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Extensional Buckling Analysis of Asymmetric 
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미분구적법(DQM)을 사용한 비대칭 곡선 보의 신장 좌굴해석

강기준
호서대학교 공과대학 기계공학부

Abstract  Curved beam structures are generally used as components in structures such as railroad bridges
and vehicles. The stability analysis of curved beams has been studied by a large number of researchers.
Due to the complexities of structural components, it is difficult to obtain an analytical solution for any 
boundary conditions. In order to overcome these difficulties, the differential quadrature method (DQM) 
has been applied for a large number of cases. In this study, DQM was used to solve the complicated 
partial differential equations for buckling analysis of curved beams. The governing differential equation 
was deduced and solved for beams subjected to uniformly distributed radial loads. Critical loads were
calculated with various opening angles, boundary conditions, and parameters. The results of the DQM
were compared with exact solutions for available cases, and the DQM gave outstanding accuracy even 
when only a small number of grid points was used. Critical loads were also calculated for the in-plane
inextensional buckling of the asymmetric curved beams, and two theories were compared. The study of
a beam with extensibility of the arch axis shows that the effects on the critical loads are significant.

요  약  곡선 보는 철교 그리고 자동차와 갈은 구조물의 구성으로 널리 사용되어왔다. 많은 연구자들의 관심분야인 이러
한 구조물의 안정성 거동 해석분야는 괄목할 만한 성과가 있어 왔다. 곡선 보 구조물의 기하학적 구조 및 물성치가 탄성
및 강성에 미치는 영향을 분석하기 위하여 정역학적 동역학적 해석이 필요하다. 그러나 구조물의 복잡성 때문에 어떠한
경계조건에서도 엄밀해를 얻기가 매우 어렵다. 전통적으로 미분방정식의 해법은 유한차분법 혹은 유한요소법으로 해결
해왔으나 이러한 방법들은 때론 복잡한 비선형 구조물에는 과도한 컴퓨터 용량사용과 복잡한 알고리즘 프로그램을 요구
한다. 이러한 어려움을 해결하기 위해 미분구적법(DQM)이 여러 분야에 사용되어왔다. 본 연구에서는 복잡한 편미분 방
정식의 해를 구하기 위하여 미분구적법이 사용되었다. 중면 신장을 고려한 등분포 하중 하에서 선형으로 변하는 비대칭
곡선 보의 내평면 신장 좌굴의 지배방정식을 유도하였고, DQM을 이용하여 지배방정식의 해를 구하였다. 다양한 열림 
각, 경계 조건, 그리고 파라미터에 의한 임계하중을 계산하였다. DQM 결과는 비교 가능한 엄밀해와 비교하였고 DQM

은 적은 격자점을 사용하고도 정확성을 보여주었다. 예를 들어 열림 각이 인 비 신장 고정단 곡선 보의 경우, 엄밀
해의 임계하중 값은 8.0이고 DQM의 임계하중 값은 7.98로, 오차가 0.3% 미만 이었다. 곡선 보의 내평면 비 신장 임계
하중도 계산하였고, 두 이론을 상호 비교 분석하였다. 아크축의 중면 신장을 고려한 연구는 곡선 보의 임계하중에 중대한
영향을 미치는 것을 보여준다.
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1. Introduction

Due to their importance in various fields of 
engineering, the stability analysis of curved 
beams has been the subject fields of a number of 
investigations.

Ojalvo et al.[1] presented the elastic stability of 
arch segments with a push and a pull along the 
segments. Vlasov[2] obtained analytic-form 
solutions, in which cross sectional areas are 
allowed to warp along the arch axis, subject to 
bending moments and uniform radial loads. 
Papangelis and Trahair[3] showed a theoretical 
study of the out-of-plane buckling of doubly 
symmetric arches to verify the predictions of 
Timoshenko and Gere[4] in uniform compression 
and of Vlasov[2] in uniform bending for arches. 
Recently, Kang and Kim[5] investigated the 
in-plane buckling behavior of curved beams 
using the differential quadrature method, and 
Kang[6] also studied the in-plane extensional 
vibration behavior of curved beams using the 
differential quadrature method, respectively.

