선박에서 지락고장에 따른 대지전압 변동 특성에 대한 실험적 연구

류기탁, 이윤형^{*} 한국해양수산연수원 해양기술교육팀

A Experimental Study on the Variation Characteristics of the Phase-to-Ground Voltage according to the Ground Fault in ships

Ki-Tak Ryu, Yun-Hyung Lee

Ocean Technology Training Team, Korea Institute of Maritime and Fisheries Technology

요 약 비접지 시스템은 1선 지락고장이 발생하더라도 전원을 공급할 수 있고, 지락전류가 매우 작은 특징을 가지고 있다. 선박에서는 이와 같은 장점으로 비접지 시스템을 주로 적용하고 있다. 하지만 지락고장이 발생하면 건전상의 대지 전압이 상승하고, 이로 인해 배전계통의 절연이 악화된다. 만약, 이와 같은 1선 지락고장을 신속하게 조치하지 않으면 다른 건전상의 절연 파괴로 이어지고, 이는 심각한 2차 사고인 단락사고로 확대될 수 있다. 이와 같은 이유로 선박의 기관사는 지락고장을 적절한 시기에 인지하고, 대처하는 능력이 중요하다. 이를 위해 필요한 것이 지락고장의 정도에 따른 대지전압과 중성점 전압의 변동특성의 이해이다. 따라서 본 논문에서는 220[V]를 사용하는 선박의 배전계통을 선 정하고, 대지정전용량이 2.2[峄], 8.8[峄]인 경우를 고려한다. 이때 1상의 지락고장 발생 시 각 상의 대지전압과 중성점 전압이 어떠한 규칙을 가지고 변동하는지 MATLAB 2016a를 사용하여 시뮬레이션을 실시한다. 또한, 시뮬레이션과 동 일한 환경에서 실험을 통해 측정한 데이터와 비교 분석한다. 이를 통해 선박의 기관사가 지락고장에 대한 면밀한 분석을 가능하게 하고, 대처하는데 도움을 주고자 한다.

Abstract An ungrounded system can supply power even though a single line-to-ground fault occurs, and the ground fault current is very small. In ships, an ungrounded system is mainly adopted for these advantages. However, when a ground fault occurs, the phase-to-ground voltage of heathy phases rises, which deteriorates the insulation of the distribution network. If such a single line-to-ground fault is not taken promptly, it leads to the insulation breakdown of heathy phases, which can be extended to a short-circuit accident. For this reason, ship engineers should be able to recognize and respond to a ground fault in an appropriate time. It is necessary to understand the variation characteristics of the phase-to-ground voltage and the neutral point voltage according to the level of the ground fault. Therefore, in this study, a distribution network of a ship using 220 [V] is assumed, and cases where the phase-to-ground capacitance is $2.2[\mu F]$ and $8.8[\mu F]$ are considered. A simulation was performed using MATLAB 2016a to determine what affects the phase-to-ground voltage and neutral voltage when single line-to-ground occurs. Through this, a ship's engineer can do a detailed analysis of the ground fault and help to cope with it.

Keywords : Ground Fault, Neutral Point Voltage, Ungrounded System, Phase-to-Ground Capacitance, Phase-to-Ground Voltage

1. 서론

산업용 전력 시스템에서 일반적으로 적용하는 비접지 또는 고저항 접지 시스템은 큰 장점을 가지고 있다. 한 상에서 지락사고가 발생하더라도 계속해서 전원공급이 가능하므로 장비들을 곧바로 정지하지 않아도 된다. 또 한, 고장 위치만 확인되면 특정 회로를 분리하고 편리한 시간에 고장 제거를 통해 시스템을 제어할 수 있어 정전 을 최소화할 수 있다. 중요한 공정에서 고장 회로의 즉각 적인 정지로 인해 생산, 재료 및 장비의 손실이 발생하는 많은 산업에서 이러한 장점은 매우 큰 가치를 가진다고 할 수 있다[1-3].

선박은 입·출항 시, 항해 시 기기의 의도하지 않은 정 지로 인해 충돌이나 좌초와 같은 대형 사고가 발생할 수 있다. 또한, 이와 같이 제어되지 않은 장치의 정지는 선 박의 안전을 확보하기 어렵고 환경오염과 같은 2차적인 문제도 발생한다. 이와 같은 이유로 선박에서는 앞에서 설명한 비접지 또는 고저항 접지 시스템이 고려되며 주 로 비접지 시스템이 적용된다[4].

그러나 비접지 시스템은 1선 지락고장(single line-to -ground fault)이 발생하면 나머지 두 건전상의 대지전 압이 고장 전보다 √3 배 증가한다[5]. 또한, 재점호나 아킹 지락고장이 발생하면 과도과전압으로 인해 전체 전 기 시스템의 절연물 상태를 악화시킨다[6]. 이로 인해 건 전상의 다른 지점에서 지락이 추가로 발생할 수 있고. 이 는 선체를 통한 단락사고를 일으키게 된다. 특히, 고저항 지락 고장은 보호 시스템으로 쉽게 감지되지 않으므로 오랜 시간동안 사고가 유지된다[7]. 따라서 선박에서 첫 번째 지락 고장을 찾아 신속히 처리하는 것은 매우 중요 하다. 이를 위해서는 지락고장 시 대지전압과 중성점 변 동특성을 이해해야 한다. 대지전압은 중성점 전압과 상 전압의 벡터합으로 나타나고, 중성점 전압은 지락점 저 항이 악화됨에 따라 3구간으로 구분될 수 있다[8]. 특히, 지락점 저항 변화에 따른 구간별 대지전압과 중성점 전 압 변화 특성을 분석하여 선박 기관사가 지락 고장 시 이 를 인지하고 대처하는데 도움을 주고자 한다.

이를 위해 본 논문에서는 지락 고장 시 각 상의 대지 전압과 중성점 전압이 어떠한 규칙성을 갖고 변화하는지 시뮬레이션을 실시하고, 실험을 통해 확인 한다. 시뮬레 이션은 본 논문에서 선정한 전압과 대지정전용량에 대해 MATLAB 2016a로 실시하였다. 실험은 Labvolts사의 전력전자 실험장치를 이용하였으며 특정 지락점 저항을 16개로 선정하였다. 실제 실험을 통해 측정한 각 상의 대 지전압과 중성점 전압은 시뮬레이션과 비교하여 그 적정 성을 확인한다.

2. 대지전압 및 중성점 전압의 변동 특성

2.1 선박의 대지전압과 중성점 전압 모델링

선박은 육상과 독립된 3상 발전기로 전력을 공급하며 비접지 시스템을 주로 적용한다. Fig. 1은 이와 같은 선 박에서 많은 비율로 발생하는 1선 지락시의 계통도를 나 타낸 것이다. 그림에서 N은 전원의 중성점, *E_a*, *E_b*, *E_c* 는 상전압, *V_a*, *V_b*, *V_c*는 각 상의 대지전압, C와 R은 대지정전용량과 누설저항, *R_f*는 a상 지락고장을 가정한 절연저항을 의미한다.

Fig. 1. The ungrounded system in the ship when single line-to-ground fault

키르히호프 전류법칙에 따라 선체로 흐르는 3상 지락 전류의 합은 다음과 같다.

$$\begin{split} & \boldsymbol{V_a} \left(\frac{1}{R} + j\omega C + \frac{1}{R_f} \right) + \boldsymbol{V_b} \left(\frac{1}{R} + j\omega C \right) \\ & + \boldsymbol{V_c} \left(\frac{1}{R} + j\omega C \right) = 0 \end{split} \tag{1}$$

중성점 전압을 V_n 이라 할 때, 각 상의 대지전압과 중 성점 전압의 관계는 다음과 같다.

$$V_n = V_a - E_a = V_b - E_b = V_c - E_c$$
 (2)

Eq. (2)를 Eq. (1)에 대입하면 다음과 같이 정리할 수 있다.

$$V_{n} = -\frac{1}{R_{f}} \frac{1}{\frac{3}{R} + 3j\omega C + \frac{1}{R_{f}}} E_{a}$$
(3)
$$= -\frac{1}{1 + \frac{3R_{f}}{R} + j3\omega CR_{f}} E_{a}$$

Eq. (3)에서 분모의 허수가 양의 값이므로 R_f 가 작아 짐에 따라 V_n 은 2사분면에 위치한다는 것을 알 수 있다.

