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Abstract Curved beam structures are generally used as components in structures such as railroad bridges
and vehicles. The stability analysis of curved beams has been studied by a large number of researchers.
Due to the complexities of structural components, it is difficult to obtain an analytical solution for any
boundary conditions. In order to overcome these difficulties, the differential quadrature method (DQM)
has been applied for a large number of cases. In this study, DQM was used to solve the complicated
partial differential equations for buckling analysis of curved beams. The governing differential equation
was deduced and solved for beams subjected to uniformly distributed radial loads. Critical loads were
calculated with various opening angles, boundary conditions, and parameters. The results of the DQM
were compared with exact solutions for available cases, and the DQM gave outstanding accuracy even
when only a small number of grid points was used. Critical loads were also calculated for the in-plane
inextensional buckling of the asymmetric curved beams, and two theories were compared. The study of

a beam with extensibility of the arch axis shows that the effects on the critical loads are significant.
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1. Introduction

Due to their importance in various fields of
engineering, the stability analysis of curved
beams has been the subject fields of a number of
investigations.

Ojalvo et al.[1] presented the elastic stability of
arch segments with a push and a pull along the
Vlasov[2]

solutions, in which cross sectional areas are

segments. obtained analytic-form
allowed to warp along the arch axis, subject to
bending moments and uniform radial loads.
Papangelis and Trahair[3] showed a theoretical
study of the out-of-plane buckling of doubly
symmetric arches to verify the predictions of
Timoshenko and Gerel4] in uniform compression
and of Vlasov[2] in uniform bending for arches.
Kang and Kiml[5]

in-plane buckling behavior of curved beams

Recently, investigated the
using the differential quadrature method, and
Kang([6] also studied the in-plane extensional
vibration behavior of curved beams using the
differential quadrature method, respectively.

Solutions of the applicable differential
equations have commonly been solved by the
finite difference method(FDM) or the finite
element method(FEM). These methods sometimes
require a number of computing time as the
number of gird points becomes relatively big
with conditions of the complex geometry and the
complex loading. In order to overcome these
difficulties, the differential quadrature method(DQM)
introduced by Bellman and Casti[7], which is a
more efficient method for solving the differential
equation, has been applied for a large number of
cases.

In the present study, the DQM is applied for
the in-plane extensional and inextensional
buckling of the curved beam with linearly varying
cross sectional areas under the uniformly
distributed radial loads. The critical loads are

analyzed for the curved beam.

2. Theoretical Analysis
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Fig. 1. Coordinates for a curved beam

Fig. 2. Forces on a curved beam

Fig. 1 shows the coordinate systems for a
beam. The curved beam axis is specified by the

angle 0. Here, hy is the height of the

cross-section area at the middle, 7 is the radius,
u is the radial displacement, w is the tangential
displacement, and 6, is the opening angle.

The equilibrium conditions of a curved beam
not considering the shear deformation, shown in
Fig. 2, givel8]
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where N', 7, M, and s are the normal force,
the shear force, the moment, and the mass per
unit length, respectively. From the theory of a
curved beam, the normal force and the bending

moment are given

=( . )( =0 u) @)
. EN0) ., 6w 0%
M= 2 )(W o ) 5)
where A is the cross-section area, I is the

moment of inertia of the area, and F is the
Young's modulus.

The substitution of Eqgs. (4) and (5) into Egs. (1)
and (2) using Eq. (3) presents the following
differential equations[9]
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in which the prime and the dot show differentiation
with respect to ¢ and t. Assume the followings

w(0,t) =U0)T(t), w(o,t)=WO)T() (8
where U(0) and W(6) are the normal functions
of u(#) and w(#), and 7(0) is e™*

Introducing X, the dimensionless distance
coordinate, defined as

0

X=
60

©

Consider the curved beam having a rectangular
cross section shown in Fig. 1. Here, A(X) and
f(X)are the

associated with the height hy at the middle of

varying  cross-section  area

the beam and the function of the cross-section
respectively. The variation law
studied by Auciello and De Rosal10],

variation law,

in which
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the cross-section varies linearly, is

1X) = LF(X) = [, f(X)°, A(X) = 4)f(X)
fX) =[1+(2n(x-05))] (10)
where n (=h,/h,—1) is the ratio of the heights.

Using Egs. (8), (9), and (10), the Egs. (6) and (7)
can be presented
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where R is the radius of gyration, 1/(4/4,) , and
S is the length of the axis, rf,. Each prime

presents differentiation with respect to X.
On the basis of Timoshenko and Gerel4], the
buckling equations can be derived from the

equation by replace the inertial terms.

m—q.R (13)
0% 1 d, du

? *?%(% w) (14)
8w 1 d dw

WHP@(— W) (15)

It is noted that (1/R)(du/d9+w) is the slope,
and (1/R)(—u-+dw/df) is the strain of a beam
during bending.