Solutions of the applicable differential 
equations have commonly been solved by the 
finite difference method(FDM) or the finite 
element method(FEM). These methods sometimes 
require a number of computing time as the 
number of gird points becomes relatively big 
with conditions of the complex geometry and the 
complex loading. In order to overcome these 
difficulties, the differential quadrature method(DQM) 
introduced by Bellman and Casti[7], which is a 
more efficient method for solving the differential 
equation, has been applied for a large number of 
cases. 

In the present study, the DQM  is applied for 
the in-plane extensional and inextensional 
buckling of the curved beam with linearly varying 
cross sectional areas under the uniformly 
distributed radial loads. The critical loads are 
analyzed for the curved beam. 

2. Theoretical Analysis

Fig. 1. Coordinates for a curved beam 

  

Fig. 2. Forces on a curved beam

Fig. 1 shows the coordinate systems for a 
beam. The curved beam axis is specified by the 
angle  . Here,   is the height of the 

cross-section area at the middle,  is the radius, 
  is the radial displacement,   is the tangential 
displacement, and   is the opening angle.

The equilibrium conditions of a curved beam 
not considering the shear deformation, shown in 
Fig. 2, give[8]







 (1)
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


 


 (2)




  (3)

where   M, and  are the normal force,  
the shear force, the moment, and the mass per 
unit length, respectively. From the theory of a 
curved beam, the normal force and the bending 
moment are given 

 





 (4)











 (5)

where  is the cross-section area,  is the 

moment of inertia of the area, and  is the 
Young's modulus.

The substitution of Eqs. (4) and (5) into Eqs. (1) 
and (2) using Eq. (3) presents the following 
differential equations[9]




 ″′″ ′″″′ ″′




′  (6)




 ′′″″″′  


 ′′

   ″′  (7)
in which the prime and the dot show differentiation 
with respect to  and . Assume the followings
     (8)

where  and  are the normal functions 
of   and  , and   is .

Introducing , the dimensionless distance 
coordinate, defined as 

 

 (9)

Consider the curved beam having a rectangular 
cross section shown in Fig. 1. Here,   and  
are the varying cross-section area 
associated with the height   at the middle of 
the beam and the function of the cross-section 
variation law, respectively. The variation law 
studied by Auciello and De Rosa[10], in which 

the cross-section varies linearly, is
     

,  
   (10)

where      is the ratio of the heights.
Using Eqs. (8), (9), and (10), the Eqs. (6) and (7) 

can be presented





 ″


 ′




 ″


 ′




 ″




 ″′
           





 ″′




 







 ′
 


 (11)



 ′


 ′




 ″





 ″




 ″′
   



′





 ′









 ″


 ′
 


 (12)

where  is the radius of gyration,  , and 
  is the length of the axis, . Each prime 

presents differentiation with respect to .
On the basis of Timoshenko and Gere[4], the 

buckling equations can be derived from the 
equation by replace the inertial terms. 
→ (13)





→







 (14)





→







 (15)

It is noted that   is the slope, 
and    is the strain of a beam 
during bending.

Substituting Eqs. (13), (14), and (15) into Eqs. 
(11) and (12) shows





 ″


 ′




 ″


 ′




 ″




 ″′






 ″′




 







 ′
 








 ″


 ′
 (16)
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

 ′


 ′




 ″
 




 ″




 ″′




′





 ′









 ″


 ′
 






 ′




 ″


(17)  
Eqs. (16) and (17) are the differential equations 

of the in-plane extensional buckling of the 
asymmetric curved beams by uniformly 
distributed radial loads.

