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Abstract In this paper, we propose a Maximum a Posteriori (MAP) adaptation method for the parameter
of Phase Difference of Arrival (PDOA) distribution to classify sound sources in the time-frequency
domain. The PDOA is clustered via Mixtures of von Mises distribution (MovM) which is efficacious in
modeling a 2 circular domain. The proposed method is employed to the task of clustering a spectral bin
in terms of a sound source, which is a crucial part of the mask-based blind source separation. To
robustly estimate the model parameter of MovM of the PDOA, we first build an incidence angle
distribution and then adapt the parameters to each frequency band. The clustered spectral bin is used
to build a time-frequency (TF) mask to separate the mixed audio signal based on the signal sparseness
property.
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1. Introduction

The task of blind source separation (BSS) is to

estimate source signals in the presence of
multiple sources. Application of the BSS for
speech includes pre-processing of automatic
speech recognition for military applications[1]
and mobile military communications[2]. Recently
the signal sparseness-based separation techniques
have emerged and attracted much attention.
These techniques can be categorized into 1)
Time-Frequency (TF) masking[3-6] and 2) mixing
parameter estimation[7,8]. However, the common
prerequisite for those techniques is clustering the
spectral bin of the input signal into each sound
source in an unsupervised manner. In many
kinds of literatures, the
Arrival (TDOA)I3], signal orientation[6], or Phase
of (PDOA)[5,9],

incorporated with a Bayesian framework, and

Time Difference of

Difference Arrival are
Expectation-Maximization (EM) is popularly used
to learn parameters of the cluster distribution.
However, the measured TDOA above the spatial
aliasing frequency suffers 2m-ambiguity problem,
and therefore they are not reliable to be used.
The 2m-ambiguity problem means that given a
TDOA value measured from the phase difference,
we cannot explicitly determine the direction of
sound source because the phase difference is
observed 27—
ok, k=04 1,£2,....

in a modulo manner, i.e.
A number of approaches to avoid the 2=
of TDOA have

introduced recently. In some works, the 27

-ambiguity problem been
-ambiguity has been handled in a probabilistic
manner by setting it as a model parameter of a
PDOA distribution[4,9].

TDOA as a model parameter of the complex

Izumi et all4] has used

Gaussian Mixture Model (GMM) which represents
the distribution of the input speech signal in a
complex time-frequency domain.

Recently, the Deep Neural Network (DNN) has

been showing improved performance on various
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types of speech separation tasks: time-frequency
masking estimation for speech enhancement
[10-12] monaural source separation[11-14], and
multi-channel source separation[15-17]. For such
a learning-based speech separation, it is hard to
avoid inherent performance degradation when
It

mismatch between training data and testing

generalization fails. is mainly due to a
ones. Many conditions should be considered
when collecting (or selecting) training sets in
terms of environments where the algorithm is
actually applied: array geometry, type of noise,
range of signal-to-noise ratio, speakers. On the
other hand, the traditional approach of speech
separation adopts a proper probabilistic model
of the speech signal and estimates its model
parameter based on statistical criterial18,19].
The goal of this paper is to develop an
efficacious probabilistic model for representing
the PDOA distribution in order to cluster PDOA
observation in the spectral bin, especially in the
case of a two-channel microphone array. The
MovM is adopted to build the distribution, and
the spectral bins are clustered in terms of a
probabilistic score of PDOA. The remainder of
this paper is organized as follows. In Section 2
our signal modeling is introduced. Based on that,
in Section 3, we propose a MAP adaptation
method to estimate the parameter of PDOA
distribution to classify sound sources without
concerning 27m-ambiguigity problem. In Section 4

of the

evaluated in terms of speech enhancement.

performance proposed method is

Concluding remarks are presented in Section 5.

2. Signal modeling

Suppose that we have Ns sources of signal s;,
i=1,.., Ny distributed around two microphones.

The signals are convolutively mixed and captured

by each microphone as
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55 2 (0)

i=1

(=D +n), =12 Q)

where / is the microphone index, hji(l) is the
source to the /"
The
signals are converted to TF domain via the
Short-Time Fourier Transform (STFT), and leads to

-yn

n=1

. h
impulse response from the /

microphone, and () is ambient noise.

