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혼합 폰 미제스 확률 분포에 대한 최대 사후 확률 기반 적응 
기법과 블라인드 음원 분리에의 적용
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Abstract  In this paper, we propose a Maximum a Posteriori (MAP) adaptation method for the parameter
of Phase Difference of Arrival (PDOA) distribution to classify sound sources in the time-frequency 
domain. The PDOA is clustered via Mixtures of von Mises distribution (MovM) which is efficacious in 
modeling a 2 circular domain. The proposed method is employed to the task of clustering a spectral bin
in terms of a sound source, which is a crucial part of the mask-based blind source separation. To 
robustly estimate the model parameter of MovM of the PDOA, we first build an incidence angle 
distribution and then adapt the parameters to each frequency band. The clustered spectral bin is used 
to build a time-frequency (TF) mask to separate the mixed audio signal based on the signal sparseness 
property. 

요  약  본 논문에서는 시간-주파수 영역에서 음원분리를 위해 도달음원의 위상차 분포 추정을 위한 최대 사후 확률
기반의 파라미터 적응기법을 제안한다. 도달 음원의 위상차 데이터는 혼합 폰 미제스 분포로 가정하여 음원의 각도 위치
에 따라 분류되었으며, 이 혼합 폰 미제스 분포는 위상차와 같은 2 순환 데이터를 모델링할 때 효과적이다. 제안한 
방법은 혼합 음원의 스펙트로그램 상에서 시간 및 주파수 구간을 각각의 음원으로 클러스터링하는 용도에 사용되었으며,
이는 마스크 기반 블라인드 음원 분리기술에서 가장 핵심적인 부분이다. 혼합 폰 미제스 분포로 모델링 된 도달음원
위상차 분포의 파라미터들을 안정적으로 추정하기 위하여, 먼저 각 도착 신호의 각도 분포를 구성하였으며, 이 각도 분포
를 바탕으로 각 주파수 밴드의 위상차 분포를 나타내는 파라미터들을 각각의 주파수 대역 별로 추정하였다. 이를 바탕으
로 스펙트로그램상에서 음원별로 시간-주파수 영역을 구분하고 이 영역들은 시간-주파수 마스크를 생성하는데 쓰여졌
다. 제안한 방법은 SiSEC 2008 데이터셑을 이용하여 다양한 신호 대 잡음비 값으로 평가되었으며, 그 타당성이 입증되
었다. 
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1. Introduction

The task of blind source separation (BSS) is to 
estimate source signals in the presence of 
multiple sources. Application of the BSS for 
speech includes pre-processing of automatic 
speech recognition for military applications[1] 
and mobile military communications[2]. Recently 
the signal sparseness-based separation techniques 
have emerged and attracted much attention. 
These techniques can be categorized into 1) 
Time-Frequency (TF) masking[3-6] and 2) mixing 
parameter estimation[7,8]. However, the common 
prerequisite for those techniques is clustering the 
spectral bin of the input signal into each sound 
source in an unsupervised manner. In many 
kinds of literatures, the Time Difference of 
Arrival (TDOA)[3], signal orientation[6], or Phase 
Difference of Arrival (PDOA)[5,9], are 
incorporated with a Bayesian framework, and 
Expectation-Maximization (EM) is popularly used 
to learn parameters of the cluster distribution. 
However, the measured TDOA above the spatial 
aliasing frequency suffers 2-ambiguity problem, 
and therefore they are not reliable to be used. 
The 2-ambiguity problem means that given a 
TDOA value measured from the phase difference, 
we cannot explicitly determine the direction of 
sound source because the phase difference is 
observed in a 2- modulo manner, i.e. 
   ±±. 

A number of approaches to avoid the 2
-ambiguity problem of TDOA have been 
introduced recently. In some works, the 2
-ambiguity has been handled in a probabilistic 
manner by setting it as a model parameter of a 
PDOA distribution[4,9].  Izumi et al.[4] has used 
TDOA as a model parameter of the complex 
Gaussian Mixture Model (GMM) which represents 
the distribution of the input speech signal in a 
complex time-frequency domain.  