For the inextensional buckling of the asymmetric 
curved beams, the condition is starting with no 
extension of the center line of the axis. This 
condition requires that   and  be 

 

 (18)  

Using Eq. (18) and eliminating  in Eqs. (16) 
and (17), one can rewrite the equation 















 ′





 




 ″





 ″′




 ″′


 ′
             





 ″




 ″


 ′




 ″′


 ′
    
















 ″
 (19)

Eq. (19) is the differential equation of the 
inextensional buckling of the asymmetric curved 
beams by uniformly distributed radial loads.

The boundary conditions of the beams for 
both ends clamped-clamped and both ends 
simply-simply supported are, respectively, 
′   at X=0 and 1 (20)
   at X=0 and 1 (21)  

3. Application

The DQM is used for the extensional buckling 
of the asymmetric curved beam.

Applying the DQM to Eqs. (16) and (17), gives





 ″


 








 








 ′




 








 










 








 






 



 




    

  







 




 

 




 (22)



 ′


 








 










 








 








′





 













 






 




  








 




 



 




 (23)

where , and  are the weighting 
coefficients for the first, the second, the third, 
and the fourth order derivatives, respectively.

The boundary conditions for both ends 
clamped-clamped, given by Eq. (20), can be 
shown in differential quadrature 
           at 
           at 
             at 
             at     






        at δ






    at δ (24)

Here,  is a very little distance from the 
boundary ends of the beam. In their study on the 
application of the differential quadrature method 
to the static analysis of the straight beam, Jang et 



한국산학기술학회논문지 제22권 제4호, 2021

598

al.[11] proposed the  to the boundary points of 
grid points at a small distance from the ends of 
the beam.

The boundary conditions for both ends 
simply-simply supported, given by Eq. (21), can 
be shown in differential quadrature
           at 
           at 
             at 

          at     



 








 




   

                            at δ

 
 








 




    

                            at δ (25)
Those equations with proper boundary conditions 

can be solved for the critical loads of the 
asymmetric curved beam.

4. Numerical Results and Comparisons 

The critical loads of the in-plane extensional 
and inextensional buckling for the asymmetric 
curved beams with linearly varying cross section 
under the uniformly distributed radial loads are 
solved by the DQM. The values    
are calculated for the various slenderness ratio 
, ratio of the heights    , opening 
angles, and boundary conditions. All results are 
computed with =13 and   ×[6], and 
the range of  is from 30 to 200 suggested by 
Veletsos et al.[12].

  Tables 1 and 2 show the critical loads 
  

  of extensional buckling for the 
beam in the case of fixed-fixed ends with 
   =0.2 and 0.4. Tables 3 and 4 present 

the critical loads     of extensional 
buckling in the case of simply-simply supported 
ends with    =0.2 and 0.4. In Table 5, 

the critical loads of inextensional and 
extensional buckling for the beam in the cases of 
fixed-fixed ends with =200 are presented. 
Table 6 shows that the critical loads by the DQM 
are compared with the critical loads by 
Timoshenko and Gere[4] for the inextensional 
buckling of uniform curved beams.  

From Tables 1~4, the critical loads     
of extensional buckling of the beam with both 
ends fixed-fixed are much higher than those of 
the beam with both ends simply-simply supported. 
In general, the critical loads are increased by 
decreasing the opening angles and  the 
slenderness ratio  except for some small 
opening angles. However, the slenderness ratio 
dose not significantly affect the critical load. As 
the ratios of heights     are increased, 
the critical loads are decreased. The ratios of 
heights also have not much influence on the 
critical loads. The critical loads in cases of the 
simply support boundary conditions are 
importantly affected by the ratios of heights 
more than those in cases of the fixed boundary 
conditions. 

From Table 5 for the case of  =200, there 
is no big difference between the values of critical 
loads of the inextensional buckling and the 
critical loads of the extensional buckling when 
the beam has the uniform cross-sectional area
(  ). However, for the non-uniform beam, the 
values of critical loads of both  inextensional and 
extensional buckling show some difference 
which can have influence on the buckling 
behavior. The values of the critical loads of the 
extensional buckling are higher than those of the 
inextensional buckling, and the buckling 
behaviors are  more affected by the simply 
supported boundary conditions than by the fixed 
boundary conditions for the non-uniform beams. 
The buckling behavior is more affected by the 
opening angles and the boundary conditions than 
by the ratios of height and slenderness. The 
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critical loads are also more affected by the ratios 
of height than by the slenderness ratio.