(rw) + Nrw), m=1,2

)]
where 7 denotes a time index w denotes an
angular frequency.

With an assumption that the signal sources are
not moving, the phase difference between signals
of two microphones can represent where the
signal source they are located, and the PDOA at

is formed as:

6, = arg| SL ot | = s, e, +2mk
o = arg X, (r) | O T 6 27K, ®
k=0,£1,£2,---
where 6., and 6,, denote the PDOA and the

TDOA between two microphones, respectively, at

the time 7 and the frequency w, and €., denote

a phase distortion due to the ambient noise.
We focus on classify 6, into one of the signal

sources, S;(T,w),i =1,...,Ng. In order to do so, we

need to build a posterior probability density as

follows:
(0, | 8)P(S50)
P(S)e,,) = P @)
_ pl0, 1 5)P(Sw)
ip(em | Sk)P(Sk?W)
k=1

where §; denotes class indicator representing the

th
1 source.

3. Proposed method

The proposed method is to build (4) without
It

because that the input information is the 6,

concerning the 27 ambiguity problem. is
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which ranges from —7 to m. From (4) let the
denominator denote the w-local PDOA model
which addresses an evidence probability of 8,
Since von Mises PDF[20] models the distribution
of circular data, it is suitable to model the PDOA.

We define the likelihood p(6.,].5;) in (4) as
p(em ‘ ‘91) :U(am | :uwi”%wi)

= r@ewp(mwiCOS(@m — 1))
®)

0., | u,K,;) represents the von Mises
PDF[20] of 6,, with the mean angle p,; and the

of the source S,. The Z( -

the modified Bessel function of order O.

where v(

concentration K, ) is

Let z; denote a latent variable that indicates to

which source the parameters of von Mises PDF
U, and k,; belong.

17 if:uu)i”‘iwie‘gi
Zi:{O , otherwise ©
We reform P(S;w) as
P(Siw) =p(z; =1Lw) =7, @)

Using (5) and (7), the w-local PDOA model,

i.e. denominator of (4), is formed as

ZFYMI 9 ‘MLUI’KLM Stz’Ym/_ 1,

i=1
and its parameter set {7,k Y wsi needs to
be estimated.

However, the problem is that there may not be
sufficient data to estimate those parameters per
frequency, w. For example, if we set stepsize 32
ms for STFT,

seconds of utterance. Considering speech-inactive

there are nearly 93 data for 3

TF-bin and the signal sparseness, this number
can be further reduced. This problem may be an
obstacle to implementing a real-time source
separator.

To resolve such a data insufficiency problem,
we need to utilize all the PDOA data from all
frequency range. In order to do so, we need new
statistics that can localize signal sources and also

can be extracted from all frequencies. As such
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statistics, we adopted an incident angle of signal,
9, that represents an angle between the source
location and the microphone array. The reason
why the incident angle was chosen is that each
signal source has its own incident angle and its
value can be extracted from the TF-bin for all
frequencies. Moreover, we can employ the
incidence angle distribution as a priori and adapt
to build the PDOA

distribution since the conjugate prior of the von

its parameter w-local

distribution is also the von Mises

distribution[21].

Mises

The w-local PDOA values are converted to an
incident angle using the following equation:
V= cosfl(ié) ©)
wd
where d and c are the innerspace length between
microphones and the speed of sound

3.1 Incidence angle distribution as a priori

The purpose of building the incidence angle
distribution is to make a reference model for w
-local PDOA distribution. The distribution of
incidence angle ¥ is modeled with the MovM.
Since this distribution is irrelevant with the
frequency of spectral bin, w, the entire PDOA
data over all frequency bands can be utilized to
learn the model parameter for robust estimation.
The distribution is formed as

Ny Ny

9) = _231%77(79 | p‘z’,/{i) st 231% =1 (10)
where 7;, ; and k; denote, respectively, the
mixture weight, mean angle, and concentration
parameter. These parameters were estimated via
the Expectation- Maximization (EM) algorithm.
We present the resultant formulae here, but
readers are encouraged to refer to Banerjee[22]
and Calderaral23] for the detail. Let 9, =1,...L

denote I observations of the incidence angle
converted using (9) but we do not know their
signal source. The estimation procedure is as

follows:

