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Parameter Estimation of Source Image Using Least-Squares for Dual
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이중 채널에서 블라인드 음성 분리를 위한 최소 제곱법 기반의 
파라미터 추정 방법

배정훈
고려대학교 지능신호처리연구실

Abstract  Blind source separation for the cocktail-party problem has long been a challenge in Artificial 
Intelligence (AI) for military applications. The cocktail-party problem states  that an intelligent machine 
cannot locate and listen to the target speaker's voice when it is surrounded by other sound sources such
as in a cocktail party. This paper proposes a novel method to estimate mixing parameters of 
underdetermined and convolutive mixture of speech sources given a dual-channel microphone array. In 
the proposed method, the optimal estimate of mixing parameters and the source image is obtained using
the least-squares principle. As a result, the scaling ambiguity, which is common in conventional blind
source separation methods, is alleviated. Performance evaluation of the proposed method is conducted 
with a public dataset, SiSEC 2008, and experimental results show the present method's validity in terms
of various SNR measures  compared to other state-of-the-art techniques in the field. 

요  약  칵테일 파티 문제를 해결하기 위한 일환으로서 블라인드 음원 분리 기술은 군사용 인공지능 활용 분야에서 오랫
동안 연구되어왔다. 칵테일 파티 문제는 언어이해를 목적으로 하는 지능 시스템이 다양한 음원이 존재하는 상황에서 타
겟사용자의 목소리를 분간해 내지 못하여 사용자 명령을 이해하지 못하는 현상을 말한다. 본 논문에서는 이중 채널 마이
크로폰 어레이 상황에서 언더디터민드 (underdetermined) 하고 합성곱 형식으로 섞여진 신호의 혼합계수 (mixing 
parameter)를 추정하는 새로운 방법을 제안한다. 최소제곱법 원리를 이용하여 혼합계수들을 추정하는 방법이 소개되
며, 분리된 신호는 마이크로폰에서의 신호 형상 (signal image) 레벨로 구해진다. 이 결과, 일반적으로 블라인드 음원
분리 기술에서 맞닥뜨리는 스케일링 모호성 (scaling ambiguity)이 없어지게 된다. 제안한 방법은 최소제곱법을 기반을
두며, 일반적으로 블라인드 음원 분리 기술에서 맞닥뜨리는 스케일링 모호성 (scaling ambiguity)를 없앤다. 제안한
방법의 성능은 학계에 공개된 SiSEC 2008 데이터셑을 이용해 측정되었으며, 다양한 종류의 신호 대 잡음비를 측정하고,
그 측정값을 같은 분야의 최신 기술들과 비교함으로써 그 타당성을 입증하였다. 
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1. Introduction

Speech technologies for enabling natural 
language interfaces have been emerging in the 
military AI applications[1]. Among them, the 
blind speech separation (BSS)  has been one of 
the challenging areas in the field of military 
signal processing[2]. A number of BSS techniques 
have shown their effectiveness when there is 
speech sparseness in the Time-Frequency (TF) 
domain[3,4]. In a reverberant environment, BSS 
turns into a so-called “convolutive mixture” 
problem, and the separation is usually performed 
narrowband-wise in the frequency domain. The 
approaches for the frequency domain BSS 
include i) spectral bin clustering[4,5] or mixing 
parameter estimation[6]; ii) soft/binary masking 
[3,4,7-12] or separation based on lp norm 
minimization[13]; iii) permutation alignment[4,14]; 
iv) the Deep Neural Network (DNN) based 
monaural speech separation[11,15,16]; v) the DNN 
based multi-channel speech separation[17-19].

As the DNN has shown improved performance 
in various machine learning tasks, the DNN 
based source separation technologies also have 
emerged. Heymann et al.[10] proposed a method 
of generating a binary mask in the magnitude 
Short-Time Fourier Transform (STFT) domain 
using stacks of fully-connected layers to the 
Bidirectional Long Short-Term Memory (BLSTM). 
Williamson et al.[11] expanded the domain of 
mask generation to the complex STFT domain. 
Erdogan et al.[12] incorporated a phase 
difference between speech and noisy speech in 
the mask generation process in the magnitude 
STFT domain. 

It should be noted that the DNN based 
separation method suffers generalization 
problems since the environment where its 
training data are collected may not match with 
the testing environment. Such mismatches occur 
from difference in microphone array geometry, 
type of noise, range of signal-to-noise ratio, and 

human factors (age, gender, accent) in training 
audio data. In the traditional approach of speech 
separation, however, such a generalization 
problem is relatively eased because it usually 
models statistical characteristics of speech with 
parametric probability models, and tries to figure 
out how to accurately estimate its parameter. 
Those modeling assumptions on speech signals 
are not confined to a human factor or type of 
noise. Therefore, in such an aspect, a traditional 
approach is more effective to mitigate 
generalization problems over recent DNN 
approaches. 