Table 6 shows that the solutions by the DQM 
requiring only  thirteen grid points agree excellent 
with the exact solutions by Timoshenko and 
Gere[4]. 




30 50 100 200

45 128.9 128.6 128.5 128.8

90 33.41 33.31 33.28 33.31

135 15.82 15.74 15.71 15.64

180 9.705 9.624 9.592 9.565

225 6.975 6.884 6.825 6.808

Table 1. The critical loads   
  of extensional

buckling for the asymmetric curved beams 
with fixed-fixed end boundary conditions 
and    =0.2.  




30 50 100 200

45 115.8 114.8 113.8 113.3

90 29.6 29.3 29.26 29.19

135 13.83 13.72 13.69 13.58

180 8.340 8.268 8.231 8.193

225 5.870 5.805 5.769 5.668

Table 2. The critical loads   
  of extensional 

buckling for the asymmetric curved beams 
with fixed-fixed end boundary conditions 
and    =0.4. 




30 50 100 200

45 64.52 64.44 64.52 65.70

90 16.80 16.77 16.81 16.98

135 7.986 7.928 7.890 7.655

180 4.904 4.346 4.850 4.845

225 3.478 3.426 3.405 3.320

Table 3. The critical loads   
  of extensional

buckling for the asymmetric curved beams 
with simply-simply supported end boundary 
conditions and    =0.2. 




30 50 100 200

45 61.80 61.03 60.26 59.67

90 15.77 15.63 15.48 15.38

135 7.357 7.298 7.245 7.040

180 4.401 4.346 4.281 4.228

225 3.028 2.979 2.905 2.719

Table 4. The critical loads   
  of extensional 

buckling for the asymmetric curved beams 
with simply-simply supported end boundary 
conditions and    =0.4. 



   

0.0 0.5 0.0 0.5
inextensibility extensibility

45 130.6 86.67 132.6 93.77
90 32.38 21.51 34.46 24.14

135 14.33 9.534 16.36 11.18

180 7.984 5,318 1.0 6.722

225 5.178 3.493 7.182 4.604

Table 5. The critical loads   
  of 

inextensional and extensional buckling for the 
asymmetric curved beams  with fixed-fixed 
end boundary conditions with =200.


  

 

Timoshenko and Gere[4] DQM

30 294 293

60 73.3 73.2

90 32.4 32.3

120 18.1 18.2

180 8.0 7.98

Table 6. The critical loads     of inextensional 
buckling for the uniform curved beams with 
fixed-fixed end boundary conditions.

5. Conclusions

The governing differential equations of the 
in-plane extensional and inextensional  buckling 
of the curved beam with linearly varying cross 
section subjected to uniformly distributed radial 
loads are derived. The differential quadrature 
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method(DQM) is used for analyzing the buckling 
behavior and calculating the critical loads of the 
beam.

The present approach gives the followings: 
1) The results, previous not presented, are showed 

with the various boundary conditions, opening 
angles, ratio of heights, or slenderness ratios. 

2) The effects of midsurface extension can 
affect the critical loads of the curved beam 
significantly. Therefore, the research for the 
extensional buckling analysis of the beam is 
import for the beam stability.

3) The DQM shows the solutions which agree 
excellent with the exact solutions requiring 
only a few number of grid points (thirteen 
points used for this study). 

4) The DQM may also be extended to the 
curved beams of other profiles. 

5) For a thick beam, the beam theory including 
the effects of the rotary inertia and the shear 
deformation gives a better results to the 
practical beam behavior. Therefore, the shear 
deformable theory for asymmetric curved 
beams having a thick cross-section area 
should be considered for the next research.
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