1) Initialize ;, u; and k; with random values
2) Expectation-step: calculate the probability
of signal
source given observation, P(S[9,), as follows:

’Yiv(ﬁmi”‘ii)

kZ TV (ﬁlwk’ ”k)
=1

3) Maximization-step: update ~;, y; and k;

P(S)0,) =

%—ZP S19,) (12)
Z—l
L
> P(S519,)sing,
pe—tan | A (13)

ZP(SiIﬁ,)cosﬁU

=1

—

&~

> P(S19,)cos (0, — ;)

=1
L
2 (S19,)

k; is obtained by inversing A(k;) in terms of &; ,

A(/i.)

7

(14

namely 4~ (x;). However, A~ '(x;) is mathematically

intractable so it is approximated[22] as follows
~ 2A(f~ci)—A3(ﬁ,-)

ST T A,

4) Tteration: Step 2) and Step 3) are iterated
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until the value of =, p, and k; are

converged to steady values.

3.2 MAP adaptation with a mixture of von
Mises distribution

PDOA

distribution cannot help but being modeled over

As we addressed previously, the
each frequency band, therefore there may be a
lack of data to estimate its parameters. Hence
our approach is to obtain those parameters by
adapting the parameter of the incidence angle
distribution to the w-local PDOA distribution. We
(MAP)

adaptation technique which has been used in

employed the Maximum a Posteriori
speaker verification[24,25].
In order to adapt, we need to define a

mapping function to convert the incidence angle
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unit back to w-local PDOA unit as follow:

£.(0) = L cos(9) (16

We first determine the probabilistic alignment
of the input PDOA into each mixture component
of the incidence angle distribution. That is, for
mixture i in the distribution, we compute
’Yﬂ)(gmlfw(ﬂi)v’%i)

Vroi = T a7
v O ) k)
k=1
and then compute the sufficient statistics:
S, = Xysind,, and C,; = X, cos0,, for all w

and 7
We present the resultant estimation formulae

here and the detailed derivation can be found in

the [21] and [26].

[ Bisinf, () +S,,

Rycosf, () +C,; (8

//:Lwi =tan

where R, is the resultant length[20] of data from
" source, which is formed as

Rj =Ww- A(Hj) =W- (]i(ﬁj)/JE)(ﬁj)) (19)
while W denotes the number of data used to
the parameter of

distribution and (- ) is the modified Bessel

estimate incidence angle

function with order 1. The estimate of the
concentration parameter, k,;, is obtained in the
same manner of the EM framework by

A 24(k,;) —Ag(nwi)

Ky 1_A2(Hwi) (20)
where
Alr,) = Scos(f, (1) =6, ‘ 1)

w
Finally, the mixture weight is obtained as

follow

(22)

- 1 &
Vwi = 7 Z{sz

3.3 Time—frequency binary masking and
signal recovery

In this paper we construct a binary mask using

9) as follow:
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1 if i=argmaxP(SJ0,,)
k

=1, Ns

M;(r,w) = (23)

0

The separated TF signal for ith source is

otherwixe

formed as:

S (rw) = M, (rw) X, (,w),i=1,.... Ng 24)

and then S/(rw) is transformed to time-domain

via the inverse STFT and the overlap-and-add
method for all each source.

4. Experiments

To validate the effectiveness of the proposed
method, we applied it to the speech separation
task and evaluated it in terms of several objective
The dataset
provided from the SiSEC speech

scores. and measurement are
separation
campaign[27] which is available for the public

use of BSS algorithm evaluation.

4.1 Task and settings

The performance of the proposed algorithm
was evaluated based on its ability to separate the
mixed voices of three speakers at different
locations. Those speakers’ are either a group of
females or males drawn from the ‘devl’ set of
SiSEC 2008 database[27]. Among the data, we
picked up the audio data that was lively recorded
the

reverberation time was either 130ms or 250ms.

in a reverberant environment where
The spacing between microphones was set to

5cm or 1m.