In this paper, we developed a simple but 
effective spectral bin clustering method for 
identifying the speech source. Note that the term 
“spectral bin” denotes the time-frequency bin of 
a spectrogram which is derived from the STFT. In 
the speech sparseness based approaches, the 
spectral bin clustering is mostly affective to 
overall performance of the separation system. It 
is because the mixing parameter are estimated 
from the clusters, its estimate is fed into the 
separation process such as lp norm minimization 
and permutation alignment. Moreover, correctly 
clustered spectral bin itself can serve as a 
separated speech source[3] or at least the mixing 
parameters are easily estimated from the 
clustered spectral bin[6].

In the literature, various methods for spectral 
bin clustering have been proposed using 
weighted histogram[3], mixture of Gaussian[4], 
and mixture of wrapped-Gaussian[8]. However, 
strictly speaking, all those approaches are 
optimal in clustering signal ratio between two 
microphones rather than clustering the source 
components themselves. In that case, the 
estimation might be inaccurate due to some 
abnormal outlier value of its ratio which is 
inherently resulted from its division form. Winter 
et al.[6] tackled this problem earlier by 
employing a hierarchical clustering algorithm to 
the spectral bin clustering to ease the outlier 
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problem. However, their method inherently required 
determining the a Priori parameters, which bring 
some ambiguity in their implementation. We 
propose a novel method to directly estimate the 
mixing parameter with data under the signal 
sparseness assumption[3]. Other than that, no 
additional assumptions on a probability 
distribution on the signal modeling are required.

The remainder of this paper is structured as 
follows.  In Section 2 we build a signal model for 
deriving the proposed method. In Section 3 we 
present the main idea of this work. Performance 
evaluation is shown in Section 4. Section 5 
concludes this paper.

2. Signal modeling

Suppose that we have N sources of 
time-domain signal     distributed 
around a microphone pair. Those source signals 
are convolutively mixed and captured by each 
microphone as

 







    (1)

where hnm(l) is the impulse response from nth 
source to mth microphone. Then time-domain 
signal of mth  microphone,  , is transformed 
to time-frequency domain via the STFT, and 
leads to

 




    (2)

where  and f denotes the frame and frequency 
index, respectively.

They are formed in a vector as follows:

x  













 ⋯ 

 ⋯ 










⋮







(3)

where   and  represent mixing 
parameter and source signal of frequency f at th 
frame , respectively. 

Source speech image at each microphone is 
formed as
i    ⋯  

 

(4)

Using (3) the input signal x can be 
represented with the source speech image as 
follows:
x Ri    (5)

where R  is the mixing parameter matrix for 
the source image.

Let    and  

 , n =1,⋯,N and then (5) is 
rewritten as
x Ri





   
 ⋯











⋮







(6)

and equivalently 
x Ri





 ⋯

  











⋮







(7)

Generally conventional methods attempt to 
solve (3) directly in terms of the mixing 
parameter   and recover the signal source 
 . However, this approach inevitably 
encounters a scaling ambiguity problem, and 
additional post-processing is required to resolve 
the problem. Our approach is to recover the 
signal image, ⋅, not the signal 
source   itself. By this way, the scaling 
ambiguity can be inherently avoided.

The performance is evaluated on the task of 
speech enhancement assuming that the properly 
estimated mixing parameter leads to a good 
quality of recovered speech signal. 

3. Proposed method

3.1 Mixing parameter estimation
We estimate the transfer function ratio, 
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  and  , by minimizing





   

(8)

In order to calculate (8), we first need to 
determine which source the input signal x  
belongs to, and then the signals are clustered in 
terms of its originated sources. Using the 
clustered data,   and   are updated.  
These two procedures are repeated until the 
value of    and  are converged.

Let’s assume that T observations at frequency 
f, namely x ,...,x  are given. The goal of 
the proposed method is to classify those 
observations into corresponding N source sets. 
We define   as a set of x  hat mostly 
comprises nth source  :
   xxr xr

≠≤≤≤≤
(9)

where x    and r  

 
 and r  is obtained by 

minimizing the summation of cost function for 
each source n:
r  r 

argmin x∈ 
xrn  f (10)

A cost function xr is defined as a 
similarity between   and  given 
r :
xr      

   


 

(11)

Now the overall criterion for clustering given 
observations x  …  into each source 
set   … can be written as 

  

argmin

 



x ∈ 
xr 
 

(12)

In practice, the is obtained in an iterative 
manner as follows. At first, elements of a set 
  … are determined for all N sources 
using (9) with the previous estimate of r . 
Then, using (10), a new estimate of r  is 

obtained with those   which is determined 
by (9). 