또한, a상에서 지락발생 시 각 상의 대지전압은 각 상 의 상전압과 Eq. (3)의 중성점 전압의 합과 같으므로 다 음과 같이 다시 표현할 수 있다.

$$\boldsymbol{V_{a}} = \boldsymbol{E_{a}} + \boldsymbol{V_{n}} = \left(1 - \frac{1}{1 + \frac{3R_{f}}{R} + j3\omega CR_{f}}\right)\boldsymbol{E_{a}} \quad (4)$$

$$\boldsymbol{V_{b}} = \boldsymbol{E_{b}} + \boldsymbol{V_{n}} = \left(\boldsymbol{a^{2}} - \frac{1}{1 + \frac{3R_{f}}{R} + j3\omega CR_{f}}\right) \boldsymbol{E_{a}} \quad (5)$$

$$\boldsymbol{V_c} = \boldsymbol{E_c} + \boldsymbol{V_n} = \left(\boldsymbol{a} - \frac{1}{1 + \frac{3R_f}{R} + j3\omega CR_f}}\right) \boldsymbol{E_a} \quad (6)$$

Where, **a** denotes $e^{-j\overline{3}\pi}$ as a vector operator.

2.2 선박의 대지전압과 중성점 전압 변동특성

선박의 어느 한 상에서 지락이 발생되면 지락점 저항 *R_j*가 ∞ 에서 0으로 변함에 따라 *V_n*은 원점에서 반시계 방향으로 반원 형태의 궤적을 따라 이동하며 최종적으로 지락상의 음의 상전압 벡터 끝에 위치하게 된다.

Fig. 2는 a상이 지락된 경우 상전압 및 중성점 전압과 a상의 대지전압을 벡터로 나타낸 것이다.

Fig. 2. The trajectory for phase-to-ground voltage and neutral point voltage in accordance with level of a-phase ground fault

또한 대지전압은 Eq. (4) ~ Eq. (6)과 같이 각 상의 상 전압과 중성점 전압의 벡터 합이므로 R_f 의 변동에 따라 대지전압은 일정한 규칙성을 가지고 변한다.

그림에서 $V_{a_{a}da}$ 는 고장상인 a상의 대지전압으로 V_n 이 d점에 있을 때 E_a 와 $V_{n_{a}da}$ 의 벡터합이 되는 것을 확 인할 수 있다. 또한, $V_{a_{a}da}$ 는 \overline{OE}_a 를 지름으로 하는 반시 계 방향의 반원형태의 벡터궤적을 가지기 때문에 $V_{a,da}$ 와 $V_{n,da}$ 는 서로 90°의 위상차를 가진다.

Fig. 2에서 a상 지락고장에 따른 중성점 전압 V_n 의 궤적을 3구간으로 구분하고, 대지전압의 위상과 크기의 특징을 살펴본다.

먼저, **O-d** 구간은 지락점 저항 R_f 가 비교적 큰 고저 항 지락고장(high resistance fault) 상태이다. 건전상 모두 대지전압이 상전압보다 위상이 작아지며, 고장상만 위상이 커진다.

대지전압의 크기는 c상만 상전압 보다 크고, b상과 고 장상 a상은 감소한다. 이때 고장상 a상의 대지전압은 b 상보다 크다. d점은 a상과 b상의 대지전압 크기가 같고, c상의 대지전압과 중성점 전압의 위상이 같은 지점이다.

다음으로, **d**-**e** 구간은 *R*_f가 더 작아지는 구간이다. 전전상 b상의 대지전압 위상만 상전압보다 작다. 대지전 압의 크기는 **O**-**d** 구간과 동일하게 c상만 상전압 보다 크다. 이 때 b상과 고장상 a상의 대지전압은 **O**-**d** 구간 과 다르게 b상이 더 크다. e점은 b상의 대지전압 크기가 자신의 상전압 크기와 같은 지점이다.

마지막으로 e-f구간으로 위상은 d-e구간과 동일하게 b상만 상전압보다 위상이 작다. 대지전압은 건전상 모두 상전압 보다 크고 고장상만 상전압 보다 작다.

이와 같이 각 상의 대지전압은 상전압과 증성점 전압 의 벡터 합이므로 Fig. 2와 같이 R_f 의 변화에 따라 증성 점 전압 벡터가 반원의 궤적을 따라 이동할 때 대지전압 벡터도 동일한 형태의 궤적을 가진다. 이는 R_f 가 작아짐 에 따라 대지전압이 규칙성 있게 변한다는 것을 의미한 다. 이러한 특성을 파악하고 있으면 특히 고저항 지락사 고 시 고장상 파악에 유용하게 응용할 수 있다.

3. 시뮬레이션 및 실험 환경

비접지 시스템은 지락 고장이 발생함에 따라 즉, 지락 점 저항 R_f 의 열화 정도에 따라 대지전압이 일정한 규칙 성을 가지고 변하는 것을 확인하였다. 이러한 규칙성을 시뮬레이션과 실험장치를 통해 비교·분석한다. 선박에서 220[V]를 사용하고, 100[kVA] 배전용량을 가지는 배전 시스템이 2.4[μ] 정도의 대지정전용량을 가진다. 따라서 시뮬레이션 및 실험을 위해 220[V] 전원을 사용하고, 대 지정전용량은 2.2[μ]을 선정한다. 또한, 배전선로의 케 이블 용량, 길이, 재질 등의 변화로 배전용량이 4배 증가 한 경우를 가정하여 8.8[@]도 함께 고려한다.

3.1 시뮬레이션 환경

시뮬레이션은 MATLAB 2016a를 이용하며 a상에서 지락이 발생한 것으로 가정한 후, *R_f*가 ∞ 에서 0으로 감소함에 따라 즉, 정상상태에서 완전 1선지락 상태까지 대지전압의 변동 특성을 Eq. (4) ~ Eq. (6)을 이용하여 시뮬레이션 한다.

3.2 실험장치 구성 및 환경

Fig. 3은 실험을 위한 Labvolts사의 전력전자 실험장 치 및 배선 모습을 보여준다. Fig. 1과 같은 상태를 만들 기 위해서 실험장치는 다음과 같이 구성한다.

우선, 선박과 같이 독립적인 3상 전원 시스템을 구현 하기 위해서 단상 변압기 뱅크 3개를 이용하여 1차와 2 차를 전기적으로 분리시켰다. 이때 변압기 1차를 △결선, 2차를 Y 결선하였고, 2차측 선간전압이 220[V]가 나오 도록 1차측 전압을 조절하였다.

다음으로, 선로의 대지정전용량은 콘덴서 모듈 (Capacitive module)을 사용하여 2.2[#], 8.8[#]으로 설정하였다. 이때, LCR 메터를 이용하여 실험장치의 콘 덴서 모듈 값을 확인하였고, 이를 접지와 연결한다.

또한, 선로에서의 R_f 에 해당하는 지락점 저항은 실험 장치에 구성된 저항모듈(Resistive module)을 적절히 조합한다. 이때, Fig. 2에서 설명한 3구간으로 구분될 수 있도록 16개의 다양한 저항값으로 설정하였다. 실험 시 에는 최종적으로 조합한 저항모듈을 멀티 테스터기로 측 정한 값을 사용한다. 이제 이 지락점 저항을 상선(phase line)과 접지 사이에 연결한다.