Recently, the Deep Neural Network (DNN) has 
been showing improved performance on various 

types of speech separation tasks: time-frequency 
masking estimation for speech enhancement 
[10-12] monaural source separation[11-14], and 
multi-channel source separation[15-17]. For such 
a learning-based speech separation, it is hard to 
avoid inherent performance degradation when 
generalization fails. It is mainly due to a 
mismatch between training data and testing 
ones. Many conditions should be considered 
when collecting (or selecting) training sets in 
terms of environments where the algorithm is 
actually applied: array geometry, type of noise, 
range of signal-to-noise ratio, speakers. On the 
other hand, the traditional approach of speech 
separation adopts a proper probabilistic model 
of the speech signal and estimates its model 
parameter based on statistical criteria[18,19]. 

The goal of this paper is to develop an 
efficacious probabilistic model for representing 
the PDOA distribution in order to cluster PDOA 
observation in the spectral bin, especially in the 
case of a two-channel microphone array. The 
MovM is adopted to build the distribution, and 
the spectral bins are clustered in terms of a 
probabilistic score of PDOA. The remainder of 
this paper is organized as follows. In Section 2 
our signal modeling is introduced. Based on that, 
in Section 3, we propose a MAP adaptation 
method to estimate the parameter of PDOA 
distribution to classify sound sources without 
concerning 2-ambiguigity problem. In Section 4 
performance of the proposed method is 
evaluated in terms of speech enhancement. 
Concluding remarks are presented in Section 5.

2. Signal modeling

Suppose that we have NS sources of signal , 
   distributed around two microphones. 
The signals are convolutively mixed and captured 
by each microphone as
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 







        (1)

where j is the microphone index,    is the 
impulse response from the ith source to the jth 
microphone, and n(t) is ambient noise. The 
signals are converted to TF domain via the 
Short-Time Fourier Transform (STFT), and leads to

 




     

(2)
where  denotes a time index  denotes an 
angular frequency. 

With an assumption that the signal sources are 
not moving, the phase difference between signals 
of two microphones can represent where the 
signal source they are located, and the PDOA at 
is formed as:

  arg




 


  

  ±±⋯

(3)

where   and   denote the PDOA and the 
TDOA between two microphones, respectively, at 
the time  and the frequency , and   denote 
a phase distortion due to the ambient noise. 

We focus on classify   into one of the signal 
sources,    …. In order to do so, we 
need to build a posterior probability density as 
follows:

 

│








│

│

(4)

where Si denotes class indicator representing the 
ith source.

3. Proposed method

The proposed method is to build (4) without 
concerning the  ambiguity problem. It is 
because that the input information is the   

which ranges from  to . From (4) let the 
denominator denote the -local PDOA model 
which addresses an evidence probability of  . 
Since von Mises PDF[20]  models the distribution 
of circular data, it is suitable to model the PDOA. 
We define the likelihood │  in (4) as
│  │ 

 


cos  
(5)

where │   represents the von Mises 
PDF[20]  of   with the mean angle  and the 
concentration  of the source . The ⋅  is 
the modified Bessel function of order 0.  

Let  denote a latent variable that indicates to 
which source the parameters of von Mises PDF 
 and  belong.

  i f∈  
(6)

We reform   as 
       (7)
Using  (5) and (7), the -local PDOA model, 

i.e. denominator of (4), is formed as 

 




  




   (8)

and its parameter set ∀ needs to 
be estimated. 

However, the problem is that there may not be 
sufficient data to estimate those parameters per 
frequency, . For example, if we set stepsize 32 
ms for STFT, there are nearly 93 data for 3 
seconds of utterance. Considering speech-inactive 
TF-bin and the signal sparseness, this number 
can be further reduced. This problem may be an 
obstacle to implementing a real-time source 
separator. 

To resolve such a data insufficiency problem, 
we need to utilize all the PDOA data from all 
frequency range. In order to do so, we need new 
statistics that can localize signal sources and also 
can be extracted from all frequencies. As such 
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statistics, we adopted an incident angle of signal, 
, that represents an angle between the source 
location and the microphone array. The reason 
why the incident angle was chosen is that each 
signal source has its own incident angle and its 
value can be extracted from the TF-bin for all 
frequencies. Moreover, we can employ the 
incidence angle distribution as a priori and adapt 
its parameter to build the -local PDOA 
distribution since the conjugate prior of the von 
Mises distribution is also the von Mises 
distribution[21].