3.2 Source separation and recovery
Since the proposed algorithm is designed to 

estimated appropriate mixing parameter, we 
adopted ground-truth permutation information. 
After the permutation, a binary mask was 
generated and applied to separate source images 
at each microphone as follow[3]:

   i f x∈ 
(13)

The mask value is multiplied to input signal in 
the time-frequency domain. The input signal is 
then recovered by inverse STFT to time-domain 
signal. The transformed data are merged in 
overlap-and-add manner.

4. Experiments

4.1 Task and settings
The dataset and measurement are provided 

from SiSEC speech separation campaign[20] 
which is available for the public use of BSS 
algorithm evaluation. Data of SiSEC 2008 
database are recorded with 16 kHz sampling rate. 
Among the data, we picked up the audio data 
that was lively recorded in a reverberant 
environment where the reverberation time was 
either T60=130 ms or 250 ms. The data recorded 
in the T60=130 ms environments are transformed 
to STFT domain with the Hanning window of 
2,048 samples and 512 samples overlapping 
period. For the data recorded in the T60=250 ms, 
we set the window size to be 4,096 samples. The 
spacing between microphones was set to 5cm or 
1m. The number of speakers are 3 or 4. 
Therefore there are 8 combinations of data 
settings. (microphone spacing / reverberation 
time / number of source)
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4.2 Performance measure
Four objective evaluation scores are measured 

per data setting. Those are the Signal to 
Distortion Ratio (SDR), the image Signal to 
Spatial Distortion Ratio (ISR), the Signal to 
Interference Ratio (SIR), and Signal to Artifacts 
Ratio (SAR). The detailed derivation of these 
scores can be found in [21]. They are scaled as 
dB, and larger numbers mean better 
performance. The SDR indicates power ratio 
between original signal and overall distortion 
components due to imperfection of the BSS 
algorithm.  The ISR represents how much 
stronger the energy of target speech over the 
amount of damaged part of the original signal 
after the separation. The SIR accounts for how 
effectively interference (other speech sources) 
are removed. The SAR measures the energy ratio 
between the original signal over the unwanted 
artifact signal generated by the algorithm.

4.3 Results
We compared performance of the proposed 

method with four other state-of-the-art BSS 
technologies that also have evaluated their 
performance with the same SiSEC 2008 data set. 
The first method, denoted as “Ozerov”[22], 
estimates mixing parameters using the 
expectation-maximization (EM) algorithm[23]. 
The second one, denoted as “Nesta1”[24], 
estimates mixing parameters with the natural 
gradient algorithm. The third method, denoted as 
“Nesta2” is all the same with [24] but they added 
an additional Wiener post-processing to recover 
the original speech signal.  The last method, 
denoted as “Iso”[25], is a combination of benefits 
from two different algorithms: [4] and [26]. A 
full-rank method[26] was adopted to estimate the 
source image, and for the initialization of the 
center value of the spectral bin cluster, the 
bin-wise clustering method[4] was adopted. The 
“IBM” in the table denotes the results from signal 
separation using the ideal binary mask provided 

by the dataset publisher for benchmarking and it 
shows upper-bounds on the performance of the 
binary masking-based method[27]. We have 
taken and compared the performance result of 
other methods from [28] where it has been open 
to public.  

4.3.1 Blind source separation with three 
      speech sources
In Table 1, we summarized and compared the 

performance of blind source separation for the 
test case where three speech signal sources exist, 
the distance between microphones is 5 cm long, 
and the reverberation time is 130 ms. The 
proposed method outperforms the other 
state-of-the-art BSS algorithm in terms of the 
ISR and the SIR. It means the proposed method 
successfully clustered spectral bins according to 
its source. However, it generated unwanted 
musical noise so the SAR score of the proposed 
method ranked lowest, so even though the 
interferences are well separated out, the SDR 
could not show higher value than the others.

Mic. 
spacing Measure

Method

Proposed Ozerov Nesta1 Nesta2 Iso IBM

5cm

SDR 6.7 4.6 6.4 6.7 7.1 6.4
ISR 12.5 9.2 10.2 12.4 11.4 10.2
SIR 13.1 8.4 10.4 12.0 10.5 10.4
SAR 8.0 8.4 10.1 9.4 10.8 10.1

1m

SDR 7.3 3.0 6.2 7.4 4.6 10.0
ISR 13.2 7.6 8.8 12.1 8.3 18.6
SIR 13.7 4.8 10.5 12.3 7.0 20.2
SAR 8.4 7.3 9.8 9.9 9.0 10.6

Table 1. Performance comparisons of three speech 
source separation where reverberation time 
is 130ms

For the next evaluation, we changed the 
testing acoustic environments harsher by setting 
the reverberation time longer (130ms → 250ms) 
and the evaluation results are presented in Table 
2. It makes the phase difference spread widely in 
the phase axis all over the frequency band. It 
affects badly for its performance to cluster and 
separate each spectral bin into its own speech 



Parameter Estimation of Source Image Using Least-Squares for Dual Channel Underdetermined Convolutive Blind Speech Separation

549

sources. Therefore, the overall performance is 
expected to be lower than the one measured 
when it is 130ms (Table 1). For the 1 m case, the 
proposed method achieved the best performance 
in the SDR thanks to higher score obtained in 
the ISR and SIR field. It should be noted that the 
proposed methods showed a robustness against 
the reverberation. 