Fig. 3. The appearance of experiment set and wiring

실험 진행시에는 16개로 선정된 저항모듈값의 크기로 매번 변화시키면서 각 상의 대지전압 및 중성점 전압의 크기와 위상 변화를 데이터수집장치(Data Acquisition and Control Interface)와 연결된 컴퓨터에서 확인한 다. 컴퓨터의 모니터에서는 각 상의 대지전압 및 중성점 전압의 순시값과 이들의 페이저를 확인할 수 있게 설정 하였다. Table 1은 실험장치의 정격을 정리한 것이다.

Table 1. Rating of experiment set

Rating	3 phase transformer bank	Capacitive module	Resistive module
P_a	250[VA]/TR	252[VAR]	252[W]
V	208[V]	120[V]	120[V]
f	60[Hz]	60[Hz]	N/A
Accuracy	-	±5%	±5%

4. 시뮬레이션 및 실험 결과 고찰

4.1 시뮬레이션 결과

Fig. 4는 a상 지락을 가정하여 대지정전용량이 각각 2.2[#], 8.8[#]에 대해 대지전압과 중성점 전압 변동을 시뮬레이션 한 결과이다.

지락 고장이 없을 때는 각 상의 대지전압은 각 상전압 과 그 크기와 위상이 같다. 그러나 지락 고장이 발생되어 R_f 가 서서히 작아지게 되면 각 상의 대지전압은 각 상전 압을 기준으로 Fig. 4처럼 규칙성을 가지고 Fig. 2에서 설명한 것과 같이 변동하는 것을 볼 수 있다. 즉, 지락상 인 a상 대지전압 V_a 는 크기가 계속 작아지고, 위상은 계 속 증가한다. 건전상인 b상 대지전압 V_b 의 크기는 작아 지다 최솟값 V_{bmin} 을 지나 다시 커지며 상전압 크기와 같아진 후 선간전압으로 수렴한다. 위상은 작아지다 다 시 커져 최종적으로 -150°에 수렴한다. 또 다른 건전상 인 c상 대지전압 V_c 의 크기는 계속해서 커지다 최댓값 V_{cmax} 을 지난 후 작아지며 선간전압 크기에 수렴한다. 위상은 작은 범위에서 작아지다 다시 커져 상전압과 같 은 120°가 된 후, 최종적으로 150°에 수렴한다.

이러한 경향에서 의미 있는 지점이 Fig. 2의 d점으로 이 때 a상과 b상의 대지전압 크기가 같아지고, c상 대지 전압과 중성점 위상이 120°로 서로 같아진다. 다음은 e 점으로 b상의 대지전압 크기가 작아지다 다시 커져 상전 압 크기가 되는 지점이다. e점까지가 고저항 지락구간이 며 이 지점까지 대지전압은 크게 변화가 없고, 이보다 R_i 가 더 작아지면 대지전압이 급격히 변동한다.

Fig. 4. The variation characteristics of phase-to-ground voltage and neutral point voltage according to level of a-phase fault

이제 Fig. 4에서 대지정전용량이 2.2[此]인 경우를 더 자세히 살펴보기로 한다. Fig. 2의 d점에 해당되는 곳은 $R_f=696[\Omega]$ 일 때 $V_a=110_{\perp}$ 30°[V], $V_b=110_{\perp}$ -150° [V], $V_c=190.5_{\perp}$ 120°[V], $V_n=63.5_{\perp}$ 120°[V]이다. 이 지점에서 $V_a=V_b$ 이고, ∠ $V_c=∠$ V_n 임을 확인할 수 있 다. 한편, e지점은 $R_f=464[\Omega]$ 으로 $V_a=96_{\perp}$ 40.9°[V], $V_b=127_{\perp}$ -158.2°[V], $V_c=209.3_{\perp}$ 124.3°[V]이고, $V_n=83.2_{\perp}$ 130.9°[V]이다. 이 지점에서 $V_b=E_b$ =127[V]가 됨을 확인할 수 있다.

전체적인 경향을 보면 지락상인 대지전압 V_a 의 크기 는 계속 작아지다 완전지락 상태인 0[V]에 도달한다. 건 전상인 b상은 R_f =1078[Ω]인 지점에서 V_{bmin} =104.5[V] 로 최솟값이 되고, 또 다른 건전상인 c상은 R_f =150[Ω] 인 지점에서 V_{cmax} =231.5[V]로 최댓값이 되며 이 두 전 압은 최종적으로 선간전압인 220[V]에 도달한다.

다음으로 $8.8[\mu]$ 인 경우 d지점은 $R_f=174[\Omega]$ 에 해당 한다. 이때 $V_a=110_{\checkmark} 30^{\circ}[V]$, $V_b=110_{\checkmark} -150^{\circ}[V]$, $V_c=190.5_{\checkmark} 120^{\circ}[V]$ 이고, $V_n=63.5_{\checkmark} 120^{\circ}[V]$ 이다. 2.2[μ]인 경우와 동일하게 이 지점에서 $V_a=V_b$ 이고, $\checkmark V_c=\checkmark V_n$ 임을 확인할 수 있다. e지점은 $R_f=116[\Omega]$ 으로 이때 $V_a=96_{\checkmark} 40.9^{\circ}[V]$, $V_b=127_{\checkmark} -158.2^{\circ}[V]$, $V_c=209.3_{\checkmark} 124.3^{\circ}[V]$, $V_n=83.2_{\checkmark} 130.9^{\circ}[V]$ 이다. 이 지점에서도 2.2[μ]와 마찬가지로 $V_b=E_b=127[V]$ 가 된다.

전체적인 변동 경향은 2.2[μ]와 동일하다. 지락상인 대지전압 V_a 의 크기는 계속 작아지다 완전지락 상태인 0[V]에 도달한다. 또한, 건전상인 b상은 R_f =270[Ω]에 서 V_{bmin} =104.5[V]로 최솟값이 되고, 또 다른 건전상인 c상은 R_f =37[Ω]에서 V_{emax} =231.5[V]로 최댓값이 되 며, 역시 이 두 전압은 최종적으로 선간전압인 220[V]가 된다.

위 결과를 살펴보면 또 하나의 특징이 나타나는데 R_f 가 d 및 e지점에 해당하는 곳에서는 대지정전용량이 2.2[#]과 8.8[#]으로 서로 다를지라도 각 상의 대지전 압과 중성점 전압이 동일하다는 것이다. 이는 R_f 변화에 따른 각 상의 대지전압 및 중성점 전압의 궤적 패턴이 대 지정전용량이 다를지라도 동일하다는 것을 의미한다. 또한, 대지정전용량이 큰 경우에 d 및 e지점의 R_f 가 더 작 음을 알 수 있다.

한편, 시뮬레이션 결과를 데이터 값으로 나타낸 Table 2를 보면 R_f 의 변화에 대해 V_a 와 V_n 의 위상차 가 지속적으로 90°를 유지하고 있다. 이는 앞에서 살펴 본 바와 같이 $V_a = E_a + V_n$ 이고, \overline{OE}_a 를 지름으로 하는 반원의 벡터궤적을 가지기 때문이다.

4.2 실험 결과

시뮬레이션을 통해 선박의 3상 220[V] 배전 계통에서 지락 고장이 발생될 때 각 상의 대지전압과 중성점 전압 은 Fig. 4와 같이 규칙성 있게 변화하는 것을 확인하였 다. 본 절에서는 실제 실험장치를 통해 그 결과를 확인하 도록 한다. Fig. 3과 같은 실험장치에 대지정전용량을 2.2[#], 8.8[#]으로 설정하고, 각각에 대해 R_f를 변경 시키면서 매번 각 상의 대지전압과 중성점 전압의 크기 와 위상을 측정한다.