The -local PDOA values are converted to an 
incident angle using the following equation:

  cos

 (9)

where d and c are the innerspace length between 
microphones and the speed of sound

3.1 Incidence angle distribution as a priori
The purpose of building the incidence angle 

distribution is to make a reference model for 
-local PDOA distribution. The distribution of 
incidence angle  is modeled with the MovM. 
Since this distribution is irrelevant with the 
frequency of spectral bin, , the entire PDOA 
data over all frequency bands can be utilized to 
learn the model parameter for robust estimation. 
The distribution is formed as

 




│   




   (10)

where ,  and  denote, respectively, the 
mixture weight, mean angle, and concentration 
parameter. These parameters were estimated via 
the Expectation- Maximization (EM) algorithm. 
We present the resultant formulae here, but 
readers are encouraged to refer to Banerjee[22] 
and Calderara[23] for the detail. Let      
denote L observations of the incidence angle 
converted using (9) but we do not know their 
signal source. The estimation procedure is as 
follows:

1) Initialize ,  and  with random values
2) Expectation-step: calculate the probability 

of signal 
source given observation,  , as follows:

   







  (11)

3) Maximization-step: update ,  and 

 ←
 




 (12)

 ←tan











cos






sin




(13)

  ←












cos
(14)

 is obtained by inversing   in terms of  , 

namely   . However,   is mathematically 
intractable so it is approximated[22] as follows 

≈



 (15)

4) Iteration: Step 2) and Step 3) are iterated 
until the value of ,  and  are 
converged to steady values.

3.2 MAP adaptation with a mixture of von 
    Mises distribution

As we addressed previously, the PDOA 
distribution cannot help but being modeled over 
each frequency band, therefore there may be a 
lack of data to estimate its parameters. Hence 
our approach is to obtain those parameters by 
adapting the parameter of the incidence angle 
distribution to the ω-local PDOA distribution. We 
employed the Maximum a Posteriori (MAP) 
adaptation technique which has been used in 
speaker verification[24,25].

In order to adapt, we need to define a 
mapping function to convert the incidence angle 
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unit back to -local PDOA unit as follow: 

≡

 cos (16)

We first determine the probabilistic alignment 
of the input PDOA into each mixture component 
of the incidence angle distribution. That is, for 
mixture i in the distribution, we compute

 








  (17)

and then compute the sufficient statistics: 
S sin  and C cos  for all  
and i.

We present the resultant estimation formulae 
here and the detailed derivation can be found in 
the [21] and [26].

  tancosC
sin S  (18)

where  is the resultant length[20] of data from 
ith source, which is formed as
 ⋅ ⋅ (19)

while W denotes the number of data used to 
estimate the parameter of incidence angle 
distribution and  ⋅ is the modified Bessel 
function with order 1.  The estimate of the 
concentration parameter, , is obtained in the 
same manner of the EM framework by

 ≈
 

 
  (20)

where

  

cos  . (21)

Finally, the mixture weight is obtained as 
follow

  
 




 (22)

3.3 Time-frequency binary masking and 
    signal recovery

In this paper we construct a binary mask using 
(9) as follow:

  
i f  


arg

 
(23)

The separated TF signal for ith source is 
formed as:
    (24)

and then   is transformed to time-domain 
via the inverse STFT and the overlap-and-add 
method for all each source.

4. Experiments

To validate the effectiveness of the proposed 
method, we applied it to the speech separation 
task and evaluated it in terms of several objective 
scores. The dataset and measurement are 
provided from the SiSEC speech separation 
campaign[27] which is available for the public 
use of BSS algorithm evaluation.

4.1 Task and settings
The performance of the proposed algorithm 

was evaluated based on its ability to separate the 
mixed voices of three speakers at different 
locations. Those speakers’ are either a group of 
females or males drawn from the ‘dev1’ set of  
SiSEC 2008 database[27]. Among the data, we 
picked up the audio data that was lively recorded 
in a reverberant environment where the 
reverberation time was either 130ms or 250ms. 
The spacing between microphones was set to 
5cm or 1m. 

4.2 Performance measure
Four objective evaluation scores are measured 

per data set. Those are Signal to Distortion Ratio 
(SDR), Source Image to Spatial Distortion Ratio 
(ISR), Source to Interference Ratio (SIR), and 
Sources to Artifacts Ratio (SAR). All measures are 
dB scaled, and larger numbers mean better 
performance. The detail of those measures can 
be found in [28].
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4.3 Results
In Table 1 and Table 2, we organized the 

result of the evaluation in terms of condition and 
the performance measure. In addition, we 
compared performance of the proposed method 
with four other state-of-the-art BSS technologies 
that also have evaluated their performance with 
the same data set. The first method, denoted as 
“Ozerov”[29], estimates mixing parameters using 
the expectation-maximization algorithm. The 
second one, denoted as “Nesta1”[30], estimates 
mixing parameters with the natural gradient 
algorithm. The third method, denoted as “Nesta2” 
is all the same with [30] but they added an 
additional Wiener post-processing to recover the 
original speech signal.  The last method, denoted 
as “Iso”[31], is a combination of the bin-wise 
clustering method[6] and a full-rank method[8]. 
Since the evaluation score exhibit per the 
separated source, we averaged and posted them.  

