vol. 11, no. 5, 1093, 2018.

DOI: https://doi.org/10.3390/en11051093

- [8] G. Li, L. Zhang, T. Joseph, J. Liang, and G. Yan, "Comparisons of MVAC and LVDC Systems in Dynamic Operation, Fault Protection and Post-Fault Restoration," IECON 2019-45th Annual Conference of the IEEE Industrial Electronics Society, Lisbon, Portugal, pp. 5657-5662, 2019. DOI: https://doi.org/10.1109/IECON.2019.8927251
- [9] Soon-hwan Kwon, Hu-dong Lee, Yang-hyun Nam, and Dae-seok Rho, "Optimal Operation Algorithm of Protection Devices in Distribution Systems With PV System," Korea Academy Industrial Cooperation Society, vol. 19, no. 5, pp. 17-26, 2018. DOI: https://doi.org/10.5762/KAIS.2018.19.5.17
- [10] J. Yang, J. E. Fletcher, and J. O'Reilly, "Short-Circuit and Ground Fault Analyses and Location in VSC-Based DC Network Cables," in IEEE Transactions on Industrial Electronics, vol. 59, no. 10, pp. 3827-3837, 2012. DOI: https://doi.org/10.1109/TIE.2011.2162712
- [11] M. Monadi, C. Koch-Ciobotaru, A. Luna, J. I. Candela, and P. Rodriguez, "Implementation of the differential protection for LVDC distribution systems using real-time simulation and hardware-in-the-loop," 2015 IEEE Energy Conversion Congress and Exposition (ECCE), Montreal, pp. 3380-3385, 2015. DOI: https://doi.org/10.1109/ECCE.2015.7310137
- [12] Yu Zeng, Guibin Zou, Xiuyan Wei, Chenjun Sun, and Lingtong Jiang, "A Novel Protection and Location Scheme for Pole-to-Pole Fault in MMC-LVDC Distribution Grid," Energies. vol. 11, no. 8, 2076, 2018. DOI: <u>https://doi.org/10.3390/en11082076</u>

강 민 관(Min-Kwan Kang)

[정회원]

- 2005년 2월 : 한국기술교육대학교 전기공학과 (공학사)
- 2007년 2월 : 동대학원 전기공학 과 (공학석사)
- 2016년 9월 ~ 현재 : 동대학원 전 기공학과 박사과정 재학중

〈관심분야〉 배전계통 운용, 신재생에너지, Micro-grid, ESS, LVDC

이 후 동(Hu-Dong Lee)

[정회원]

- 2016년 8월 : 한국기술교육대학교 전기공학과 (공학사)
 2018년 8월 : 한국기술교육대학교
- 대학원 전기공학과(공학석사)
- 2018년 9월 ~ 현재 : 동대학원 박 사 과정 재학중

〈관심분야〉 배전계통 운용, 신재생에너지, Micro-grid, LVDC

태 동 현(Dong-Hyun Tae)

[정회원]

- 2014년 8월 : 한국기술교육대학교 전기공학과 (공학사)
- 2016년 8월 : 동대학원 전기공학 과 (공학석사)
- 2019년 9월 ~ 현재 : 동대학원 전 기공학과 박사과정 재학 중

<관심분야> 배전계통 운용, 신재생에너지, 마이크로그리드

노 대 석(Dae-Seok Rho)

[정회원]

- 1985년 2월 : 고려대학교 전기공 학과 (공학사)
 1987년 2월 : 동대학원 전기공학
 - 1987년 2월 : 동대학원 전기공의 과 (공학석사)
- 1997년 3월 : 일본 북해도대학교 대학원 전기공학과(공학박사)
- 1987년 3월 ~ 1998년 8월 : 한국 전기연구소 연구원/선 임연구원
- 1999년 3월 ~ 현재 : 한국기술교육대학교 전기전자통신 공학부 교수

〈관심분야〉

전력/배전 계통, 분산전원연계, 전력품질해석