Substituting Eqs. (13), (14), and (15) into Egs.
(11) and (12) shows
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Egs. (16) and (17) are the differential equations
of the in-plane extensional buckling of the
asymmetric curved beams by uniformly
distributed radial loads.

For the inextensional buckling of the asymmetric
curved beams, the condition is starting with no
extension of the center line of the axis. This
condition requires that w and u be
w
80
Using Eq. (18) and eliminating v in Egs. (16)

(18)

u=

and (17), one can rewrite the equation
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Eq. (19) is the differential equation of the

.3
7 ( (19)

21)

inextensional buckling of the asymmetric curved
beams by uniformly distributed radial loads.
The boundary conditions of the beams for
both ends
simply-simply supported are, respectively,

clamped-clamped and both ends

W=U=U=0 at X=0 and 1 (20)
W=U=M=0 at X=0 and 1 21
3. Application

The DQM is used for the extensional buckling

of the asymmetric curved beam.
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Applymg the DQM to Eqs (16) and (17), gives
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C ;, and D ; are the weighting

coefficients for the first, the second, the third,

i i’

and the fourth order derivatives, respectively.

The boundary conditions for both ends

clamped-clamped, given by Eq. (20), can be
shown in differential quadrature

W, =0 at X=0

Wy=0 at X=1

U, =0 at X=0

Uy=0 at X=1

Z = atX=0+6

N
E w1 U;=0 atX=1-5 (24)

0

boundary ends of the beam. In their study on the

Here, is a very little distance from the
application of the differential quadrature method

to the static analysis of the straight beam, Jang et
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al.[11] proposed the d to the boundary points of
grid points at a small distance from the ends of
the beam.

both ends

simply-simply supported, given by Eq. (21), can

The boundary conditions for

be shown in differential quadrature

W, = at X=0
Wy=0 at X=1
U, =0 at X=0
UAr 0 at X=1
1 N 1 N
o 2 A Wit 53 By U; =0
0j5=1 90‘7—1
at X=0+56
1 & 1 &
Q—EA@\—wWﬂL e 22 Byv1),U;=0
0j=1 0J=1
atX=1-5 (25)

Those equations with proper boundary conditions
can be solved for the critical loads of the

asymmetric curved beam.

4. Numerical Results and Comparisons

The critical loads of the in-plane extensional
and inextensional buckling for the asymmetric
curved beams with linearly varying cross section
under the uniformly distributed radial loads are
solved by the DQM. The values ¢ (= ¢,7*/EL)
are calculated for the various slenderness ratio
S/ R, ratio of the heights (= h,/h,—1), opening
angles, and boundary conditions. All results are
computed with N=13 and 6=1x10"7[6], and
the range of S/R is from 30 to 200 suggested by
Veletsos et al.[12].

Tables 1 and 2

q (= q,7*/El,) of extensional buckling for the

show the critical loads

beam in the case of fixed-fixed ends with
n(=h,/hy—1)=0.2 and 0.4. Tables 3 and 4 present
the critical loads q*(: qxr3/EIU) of extensional

buckling in the case of simply-simply supported
ends with n(=h,/h,—1)=0.2 and 0.4. In Table 5,
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the of
extensional buckling for the beam in the cases of
fixed-fixed ends with S/R=200 are presented.
Table 6 shows that the critical loads by the DQM
the by

Timoshenko and Gerel4] for the inextensional

critical  loads inextensional and

are compared with critical loads

buckling of uniform curved beams.

From Tables 1~4, the critical loads ¢ (= ¢,7*/ EL)
of extensional buckling of the beam with both
ends fixed-fixed are much higher than those of
the beam with both ends simply-simply supported.
In general, the critical loads are increased by

the the

slenderness ratio S/R except for some small

decreasing opening angles and
opening angles. However, the slenderness ratio
dose not significantly affect the critical load. As
the ratios of heights n(=h,/h,— 1) are increased,
the critical loads are decreased. The ratios of
heights also have not much influence on the
critical loads. The critical loads in cases of the
simply support boundary conditions are
importantly affected by the ratios of heights
more than those in cases of the fixed boundary
conditions.