Table 2는 실험장치를 통해 취득한 값을 나타내었다. 동시에 시뮬레이션 값도 함께 표기하여 비교하기 쉽도록 하였다. Fig. 2의 d점과 e점 부근에 해당되는 지점과 b 상의 대지전압 최저점(V_{bmin}) 부근, c상의 대지전압 최 대점(V_{cmax}) 부근에 해당하는 값들은 음영처리 하였다. Fig. 5는 2.2[μ]일 때 R_f =2825[Ω]에서의 측정된 순 시값과 페이저도를 나타낸 것이다. 그림의 (a)에서 Ch1 (기준)은 E1으로 a상의 상전압값(RMS)이고 Ch2는 E2로 a상의 대지전압, Ch3는 E3로 b상의 대지전압, Ch4는 E4로 c상의 대지전압이다. 한편, 그림의 (b)에서 E1, E2, E3, E4는 각각 a상의 상전압, a상의 대지전압, b상

의 대지전압, c상의 대지전압을 의미한다.

Connected to 9063 #G254913 (Ready)

(a) The instantaneous value of the measured voltages

Fig. 5. The voltage magnitude and phase angle measured in the experiment set

4.3 시뮬레이션 및 실험 결과의 비교·분석

Fig. 6과 Fig. 7은 각각 대지정전용량이 2.2[#]과 8.8[#]일 때 시뮬레이션 및 실험 결과를 동시에 나타낸 것이다. 전체적으로 시뮬레이션과 실험은 서로 큰 차이 없이 잘 일치하고 있다.

Fig. 6. The variation characteristics of phase-to-ground voltage and neutral point voltage for the simulation value and experimental value in the phase-to-ground capacitance of 2.2[µF]

먼저 Fig. 6을 살펴보면 고장상인 V_a 는 측정값이 전 반적으로 크게 나타나며 그 차이는 $R_f=0[\Omega]$ 일 때 최소 값 0.1[V], $R_f=294[\Omega]$ 일 때 최댓값 0.8[V]이며 위상은 ±0.3[°] 이내의 차이를 보인다. V_b 는 시뮬레이션 값이 크며, 그 차이는 $R_f=2594[\Omega]$ 일 때 최소값 1.4[V], R_f =150[Ω]일 때 최댓값 2.9[V], 위상은 ±0.5[°]이내의 차 이를 보인다. V_c 는 측정값이 크게 나타나고, 그 차이는 R_f =462[0]일 때 최소값 0.6[V], R_f =493[0]일 때 최댓

 값 2.3[V]이며 위상은 1.3[°] 이내로 크게 나타난다. V_n

 은 측정값의 크기가 크고, 그 차이는 R_f =688[0]일 때

 최소값 0.1[V], R_f =150[0]일 때 최댓값 0.7[V]이며, 위

 상은 ±0.7[°]이내의 차이를 보인다. 이러한 시뮬레이션

 과 실험값의 차이는 계측오차 및 실험장치 구성 시 존재

 하게 되는 비대칭성분의 영향으로 판단된다.

 R_f 가 감소하여 d점 부근인 $688[\Omega]$ 이 되면 Fig. 2에 서 확인할 수 있듯이 V_n 의 위상은 120[이가 되어 E_c 와 위상이 같아지고, R_f 더 감소하면서 V_n 의 위상이 E_c 의 위상보다 더 커지는 것을 확인할 수 있다.

Fig. 7. The variation characteristics of phase-to-ground voltage and neutral point voltage for the simulation value and experimental value in the phase-to-ground capacitance of 8.8[µF]

다음으로 대지정전용량이 8.8[때]인 Fig. 7을 분석한 다. 고장상인 V_a 는 측정값이 전반적으로 크게 나타나며 그 차이는 R_f =166[û]일 때 최소값 0[V], R_f =115[û]일 때 최댓값 0.5[V]이며 위상은 ±0.3[이 이내의 차이를 보 인다. V_b 는 시뮬레이션 값이 크며, 그 차이는 R_f =1074 [û]일 때 최소값 0.3[V], R_f =133[û]일 때 최댓값 4.5[V], 위상은 ±3.1[이이내의 차이를 가진다. V_c 는 측 정값의 크기가 전반적으로 크며, 그 차이는 R_f =638[û] 일 때 최소값 0.3[V], R_f =20[û]일 때 최댓값 9.6[V], 위 상은 실측값이 2.1[이 이내로 크게 나타난다. V_n 은 측정 값이 전반적으로 크게 나타나며 그 차이는 ±0.6[V] 이내 의 차이를 보이고, 위상은 최대 1.2[이 이내로 실측값이 크게 나타난다.

지금까지 대지정전용량이 2.2[#]과 8.8[#]인 경우 a 상 지락고장을 가정한 시뮬레이션과 실험을 살펴보았다. 그 결과 계측오차 및 실험장치의 비대칭성분으로 인한 오차가 존재하지만은 서로 큰 차이가 없음을 확인하였 다. 다만, 대지정전용량이 커지면 이로 인한 오차의 차이 가 다소 증가하며, 전반적으로 b상의 대지전압은 실험값 이 시뮬레이션 값보다 작게, c상은 크게 나타는 것을 확 인할 수 있었다.

5. 결론

선박에서는 전원 공급의 연속성 확보가 무엇보다 중요 하기 때문에 일반적으로 비접지 시스템이 적용된다. 그 러나 선박 기관사가 1선 지락고장을 신속하게 조치하지 않으면 단락사고와 같은 심각한 2차 사고로 확대될 수 있다. 따라서 선박 기관사는 지락사고를 인지하고 올바 르게 대처해야 한다. 이를 위해서 지락사고 시 대지전압 과 중성점 전압의 변동 특성을 이해하는 것이 필요하다. 본 논문에서는 선박의 비접지 시스템에 대해 대지전압 과 중성점 전압을 모델링하고, 지락고장 정도에 따른 V_n 의 궤적을 3구간으로 구분하여 분석하였다. 이를 기반으 로 220[V] 전압계통에 대해 대지정전용량을 2.2[#] 및 8.8[JP]으로 선정하고, MATLAB으로 시뮬레이션을 실시 하여 대지전압 및 중성점 전압의 변동 특성을 확인하였다. 그 결과 대지정전용량이 달라도 첫째, 대지전압과 중성점 전압의 변동 특성은 동일한 형태로 나타났고, 둘째로 Fig. 2의 3구간의 지점인 d점과 e점에서 R_f값만 다를 뿐 대지 전압 및 중성점 전압의 크기는 동일함을 확인하였다.