Mic.
 spacing Measure

Method

Proposed Ozerov Nesta1 Nesta2 Iso IBM

5cm

SDR 6.6  4.3 6.0  6.9  6.1 10.1
ISR 12.3  9.0 9.8 11.2 10.4 18.8
SIR 12.6  8.5 10.0 11.6  9.2 20.2
SAR 7.5  8.4 8.9  9.6 10.2 10.7

1m

SDR 6.9  4.8 4.6  6.1  5.8 9.6
ISR 12.6  9.3 7.0 10.2  9.6 18.0
SIR 12.9  8.6 8.5 10.4  8.6 19.5
SAR 8.1  8.1 8.0  9.4 10.0 10.1

Table 2. Performance comparisons of three speech
source separation where reverberation time
is 250ms

4.3.2 Blind source separation with four speech 
     sources.
We evaluated and compared the performance 

of the BSS methods in harsher condition by 
adding one more speech source in the mixture 
signal. The other conditions remained the same 
as we conducted in Section 4.3.1. Note that we 
compared the proposed method with the other 
technologies but excluded the “Iso” method 
because it was not reported in public. 

In Table 3, we presented performance scores 
for each algorithm in the case where 
reverberation time is 130 ms. Compared to Table 
1, regardless of method, every performance was 
degraded due to increment of number of speech 
sources to be separated. Since the number of 
speech sources increased, it is highly likely that 
in a time-frequency bin, multiple speech sources 
are overlapped. Therefore, it is harder to meet 
the signal sparseness assumption[3], which is 
primarily required, for all methods to work, than 
the three speech sources case.

  Mic.
 spacing Measure

Method

Proposed Ozerov Nesta1 Nesta2 IBM

5cm

SDR 4.8 2.7  4.3  4.4 4.3
ISR 9.6 6.9  7.4  8.3 7.5
SIR 10.2 5.7  7.9  9.0 8.0
SAR 5.9 6.5  7.1  6.8 7.1

1m

SDR 5.1 2.7  3.5  3.9 7.7
ISR 10.1 6.5  6.0  7.7 15.3
SIR 10.6 4.7  5.7  6.9 17.2
SAR 5.9 5.9  6.5  6.3 8.1

Table 3. Performance comparisons of four speech 
source separation where reverberation 
time is 130 ms

Table 4 shows the result of performance where 
the same condition is remained as the same as 
Table 3 but the reverberation time is increased 
to 250 ms. Throughout all the experimental 
settings so far, this is the most challenging 
acoustic condition for the algorithms to achieve 
proper separation of the mixed speech sources. 
As we compared to Table III, it has shown that 
the performance of all algorithm in all aspects 
are even more worsened. The proposed method 
outperformed the other method in all scores but 
the SAR 

  Mic.
 spacing Measure

Method

Proposed Ozerov Nesta1 Nesta2 IBM

5cm

SDR 4.2 2.4  2.6  3.1 8.5
ISR 8.2 6.5  5.9  6.7 17.0
SIR 8.4 4.5  4.4  5.5 18.9
SAR 5.0 5.5  5.4  6.0 8.7

1m

SDR 5.0 1.8  3.2  4.1 8.6
ISR 9.6 5.5  5.5  7.6 16.4
SIR 10.0 3.1  5.9  7.2 18.7
SAR 5.7 5.0  5.6  6.7 8.9

Table 4. Performance comparisons of four speech 
source separation where reverberation 
time is 250 ms

Throughout the overall results given in Table 1 
to Table 4, the proposed method has shown its 
robust performance in various condition but 
especially in the condition of four speech 
sources. 
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5. Conclusion

A novel method of estimating mixing parameters 
is proposed for blind speech source separation in 
the case of a two-channel microphone array. 
The signal sparseness assumption is employed to 
model the speech source mixture. Unlike the 
conventional approaches, we directly estimate 
optimal mixing parameters in terms of least 
squares principle rather than signal ratio. In the 
experimental results, with the ideal permutation 
alignment, the proposed method has shown 
improved performance compared to those of the 
state-of-the-art techniques. Future work may 
include extending the proposed scheme from 
two-channel to arbitrary number of channels, 
and devising an efficient permutation alignment 
algorithm in order to incorporate it with the 
proposed mixing parameter estimation algorithm.
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