4.2 Performance measure

Four objective evaluation scores are measured
per data set. Those are Signal to Distortion Ratio
(SDR), Source Image to Spatial Distortion Ratio
(ISR), Source to Interference Ratio (SIR), and
Sources to Artifacts Ratio (SAR). All measures are
dB scaled,
performance. The detail of those measures can

be found in [28].

and larger numbers mean better
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4.3 Results

In Table 1 and Table 2, we organized the
result of the evaluation in terms of condition and
the performance measure. In addition, we
compared performance of the proposed method
with four other state-of-the-art BSS technologies
that also have evaluated their performance with
the same data set. The first method, denoted as
“Ozerov’[29], estimates mixing parameters using
the expectation-maximization algorithm. The
second one, denoted as “Nesta'’[30], estimates
mixing parameters with the natural gradient
algorithm. The third method, denoted as “Nesta”
is all the same with [30] but they added an
additional Wiener post-processing to recover the
original speech signal. The last method, denoted
as ‘Iso”[31], is a combination of the bin-wise
clustering method[6] and a full-rank method[8].
evaluation score exhibit

Since the per the

separated source, we averaged and posted them.

Table 1. Performance comparisons of three speech

source separation Where reverberation
time is 130ms
Mic. Method
o Measure 1 N
spacing Proposed| Ozerov | Nesta Nesta Iso
SDR 3.57 3.4 5.2 5.1 5.9
Sem ISR 7.34 9.6 8.7 9.7 10.4
SIR 9.01 8.9 9.2 10.3 9.4
SAR 7.42 7.7 9.1 8.1 9.9
SDR 3.52 9.1 7.1 8.2 8.5
Im ISR 8.83 14.6 9.9 13.1 13.3
SIR 7.58 14.5 12.1 13.8 12.9
SAR 0.68 11.9 10.7 10.3 11.7

Table 2. Performance comparisons of three speech

source separation where reverberation
time is 250ms
Mic. Method
. [Measure
spacing| Proposed| Ozerov Nesta' | Nesta® Iso
SDR 2.48 3.7 5.5 6.2 4.7
Sem ISR 3.62 8.9 9.4 10.5 8.8
SIR 5.42 7.2 9.0 10.5 7.8
SAR 8.54 8.0 8.4 8.7 9.1
SDR 2.28 7.0 5.0 7.1 7.5
Im ISR 6.30 12.3 8.6 11.5 11.6
SIR 4.20 11.7 9.8 11.6 11.2
SAR 5.56 9.5 8.4 9.5 11.1
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The proposed algorithm shows competitive
performance in the case of 5 cm microphone
spacing and 130ms reverberation time. Note that
the proposed method only consists of the
spectral-bin clustering and a simple binary mask.
Considering that the quality of the separated
speech is highly dependent on a series of the
post-processing such as mixing parameter
estimation, permutation alignment, and signal
recovery technologies, it shows the effectiveness
of the proposed clustering method. We expect

the of

methods with the proposed clustering method

combination other post-processing
can improve performance of other conditions.
Since the proposed algorithm is designed to
build appropriate probability distribution for
classifying spectral bin, direct comparisons with
other methods listed in [28] are meaningless.
This is because the proposed algorithm is not
meant for speech enhancement or interference
suppression. Therefore future work may include
mixing parameter estimation over the classified
bin for BSS.

SAR since the performance of the binary mask is

Instead, we give attention to the

highly relevant to how much artifacts (a.k.a
musical noise) occurred in the separated signal

as a result of a wrongly classified spectral bin.

5. Conclusion

Circular statistics based PDOA distribution
modeling is proposed for the spectral bin
classification. The PDOA distribution is obtained
per frequency by using MovM. To resolve data
insufficiency problem, we adopt MAP adaptation
approach. As an a priori for MAP adaptation, the
incidence angle distribution is approximated
from the PDOA over the entire frequency band
estimated via EM
of

incidence angle is converted to those of PDOA

and its parameters are

algorithm. In order to do so, statistics

and vice versa. By using a public SiSEC 2008
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database, the performance was evaluated in

terms of speech enhancement of which task is

underdetermined blind source separation. With

only the spectral-bin clustering and the simple

binary mask,

the proposed method shows

competitive performance in some environmental

conditions. We expect the performance of BSS

will be further improved if the proposed method

is incorporated with post-processing technologies.

The future work includes mixing parameter

estimation for sound source separation from the

classified spectral bin.
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