	R_{f}	[0]	0	28	57	150	294	462 (near the e-point)	493	531
	Va	Е	0.1∠89.6	9.1∠85.8	18.1∠81.8	44.8∠69.5	75.7∠53.6	96.2∠40.9	99.1∠39.1	101.9∠36.9
		S	0.0∠89.9	8.8∠86.0	17.8∠81.9	44.4∠69.5	74.9∠53.8	95.8∠41.0	98.4∠39.1	101.2∠37.1
	V_b	Е	217.6∠-149.7	212.7∠-151.7	206.6∠-153.9	184.9∠-158.8	152.8∠-161.4	125.4∠-158.3	121.1∠-156.8	117.3∠-155.5
		S	219.9∠-150.0	215.1∠-151.9	209.4∠-153.8	187.8∠-158.6	154.3∠-161.3	127.2∠-158.2	123.8∠-157.2	120.1∠-155.9
	V _c V _n	Е	222.1∠151.0	225.9∠149.2	228.7∠146.6	232.7∠139.8	226.3∠131.2	210.0∠124.8	208.9∠124.3	205.3∠123.4
C=2.2 [µF]		S	220.0∠149.9	224.0∠147.9	227.2∠145.8	231.5∠139.0	224.6∠130.6	209.4∠124.3	206.6∠123.5	203.3∠122.6
		Е	127.2∠179.8	127.1∠176.0	126.3∠172.0	119.6∠159.6	102.9∠143.9	84.0∠131.1	80.7∠129.3	77.1∠127.2
		S	127.0∠179.9	126.7∠176.0	125.7∠171.9	118.9∠159.5	102.5∠143.8	83.3∠131.0	80.2∠129.1	76.6∠127.1
	R_{f}	[0]	604	664	688 (near the d-point)	899	1073	1614	2594	2825
	V	Е	106.3∠33.5	109.1∠31.1	110.1∠30.3	116.6∠24.1	119.3∠20.5	123.8∠14.0	126.2∠8.9	126.2∠8.2
	Va	S	105.7∠33.6	108.6∠31.1	109.6∠30.2	115.9∠24.0	118.9∠20.5	123.2∠13.9	125.5∠8.8	125.7∠8.0
	V	Е	111.9∠-152.9	108.7∠-150.7	107.9∠-149.7	103.2∠-142.9	102.3∠-138.7	105.4∠-131.1	111.1∠-126.7	111.1∠-125.1
	v _b	S	114.6∠-153.3	111.3∠-151.1	110.3∠-150.2	105.3∠-143.4	104.5∠-139.2	107.0∠-131.4	112.5∠-126.2	113.4∠-125.5
	v	Е	198.9∠122.0	193.9∠121.1	192.6∠120.9	180.2∠119.1	171.8∠118.4	157.7∠117.5	146.7∠117.5	145.0∠118.3
	V c	S	197.2∠121.2	192.7∠120.4	191.0∠120.0	178.6∠118.2	171.1∠117.5	156.7∠116.9	145.3∠117.2	143.7∠117.3
	V_n	Е	70.9∠123.8	66.0∠121.3	64.1∠120.4	52.2∠114.2	45.1∠110.6	31.1∠104.0	20.0∠98.1	18.4∠98.0
		S	70.3∠123.6	65.7∠121.1	64.0∠120.2	51.8∠114.0	44.5∠110.5	30.6∠103.9	19.4∠98.8	17.8∠98.0
	R_{f}	[0]	0	20	38	80	115 (near the e-point)	133	144	166
	R_{f}	[Q] E	0 0.1∠89.7	20 25.1∠78.6	38 44.6∠69.5	80 79.0∠51.3	115 (near the e-point) 96.1∠40.7	133 101.4∠37.0	144 104.3∠34.5	166 108.6∠31.0
	R_{f}	[Q] E S	0 0.1∠89.7 0.0∠89.9	20 25.1∠78.6 24.7∠78.7	38 44.6∠69.5 44.9∠69.2	80 79.0∠51.3 79.1∠51.4	115 (near the e-point) 96.1∠40.7 95.6∠41.1	133 101.4∠37.0 101.3∠37.0	144 104.3∠34.5 104.1∠34.9	166 108.6∠31.0 108.6∠31.1
	R _f	[Q] E S E	0 0.1∠89.7 0.0∠89.9 208.2∠-148.9	20 25.1∠78.6 24.7∠78.7 193.3∠-153.8	38 44.6∠69.5 44.9∠69.2 177.4∠-156.8	80 79.0∠51.3 79.1∠51.4 146.3∠-158.7	115 (near the e-point) 96.1∠40.7 95.6∠41.1 124.6∠-155.2	133 101.4∠37.0 101.3∠37.0 115.5∠-152.9	144 104.3∠34.5 104.1∠34.9 112.4∠-151.4	166 108.6∠31.0 108.6∠31.1 108.5∠-148.3
	R _f V _a V _b	[Q] E S E S	0 0.1∠89.7 0.0∠89.9 208.2∠-148.9 219.9∠-150.0	20 25.1∠78.6 24.7∠78.7 193.3∠-153.8 204.4∠-155.2	38 44.6∠69.5 44.9∠69.2 177.4∠-156.8 187.3∠-158.7	80 79.0∠51.3 79.1∠51.4 146.3∠-158.7 149.2∠-161.1	115 (near the e-point) 96.1∠40.7 95.6∠41.1 124.6∠-155.2 127.4∠-158.3	133 101.4∠37.0 101.3∠37.0 115.5∠-152.9 120.0∠-155.9	144 104.3∠34.5 104.1∠34.9 112.4∠-151.4 116.5∠-154.3	166 108.6∠31.0 108.6∠31.1 108.5∠-148.3 111.3∠-151.1
	R _f	[Q] E S E S E	0 0.1∠89.7 0.0∠89.9 208.2∠-148.9 219.9∠-150.0 229.0∠152.3	20 25.1∠78.6 24.7∠78.7 193.3∠-153.8 204.4∠-155.2 238.7∠146.0	38 44.6∠69.5 44.9∠69.2 177.4∠-156.8 187.3∠-158.7 241.5∠141.0	80 79.0∠51.3 79.1∠51.4 146.3∠-158.7 149.2∠-161.1 231.0∠130.9	115 (near the e-point) 96.1∠40.7 95.6∠41.1 124.6∠-155.2 127.4∠-158.3 216.3∠125.5	133 101.4∠37.0 101.3∠37.0 115.5∠-152.9 120.0∠-155.9 209.6∠123.9	144 104.3∠34.5 104.1∠34.9 112.4∠-151.4 116.5∠-154.3 204.6∠122.8	166 108.6∠31.0 108.6∠31.1 108.5∠-148.3 111.3∠-151.1 198.0∠121.4
	R_f V_a V_b V_c	[0] E S E S E S	0 0.1∠89.7 0.0∠89.9 208.2∠-148.9 219.9∠-150.0 229.0∠152.3 220.0∠149.9	20 25.1∠78.6 24.7∠78.7 193.3∠-153.8 204.4∠-155.2 238.7∠146.0 229.1∠144.1	38 44.6∠69.5 44.9∠69.2 177.4∠-156.8 187.3∠-158.7 241.5∠141.0 231.5∠138.9	80 79.0∠51.3 79.1∠51.4 146.3∠-158.7 149.2∠-161.1 231.0∠130.9 222.4∠129.4	115 (near the e-point) 96.1∠40.7 95.6∠41.1 124.6∠-155.2 127.4∠-158.3 216.3∠125.5 209.6∠124.4	133 101.4∠37.0 101.3∠37.0 115.5∠-152.9 120.0∠-155.9 209.6∠123.9 203.2∠122.6	144 104.3∠34.5 104.1∠34.9 112.4∠-151.4 116.5∠-154.3 204.6∠122.8 199.5∠121.7	166 108.6∠31.0 108.6∠31.1 108.5∠-148.3 111.3∠-151.1 198.0∠121.4 192.7∠120.4