Mic. 
spacing Measure

Method

Proposed Ozerov Nesta1 Nesta2 Iso

5cm

SDR 3.57 3.4 5.2 5.1 5.9
ISR 7.34 9.6 8.7 9.7 10.4
SIR 9.01 8.9 9.2 10.3 9.4
SAR 7.42 7.7 9.1 8.1 9.9

1m

SDR 3.52 9.1 7.1 8.2 8.5
ISR 8.83 14.6 9.9 13.1 13.3
SIR 7.58 14.5 12.1 13.8 12.9
SAR 6.68 11.9 10.7 10.3 11.7

Table 1. Performance comparisons of three speech 
source separation where reverberation 
time is 130ms

  Mic.
 spacing Measure

Method

Proposed Ozerov Nesta1 Nesta2 Iso

5cm

SDR 2.48 3.7 5.5 6.2 4.7
ISR 3.62 8.9 9.4 10.5 8.8
SIR 5.42 7.2 9.0 10.5 7.8
SAR 8.54 8.0 8.4 8.7 9.1

1m

SDR 2.28 7.0 5.6 7.1  7.5
ISR 6.30 12.3 8.6 11.5  11.6
SIR 4.20 11.7 9.8 11.6  11.2
SAR 5.56 9.5 8.4 9.5  11.1

Table 2. Performance comparisons of three speech
source separation where reverberation 
time is 250ms

The proposed algorithm shows competitive 
performance in the case of 5 cm microphone 
spacing and 130ms reverberation time. Note that 
the proposed method only consists of the 
spectral-bin clustering and a simple binary mask. 
Considering that the quality of the separated 
speech is highly dependent on a series of the 
post-processing such as mixing parameter 
estimation, permutation alignment, and signal 
recovery technologies, it shows the effectiveness 
of the proposed clustering method. We expect 
the combination of other post-processing 
methods with the proposed clustering method 
can improve performance of other conditions.

Since the proposed algorithm is designed to 
build appropriate probability distribution for 
classifying spectral bin, direct comparisons with 
other methods listed in [28] are meaningless. 
This is because the proposed algorithm is not 
meant for speech enhancement or interference 
suppression.  Therefore future work may include 
mixing parameter estimation over the classified 
bin for BSS.  Instead, we give attention to the 
SAR since the performance of the binary mask is 
highly relevant to how much artifacts (a.k.a 
musical noise) occurred in the separated signal 
as a result of a wrongly classified spectral bin.

5. Conclusion

Circular statistics based PDOA distribution 
modeling is proposed for the spectral bin 
classification. The PDOA distribution is obtained 
per frequency by using MovM. To resolve data 
insufficiency problem, we adopt MAP adaptation 
approach. As an a priori for MAP adaptation, the 
incidence angle distribution is approximated 
from the PDOA over the entire frequency band 
and its parameters are estimated via EM 
algorithm. In order to do so, statistics of 
incidence angle is converted to those of PDOA 
and vice versa. By using a public SiSEC 2008 
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database, the performance was evaluated in 
terms of speech enhancement of which task is 
underdetermined blind source separation. With 
only the spectral-bin clustering and the simple 
binary mask, the proposed method shows 
competitive performance in some environmental 
conditions. We expect the performance of BSS 
will be further improved if the proposed method 
is incorporated with post-processing technologies. 
The future work includes mixing parameter 
estimation for sound source separation from the 
classified spectral bin.

References

[1] F. E. Morgan, B. Boudreaux, A. J. Lohn, C. Curriden, 
K. Klima and D. Grossman, "Military applications of 
artificial intelligence: ethical concerns in an uncertain 
world," RAND PROJECT AIR FORCE SANTA MONICA 
CA SANTA MONICA, 2020. 

[2] N. Doukas and N. V. Karadimas, "A blind source 
separation based cryptography scheme for mobile 
military communication applications," WSEAS Trans. 
Commun, vol. 7, no. 12, pp. 1235-1245, 2008. 