From Table 5 for the case of S/R=200, there
is no big difference between the values of critical
loads of the inextensional buckling and the
critical loads of the extensional buckling when
the beam has the uniform cross-sectional area
(n=0). However, for the non-uniform beam, the
values of critical loads of both inextensional and
extensional show difference

buckling some

which can have influence on the buckling
behavior. The values of the critical loads of the
extensional buckling are higher than those of the

the
more affected by the simply

inextensional buckling, and buckling
behaviors are
supported boundary conditions than by the fixed
boundary conditions for the non-uniform beams.
The buckling behavior is more affected by the
opening angles and the boundary conditions than

by the ratios of height and slenderness. The
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critical loads are also more affected by the ratios
of height than by the slenderness ratio.
Table 6 shows that the solutions by the DQM

requiring only thirteen grid points agree excellent

Table 4. The critical loads ¢ (= 0,7/ EL) of extensional
buckling for the asymmetric curved beams
with simply-simply supported end boundary
conditions and n(=h,/h,— 1)=0.4.

with the exact solutions by Timoshenko and ) S/R
Gerel4]. 0 30 50 100 200
45 61.80 61.03 60.26 59.67
Table 1. The critical loads ¢ (= qxr3/ EL) of extensional %0 5.7 1563 1548 1538
buckling for the asymmetric curved beams 135 7.357 7.298 7.245 7.040
with fixed-fixed end boundary conditions 180 4.401 4.346 4.281 4.228
and n(=h,/hy— 1)=0.2. 225 3.028 2.979 2.905 2.719
0 S/R i}
0 30 50 100 200 Table 5. The critical loads ¢ (= g7 v EL) of
inextensional and extensional buckling for the
4 128. 128.6 128. 128.8
> ? > asymmetric curved beams with fixed-fixed
90 33.41 3331 33.28 33.31 end boundary conditions with S/2=200.
135 15.82 15.74 15.71 15.64
=h,/hy— 1
180 9.705 9.624 9592 9.565 n(=hy/hy = 1)
225 6.975 6.884 6.825 6.808 b 00 | o5 00 [ o5
2 _ . e . inextensibility extensibility
45 130.6 86.67 132.6 93.77
" 3 90 32.38 21.51 34.46 24.14
Table 2. The critical loads ¢ (= ¢,m*/ EI,) of extensional 35 1433 0534 1636 118
buckling for the asymmetric curved beams 150 oy 518 o 6722
with fixed-fixed end boundary conditions . > . .
and 7(=h,/h, — 1)=0.4. 225 5.178 3.493 7.182 4.604
S/R . ‘
0 Table 6. The critical loads ¢ (= ¢,7*/EI,) of inextensional
0 30 50 100 200
buckling for the uniform curved beams with
45 115.8 114.8 113.8 113.3 fixed-fixed end boundary conditions.
90 29.6 29.3 29.26 29.19 - -
135 13.83 13.72 13.69 13.58 6, ¢ (= ar/Eh)
180 8.340 8.268 8.231 8.193 Timoshenko and Gerel4] DQM
225 5.870 5.805 5.769 5.668 30 294 293
60 73.3 73.2
. 5 90 32.4 32.3
Table 3. The critical loads ¢ (= q,7°/ EL)) of extensional 120 181 18.2
buckling for the asymmetric curved beams 180 8.0 - o8
with simply-simply supported end boundary . .

conditions and n(=h,/h, — 1)=0.2.

6, S/R

30 50 100 200
45 64.52 64.44 64.52 65.70
90 16.80 16.77 16.81 16.98
135 7.986 7.928 7.890 7.655
180 4.904 4.346 4.850 4.845
225 3.478 3.426 3.405 3.320

5. Conclusions

The governing differential equations of the
in-plane extensional and inextensional buckling
of the curved beam with linearly varying cross
section subjected to uniformly distributed radial
loads are derived. The differential quadrature
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method(DQM) is used for analyzing the buckling
behavior and calculating the critical loads of the

beam.

The present approach gives the followings:

1) The results, previous not presented, are showed
with the various boundary conditions, opening
angles, ratio of heights, or slenderness ratios.

2) The effects of midsurface extension can
affect the critical loads of the curved beam
significantly. Therefore, the research for the
extensional buckling analysis of the beam is
import for the beam stability.

3) The DQM shows the solutions which agree
excellent with the exact solutions requiring
only a few number of grid points (thirteen
points used for this study).

4) The DQM may also be extended to the
curved beams of other profiles.

5) For a thick beam, the beam theory including
the effects of the rotary inertia and the shear
deformation gives a better results to the
practical beam behavior. Therefore, the shear
deformable theory for asymmetric curved
beams having a thick cross-section area

should be considered for the next research.
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