	R _f V _a V _b V _c	E S E S E S E E S E E	0 0.1∠89.7 0.0∠89.9 208.2∠-148.9 219.9∠-150.0 229.0∠152.3 220.0∠149.9 127.1∠179.9	20 25.1∠78.6 24.7∠78.7 193.3∠-153.8 204.4∠-155.2 238.7∠146.0 229.1∠144.1 124.7∠168.8	$\begin{array}{c} 38\\ \hline 44.6 \angle 69.5\\ 44.9 \angle 69.2\\ 177.4 \angle -156.8\\ 187.3 \angle -158.7\\ 241.5 \angle 141.0\\ 231.5 \angle 138.9\\ 119.4 \angle 159.7\\ \end{array}$	80 $79.0 \angle 51.3$ $79.1 \angle 51.4$ $146.3 \angle -158.7$ $149.2 \angle -161.1$ $231.0 \angle 130.9$ $222.4 \angle 129.4$ $99.8 \angle 141.9$	115 (near the e-point) 96.1∠40.7 95.6∠41.1 124.6∠-155.2 127.4∠-158.3 216.3∠125.5 209.6∠124.4 83.3∠131.2	133 $101.4 \angle 37.0$ $101.3 \angle 37.0$ $115.5 \angle -152.9$ $120.0 \angle -155.9$ $209.6 \angle 123.9$ $203.2 \angle 122.6$ $76.9 \angle 127.5$	$\begin{array}{c} 144\\ \hline 104.3 \ne 34.5\\ 104.1 \ne 34.9\\ 112.4 \ne -151.4\\ 116.5 \ne -154.3\\ 204.6 \ne 122.8\\ 199.5 \ne 121.7\\ \hline 72.3 \ne 125.1\\ \end{array}$	166 108.6∠31.0 108.6∠31.1 108.5∠-148.3 111.3∠-151.1 198.0∠121.4 192.7∠120.4 65.8∠121.5
C=8.8	R_{f} V_{a} V_{b} V_{c} V_{c}	[Ω] E S E E S E E S E S	0 0.1∠89.7 0.0∠89.9 208.2∠-148.9 219.9∠-150.0 229.0∠152.3 220.0∠149.9 127.1∠179.9	20 25.1∠78.6 24.7∠78.7 193.3∠-153.8 204.4∠-155.2 238.7∠146.0 229.1∠144.1 124.7∠168.8 124.5∠168.7	38 $44.6 \angle 69.5$ $44.9 \angle 69.2$ $177.4 \angle -156.8$ $187.3 \angle -158.7$ $241.5 \angle 141.0$ $231.5 \angle 138.9$ $119.4 \angle 159.7$ $118.8 \angle 159.2$	80 $79.0 \angle 51.3$ $79.1 \angle 51.4$ $146.3 \angle -158.7$ $149.2 \angle -161.1$ $231.0 \angle 130.9$ $222.4 \angle 129.4$ $99.8 \angle 141.9$ $99.3 \angle 141.4$	115 (near the e-point) 96.1∠40.7 95.6∠41.1 124.6∠-155.2 127.4∠-158.3 216.3∠125.5 209.6∠124.4 83.3∠131.2 83.5∠131.1	133 $101.4 \angle 37.0$ $101.3 \angle 37.0$ $115.5 \angle -152.9$ $120.0 \angle -155.9$ $209.6 \angle 123.9$ $203.2 \angle 122.6$ $76.9 \angle 127.5$ $76.5 \angle 127.0$	$ \begin{array}{c} 144\\ 104.3 \neq 34.5\\ 104.1 \neq 34.9\\ 112.4 \neq -151.4\\ 116.5 \neq -154.3\\ 204.6 \neq 122.8\\ 199.5 \neq 121.7\\ 72.3 \neq 125.1\\ 72.6 \neq 124.9\\ \end{array} $	166 $108.6 \angle 31.0$ $108.6 \angle 31.1$ $108.5 \angle -148.3$ $111.3 \angle -151.1$ $198.0 \angle 121.4$ $192.7 \angle 120.4$ $65.8 \angle 121.5$ $65.7 \angle 121.1$
C=8.8 [μF]	R_{f} V_{a} V_{b} V_{c} V_{c}	[Ω] E S E S E S E S [Ω]	0 0.1∠89.7 0.0∠89.9 208.2∠-148.9 229.0∠152.3 220.0∠149.9 127.1∠179.9 127.0∠179.9 174 (near the d-point)	20 25.1∠78.6 24.7∠78.7 193.3∠-153.8 204.4∠-155.2 238.7∠146.0 229.1∠144.1 124.7∠168.8 124.5∠168.7 228	38 $44.6 \angle 69.5$ $44.9 \angle 69.2$ $177.4 \angle -156.8$ $187.3 \angle -158.7$ $241.5 \angle 141.0$ $231.5 \angle 138.9$ $119.4 \angle 159.7$ $118.8 \angle 159.2$ 269	80 $79.0 \angle 51.3$ $79.1 \angle 51.4$ $146.3 \angle -158.7$ $149.2 \angle -161.1$ $231.0 \angle 130.9$ $222.4 \angle 129.4$ $99.8 \angle 141.9$ $99.3 \angle 141.4$ 403	$ \begin{array}{c} 115\\ (near the e-point)\\ 96.1 \angle 40.7\\ 95.6 \angle 41.1\\ 124.6 \angle -155.2\\ 127.4 \angle -158.3\\ 216.3 \angle 125.5\\ 209.6 \angle 124.4\\ 83.3 \angle 131.2\\ 83.5 \angle 131.1\\ 638 \end{array} $	133 $101.4 \angle 37.0$ $101.3 \angle 37.0$ $115.5 \angle -152.9$ $120.0 \angle -155.9$ $209.6 \angle 123.9$ $203.2 \angle 122.6$ $76.9 \angle 127.5$ $76.5 \angle 127.0$ 1074	$ \begin{array}{c} 144\\ 104.3 \neq 34.5\\ 104.1 \neq 34.9\\ 112.4 \neq -151.4\\ 116.5 \neq -154.3\\ 204.6 \neq 122.8\\ 199.5 \neq 121.7\\ 72.3 \neq 125.1\\ 72.6 \neq 124.9\\ 1614\\ \end{array} $	$ \begin{array}{c} 166\\ 108.6 \neq 31.0\\ 108.6 \neq 31.1\\ 108.5 \neq -148.3\\ 111.3 \neq -151.1\\ 198.0 \neq 121.4\\ 192.7 \neq 120.4\\ 65.8 \neq 121.5\\ 65.7 \neq 121.1\\ 2318\\ \end{array} $
C=8.8 [μF]	R_{f} V_{a} V_{b} V_{c} V_{n}	[Ω] E S E S E S E S [Ω] E	0 0.1∠89.7 0.0∠89.9 208.2∠-148.9 219.9∠-150.0 229.0∠152.3 220.0∠149.9 127.1∠179.9 127.0∠179.9 174 (near the d-point) 109.8∠29.7	20 25.1∠78.6 24.7∠78.7 193.3∠-153.8 204.4∠-155.2 238.7∠146.0 229.1∠144.1 124.7∠168.8 124.5∠168.7 228 116.1∠23.6	38 $44.6\angle 69.5$ $44.9\angle 69.2$ $177.4\angle -156.8$ $187.3\angle -158.7$ $241.5\angle 141.0$ $231.5\angle 138.9$ $119.4\angle 159.7$ $118.8\angle 159.2$ 269 $119.1\angle 20.3$	80 $79.0 \angle 51.3$ $79.1 \angle 51.4$ $146.3 \angle -158.7$ $149.2 \angle -161.1$ $231.0 \angle 130.9$ $222.4 \angle 129.4$ $99.8 \angle 141.9$ $99.3 \angle 141.4$ 403 $123.4 \angle 13.8$	$ \begin{array}{c} 115\\ (near the e-point)\\ 96.1 \angle 40.7\\ 95.6 \angle 41.1\\ 124.6 \angle -155.2\\ 127.4 \angle -158.3\\ 216.3 \angle 125.5\\ 209.6 \angle 124.4\\ 83.3 \angle 131.2\\ 83.5 \angle 131.1\\ 638\\ 125.3 \angle 8.8\\ \end{array} $	133 $101.4 \ne 37.0$ $101.3 \ne 37.0$ $115.5 \ne -152.9$ $209.6 \ne 123.9$ $203.2 \ne 122.6$ $76.9 \ne 127.5$ $76.5 \ne 127.0$ 1074 $126.3 \ne 5.1$	$ \begin{array}{c} 144\\ 104.3 \neq 34.5\\ 104.1 \neq 34.9\\ 112.4 \neq -151.4\\ 116.5 \neq -154.3\\ 204.6 \neq 122.8\\ 199.5 \neq 121.7\\ 72.3 \neq 125.1\\ 72.6 \neq 124.9\\ 1614\\ 127.0 \neq 3.4\\ \end{array} $	166 $108.6 \neq 31.0$ $108.6 \neq 31.1$ $108.5 \neq -148.3$ $111.3 \neq -151.1$ $198.0 \neq 121.4$ $192.7 \neq 120.4$ $65.8 \neq 121.5$ $65.7 \neq 121.1$ 2318 $127.0 \neq 2.3$