[3] O. Yilmaz and S. Rickard, "Blind separation of speech 
mixtures via time-frequency masking," IEEE Trans. 
Signal Process, vol. 114, no. 4, pp. 1830-1847, 2004. 
DOI: https://doi.org/10.1109/TASL.2010.2050716 

[4] Y. Izumi, N. Ono and S. Sagayama, "Sparseness-based 
2ch BSS using the EM algorithm in reverberant 
environment," in IEEE Workshop on Applications of 
Signal Processing to Audio and Acoustics, New Palz, 
2007. 
DOI: http://dx.doi.org/10.1109/ASPAA.2007.4393015 

[5] S. Araki, T. Nakatani, H. Sawada and S. Makino, 
"Stereo source separation and source counting with 
MAP estimation with Dirichlet prior considering 
spatial aliasing problem," in ICA, 2009. 
DOI: http://dx.doi.org/10.1007/978-3-642-00599-2_93 

[6] H. Sawada, S. Araki and S. Makino, "Underdetermined 
convolutive blind source separation via frequency 
bin-wise clustering and permutation alignment," IEEE 
Transactions on Audio, Speech, and Language 
Processing, vol. 19, no. 3, pp. 516-527, 2010. 
DOI: http://dx.doi.org/10.1109/TASL.2010.2051355 

[7] S. Winter, W. Kellermann, H. Sawada and S. Makino, 
"MAP-based underdetermined blind source separation 
of convolutive mixtures by hierarchical clustering and 
l1-norm minimization," EURASIP Journal on Advances 
in Signal Processing, pp. 1-12, 2007. 

DOI: http://dx.doi.org/10.1155/2007/24717 

[8] N. Q. K. Duong, E. Vincent and R. Gribonval, 
"Under-determined reverberant audio source separation 
using a full-rank spatial covariance model," IEEE 
Transactions on Audio, Speech, and Language 
Processing, vol. 18, no. 7, pp. 1830-1840, 2010. 
DOI: https://doi.org/10.1109/TASL.2010.2050716 

[9] M. I. Mandel, D. P. Ellis and T. Jebara, "An EM 
algorithm for localizing multiple sound sources in 
reverberant environments," in NIPS, 2007. 
DOI: http://dx.doi.org/10.7551/mitpress/7503.003.0124

[10] J. Heymann, L. Drude and R. Haeb-Umbach, "Neural 
network based spectral mask estimation for acoustic 
beamforming," in ICASSP 2016, 2016. 
DOI: http://dx.doi.org/10.1109/ICASSP.2016.7471664 

[11] D. S. Williamson, Y. Wang and D. Wang, "Complex 
Ratio Masking for Monaural Speech," IEEE/ACM 
TRANSACTIONS ON AUDIO, SPEECH, AND 
LANGUAGE PROCESSING, vol. 24, no. 3, pp. 483-492, 
2016. 
DOI: https://doi.org/10.1109/TASLP.2015.2512042 

[12] H. Erdogan, J. Hershey, S. Watanabe and J. L. Roux, 
"Phase-sensitive and recognition-boosted speech 
separation using deep recurrent neural networks," in 
ICASSP 2015, 2015. 
DOI: https://doi.org/10.1109/ICASSP.2015.7178061

[13] E. M. Grais, M. U. Sen and H. Erdogan, "DEEP 
NEURAL NETWORKS FOR SINGLE CHANNEL SOURCE 
SEPARATION," in ICASSP, 2014. 
DOI: https://doi.org/10.1109/ICASSP.2014.6854299

[14] P.-S. Huang, M. Kim, M. Hasegawa-Johnson and P. 
Smaragdis, "Deep learning for monaural speech 
separation," in ICASSP 2014, 2014. 
DOI: https://doi.org/10.1109/ICASSP.2014.6853860

[15] Y. Jiang, D. L. Wang, R. S. Liu and Z. M. Feng, 
"Binaural classification for reverberant speech 
segregation using deep neural networks," IEEE/ACM 
Trans. Audio Speech Lang. Proc., vol. 22, pp. pp. 
2112-2121, 2014. 
DOI: https://doi.org/10.1109/TASLP.2014.2361023

[16] Y. Yu, W. Wang and P. Han, "Localization based 
stereo speech source separation using probabilistic 
time-frequency masking and deep neural networks," 
EURASIP J. Audio Speech Music Proc., vol. 2016, pp. 
pp. 1-18, 2016. 
DOI: http://dx.doi.org/10.1186/s13636-016-0085-x