C=8.8 [μF]	R_{f} V_{a} V_{b} V_{c} V_{n} R_{f} V_{a}	[Q] E S E S E S E S E S E S S E S S S S S	0 0.1∠89.7 0.0∠89.9 208.2∠-148.9 219.9∠-150.0 229.0∠152.3 220.0∠149.9 127.1∠179.9 127.1∠179.9 127.0∠179.9 127.0∠179.9 127.0∠179.9 109.8∠29.7 109.9∠30.0	20 25.1∠78.6 24.7∠78.7 193.3∠-153.8 204.4∠-155.2 238.7∠146.0 229.1∠144.1 124.7∠168.8 124.5∠168.7 228 116.1∠23.6 116.2∠23.7	38 $44.6 \angle 69.5$ $44.9 \angle 69.2$ $177.4 \angle -156.8$ $187.3 \angle -158.7$ $241.5 \angle 141.0$ $231.5 \angle 138.9$ $119.4 \angle 159.7$ $118.8 \angle 159.2$ 269 $119.1 \angle 20.3$ $118.9 \angle 20.4$	80 $79.0 \angle 51.3$ $79.1 \angle 51.4$ $146.3 \angle -158.7$ $149.2 \angle -161.1$ $231.0 \angle 130.9$ $222.4 \angle 129.4$ $99.8 \angle 141.9$ $99.3 \angle 141.4$ 403 $123.4 \angle 13.8$ $123.2 \angle 13.9$	$ \begin{array}{c} 115\\ (near the e-point)\\ 96.1 \angle 40.7\\ 95.6 \angle 41.1\\ 124.6 \angle -155.2\\ 127.4 \angle -158.3\\ 216.3 \angle 125.5\\ 209.6 \angle 124.4\\ 83.3 \angle 131.2\\ 83.5 \angle 131.1\\ 638\\ 125.3 \angle 8.8\\ 125.3 \angle 8.8\\ 125.4 \angle 8.9\\ \end{array} $	133 $101.4 \angle 37.0$ $101.3 \angle 37.0$ $115.5 \angle -152.9$ $120.0 \angle -155.9$ $209.6 \angle 123.9$ $203.2 \angle 122.6$ $76.9 \angle 127.5$ $76.5 \angle 127.0$ 1074 $126.3 \angle 5.1$ $126.4 \angle 5.3$	$ \begin{array}{c} 144\\ 104.3 \neq 34.5\\ 104.1 \neq 34.9\\ 112.4 \neq -151.4\\ 116.5 \neq -154.3\\ 204.6 \neq 122.8\\ 199.5 \neq 121.7\\ 72.3 \neq 125.1\\ 72.6 \neq 124.9\\ 1614\\ 127.0 \neq 3.4\\ 126.7 \neq 3.5\\ \end{array} $	166 $108.6 \angle 31.0$ $108.6 \angle 31.1$ $108.5 \angle -148.3$ $111.3 \angle -151.1$ $198.0 \angle 121.4$ $192.7 \angle 120.4$ $65.8 \angle 121.5$ $65.7 \angle 121.1$ 2318 $127.0 \angle 2.3$ $126.8 \angle 2.4$
C=8.8 [µF]	R_{f} V_{a} V_{b} V_{c} V_{n} R_{f} V_{a}	[Q] E S E S E S E S S [Q] E S S E E	0 0.1∠89.7 0.0∠89.9 208.2∠-148.9 229.0∠152.3 220.0∠149.9 127.1∠179.9 127.0∠179.9 127.0∠179.9 174 (near the d-point) 109.8∠29.7 109.9∠30.0 107.3∠-147.2	20 25.1 \angle 78.6 24.7 \angle 78.7 193.3 \angle -153.8 204.4 \angle -155.2 238.7 \angle 146.0 229.1 \angle 144.1 124.7 \angle 168.8 124.5 \angle 168.7 228 116.1 \angle 23.6 116.2 \angle 23.7 102.5 \angle -140.4	38 $44.6 \angle 69.5$ $44.9 \angle 69.2$ $177.4 \angle -156.8$ $187.3 \angle -158.7$ $241.5 \angle 141.0$ $231.5 \angle 138.9$ $119.4 \angle 159.7$ $118.8 \angle 159.2$ 269 $119.1 \angle 20.3$ $118.9 \angle 20.4$ $103.1 \angle -136.9$	80 $79.0 \angle 51.3$ $79.1 \angle 51.4$ $146.3 \angle -158.7$ $149.2 \angle -161.1$ $231.0 \angle 130.9$ $222.4 \angle 129.4$ $99.8 \angle 141.9$ $99.3 \angle 141.4$ 403 $123.4 \angle 13.8$ $123.2 \angle 13.9$ $105.9 \angle -129.5$	$ \begin{array}{c} 115\\ (near the e-point)\\ 96.1 \angle 40.7\\ 95.6 \angle 41.1\\ 124.6 \angle -155.2\\ 127.4 \angle -158.3\\ 216.3 \angle 125.5\\ 209.6 \angle 124.4\\ 83.3 \angle 131.2\\ 83.5 \angle 131.1\\ 638\\ 125.3 \angle 8.8\\ 125.3 \angle 8.8\\ 125.4 \angle 8.9\\ 111.8 \angle -126.1\\ \end{array} $	133 $101.4 \angle 37.0$ $101.3 \angle 37.0$ $115.5 \angle -152.9$ $120.0 \angle -155.9$ $209.6 \angle 123.9$ $203.2 \angle 122.6$ $76.9 \angle 127.5$ $76.5 \angle 127.0$ 1074 $126.3 \angle 5.1$ $126.4 \angle 5.3$ $117.2 \angle -123.6$	144 $104.3 \angle 34.5$ $104.1 \angle 34.9$ $112.4 \angle -151.4$ $116.5 \angle -154.3$ $204.6 \angle 122.8$ $199.5 \angle 121.7$ $72.3 \angle 125.1$ $72.6 \angle 124.9$ 1614 $127.0 \angle 3.4$ $126.7 \angle 3.5$ $119.4 \angle -122.1$	166 $108.6 \angle 31.0$ $108.6 \angle 31.1$ $108.5 \angle -148.3$ $111.3 \angle -151.1$ $198.0 \angle 121.4$ $192.7 \angle 120.4$ $65.8 \angle 121.5$ $65.7 \angle 121.1$ 2318 $127.0 \angle 2.3$ $126.8 \angle 2.4$ $121.3 \angle -121.8$
C=8.8 [μF]	R_{f} V_{a} V_{b} V_{c} V_{n} R_{f} V_{a}	[Q] E S E S E S E S S E S E S E S S S	0 0.1 4 89.7 0.0 4 89.9 208.2 4 148.9 219.9 4 152.3 229.0 4 152.3 220.0 4 149.9 127.1 4 179.9 127.0 4 179.9 127.0 4 179.9 174 (near the d-point) 109.8 4 29.7 109.9 4 30.0 107.3 4 147.2 110.0 4 150.0	20 25.1 \angle 78.6 24.7 \angle 78.7 193.3 \angle -153.8 204.4 \angle -155.2 238.7 \angle 146.0 229.1 \angle 144.1 124.7 \angle 168.8 124.5 \angle 168.7 228 116.1 \angle 23.6 116.2 \angle 23.7 102.5 \angle -140.4 105.2 \angle -143.1	38 $44.6 \angle 69.5$ $44.9 \angle 69.2$ $177.4 \angle -156.8$ $187.3 \angle -158.7$ $241.5 \angle 141.0$ $231.5 \angle 138.9$ $119.4 \angle 159.7$ $118.8 \angle 