[17] X. Zhang and D. L. Wang, "Deep learning based 
binaural speech separation in reverberant 
environments," IEEE/ACM Trans. Audio Speech Lang. 
Proc., vol. 25, pp. pp. 1075-1084, 2017. 
DOI: https://doi.org/10.1109/TASLP.2017.2687104 

[18] I. Cohen and B. Berdugo, "Speech enhancement for 
non-stationary noise environments," Signal 
processing, vol. 81, no. 11, pp. pp. 2403-2418, 2001. 
DOI: https://doi.org/10.1016/S0165-1684(01)00128-1



MAP Adaptation with Mixtures of von Mises Distributions and Its Application to Underdetermined Convolutive Blind Source Separation 

759

[19] Y. Wang and M. Brookes, "Model-Based Speech 
Enhancement in the Modulation Domain," IEEE/ACM 
Trans. on Audio, Speech and Lang. Proc., vol. 26, no. 
3, pp. pp. 580-594, 2018. 
DOI: https://doi.org/10.1109/TASLP.2017.2786863

[20] K. V. Mardia and P. E. Jupp, Directional Statistics, 
Wiley, 1999. 
DOI: https://doi.org/10.1002/9780470316979

[21] K. V. Mardia and S. A. M. El-Atoum, "Bayesian 
inference for the von Mises-Fisher distribution," 
Biometrika , vol. 63, no. 1, pp. 203-206, 1976. 
DOI: https://doi.org/10.2307/2335106

[22] A. Banerjee, I. S. Dhillon, J. Chosh and S. Sra, 
"Clustering on the unit hypersphere using von 
Mises-Fisher distributions," JMLR, vol. 6, pp. 
1345-1382, 2005. 

[23] A. P. R. C. S. Calderara, "Mixtures of von Mises 
Distributions for People Trajectory Shape Analysis," 
IEEE Trans. Circuits and Systems for Video 
Technology, vol. 21, no. 4, pp. 457-471, 2011. 
DOI: https://doi.org/10.1109/TCSVT.2011.2125550 

[24] D. A. Reynolds, T. F. Quatieri and R. B. Dunn, 
"Speaker verification using adapted Gaussian mixture 
models," Digital Signal Processing, vol. 10, pp. 19-41, 2000. 
DOI: https://doi.org/10.1006/dspr.1999.0361

[25] J. -L. Gauvain and C. -H. Lee, "Maximum a posteriori 
estimation for multivariate Gaussian mixture 
observations of Markov chains," IEEE Transactions on 
Speech and Audio Processing, vol. 2, no. 2, pp. 
291-298, 1994. 
DOI: https://doi.org/10.1109/89.279278

[26] P. Guttorp and A. Lockhart, "Finding the location of a 
signal: a Bayesian analysis," Journal of the American 
Statistical Association, vol. 83, no. 402, pp. 322-330, 1988. 
DOI: https://doi.org/10.2307/2288846

[27] [Online]. Available: http://sisec.wiki.irisa.fr 

[28] [Online]. Available:  
http://www.irisa.fr/metiss/SiSEC11/underdetermined/
underdetermined_dev1_mean_speech3_all.html 

[29] A. Ozerov, E. Vincent and F. Bimbot, "A general 
flexible framework for the handling of prior 
information in audio source separation," IEEE Trans. 
on Audio, Speech and Language Process., vol. 20, no. 
4, pp. 1118-1133, 2011. 
DOI: https://doi.org/10.1109/TASL.2011.2172425

[30] F. Nesta and M. Omologo, "Convolutive underdetermined 
source separation through weighted interleaved ICA 
and spatio-temporal source correlation," in LVA/ICA 
2012, 2012. 
DOI: https://doi.org/10.1007/978-3-642-28551-6_28

[31] K. Iso, S. Araki, S. Makino, T. Nakatani, Y. Yamada, 
T. Yamada and A. Nakamura, "Blind source 
separation of mixed speech in a high reverberation 
environment," in HSCMA2011, 2011. 
DOI: https://doi.org/10.1109/HSCMA.2011.5942406 

Jounghoon Beh                  [Regular member]

• Feb. 2001 : Korea Univ., 
EERE, BS

• Feb. 2003 : Korea Univ., EE, MS
• Aug. 2008 : Korea Univ., ECE, 

PhD
• Sep. 2021 ∼ current : Korea 

Univ., ISPL, Research Professor

<Research Interests>
AI, Machine Learning, Speech Signal Processing