159.2$ 269 $119.1 \angle 20.3$ $118.9 \angle 20.4$ $103.1 \angle -136.9$ $104.5 \angle -139.1$	80 $79.0 \angle 51.3$ $79.1 \angle 51.4$ $146.3 \angle -158.7$ $149.2 \angle -161.1$ $231.0 \angle 130.9$ $222.4 \angle 129.4$ $99.8 \angle 141.9$ $99.3 \angle 141.4$ 403 $123.4 \angle 13.8$ $123.2 \angle 13.9$ $105.9 \angle -129.5$ $107.0 \angle -131.5$	115 (near the e-point) 96.1 \angle 40.7 95.6 \angle 41.1 124.6 \angle -155.2 127.4 \angle -158.3 216.3 \angle 125.5 209.6 \angle 124.4 83.3 \angle 131.2 83.5 \angle 131.1 638 125.3 \angle 88 125.3 \angle 88 125.4 \angle 89 111.8 \angle -126.1 112.3 \angle -126.3	133 $101.4 \angle 37.0$ $101.3 \angle 37.0$ $115.5 \angle -152.9$ $120.0 \angle -155.9$ $209.6 \angle 123.9$ $203.2 \angle 122.6$ $76.9 \angle 127.5$ $76.5 \angle 127.0$ 1074 $126.3 \angle 5.1$ $126.4 \angle 5.3$ $117.2 \angle -123.6$ $117.5 \angle -123.3$	144 $104.3 \angle 34.5$ $104.1 \angle 34.9$ $112.4 \angle -151.4$ $116.5 \angle -154.3$ $204.6 \angle 122.8$ $199.5 \angle 121.7$ $72.3 \angle 125.1$ $72.6 \angle 124.9$ 1614 $127.0 \angle 3.4$ $126.7 \angle 3.5$ $119.4 \angle -122.1$ $120.5 \angle -122.0$	166 $108.6 \angle 31.0$ $108.6 \angle 31.1$ $108.5 \angle -148.3$ $111.3 \angle -151.1$ $198.0 \angle 121.4$ $192.7 \angle 120.4$ $65.8 \angle 121.5$ $65.7 \angle 121.1$ 2318 $127.0 \angle 2.3$ $126.8 \angle 2.4$ $121.3 \angle -121.8$ $122.4 \angle -121.3$
C=8.8 [μF]	R_{f} V_{a} V_{b} V_{c} V_{n} R_{f} V_{b} V_{b}	[Q] E S E S E S E S [Q] E S E S E E S S E E	0 0.1∠89.7 0.0∠89.9 208.2∠-148.9 219.9∠-150.0 229.0∠152.3 220.0∠149.9 127.1∠179.9 127.1∠179.9 127.0∠179.9 127.0∠179.9 127.0∠179.0 109.9∠30.0 109.9∠30.0 107.3∠-147.2 110.0∠-150.0	20 25.1 \angle 78.6 24.7 \angle 78.7 193.3 \angle -153.8 204.4 \angle -155.2 238.7 \angle 146.0 229.1 \angle 144.1 124.7 \angle 168.8 124.5 \angle 168.7 228 116.1 \angle 23.6 116.2 \angle 23.7 102.5 \angle -140.4 105.2 \angle -143.1 182.0 \angle 119.4	38 $44.6 \angle 69.5$ $44.9 \angle 69.2$ $177.4 \angle -156.8$ $187.3 \angle -158.7$ $241.5 \angle 141.0$ $231.5 \angle 138.9$ $119.4 \angle 159.7$ $118.8 \angle 159.2$ 269 $119.1 \angle 20.3$ $118.9 \angle 20.4$ $103.1 \angle -136.9$ $104.5 \angle -139.1$ $174.2 \angle 118.4$	80 $79.0 \angle 51.3$ $79.1 \angle 51.4$ $146.3 \angle -158.7$ $149.2 \angle -161.1$ $231.0 \angle 130.9$ $222.4 \angle 129.4$ $99.8 \angle 141.9$ $99.3 \angle 141.4$ 403 $123.4 \angle 13.8$ $123.2 \angle 13.9$ $105.9 \angle -129.5$ $107.0 \angle -131.5$ $159.2 \angle 117.9$	$ \begin{array}{c} 115\\ (near the e-point)\\ 96.1 \angle 40.7\\ 95.6 \angle 41.1\\ 124.6 \angle -155.2\\ 127.4 \angle -158.3\\ 216.3 \angle 125.5\\ 209.6 \angle 124.4\\ 83.3 \angle 131.2\\ 83.5 \angle 131.1\\ 638\\ 125.3 \angle 8.8\\ 125.3 \angle 8.8\\ 125.4 \angle 8.9\\ 111.8 \angle -126.1\\ 112.3 \angle -126.3\\ 145.0 \angle 117.4\\ \end{array} $	133 $101.4 \angle 37.0$ $101.3 \angle 37.0$ $115.5 \angle -152.9$ $120.0 \angle -155.9$ $209.6 \angle 123.9$ $203.2 \angle 122.6$ $76.9 \angle 127.5$ $76.5 \angle 127.0$ 1074 $126.3 \angle 5.1$ $126.4 \angle 5.3$ $117.2 \angle -123.6$ $117.5 \angle -123.3$ $136.6 \angle 118.0$	$ \begin{array}{c} 144\\ 104.3 \neq 34.5\\ 104.1 \neq 34.9\\ 112.4 \neq -151.4\\ 116.5 \neq -154.3\\ 204.6 \neq 122.8\\ 199.5 \neq 121.7\\ 72.3 \neq 125.1\\ 72.6 \neq 124.9\\ 1614\\ 127.0 \neq 3.4\\ 126.7 \neq 3.5\\ 119.4 \neq -122.1\\ 120.5 \neq -122.0\\ 133.1 \neq 118.9\\ \end{array} $	166 $108.6 \angle 31.0$ $108.6 \angle 31.1$ $108.5 \angle -148.3$ $111.3 \angle -151.1$ $198.0 \angle 121.4$ $192.7 \angle 120.4$ $65.8 \angle 121.5$ $65.7 \angle 121.1$ 2318 $127.0 \angle 2.3$ $126.8 \angle 2.4$ $121.3 \angle -121.8$ $122.4 \angle -121.3$ $130.4 \angle 119.2$
C=8.8 [µF]	R_{f} V_{a} V_{b} V_{c} V_{n} R_{f} V_{a} V_{b} V_{c}	[Q] E S E S E S E S [Q] E S E E S E E S E S S	0 0.1∠89.7 0.0∠89.9 208.2∠-148.9 229.0∠152.3 229.0∠149.9 127.1∠179.9 127.0∠179.9 127.0∠179.9 174 (near the d-point) 109.8∠29.7 109.9∠30.0 107.3∠-147.2 110.0∠-150.0 190.5∠120.0	20 25.1 \angle 78.6 24.7 \angle 78.7 193.3 \angle -153.8 204.4 \angle -155.2 238.7 \angle 146.0 229.1 \angle 144.1 124.7 \angle 168.8 124.5 \angle 168.7 228 116.1 \angle 23.6 116.2 \angle 23.7 102.5 \angle -140.4 105.2 \angle -143.1 182.0 \angle 119.4	38 $44.6 \angle 69.5$ $44.9 \angle 69.2$ $177.4 \angle -156.8$ $187.3 \angle -158.7$ $241.5 \angle 141.0$ $231.5 \angle 138.9$ $119.4 \angle 159.7$ $118.8 \angle 159.2$ 269 $119.1 \angle 20.3$ $118.9 \angle 20.4$ $103.1 \angle -136.9$ $104.5 \angle -139.1$ $174.2 \angle 118.4$ $171.0 \angle 117.5$	80 $79.0 \angle 51.3$ $79.1 \angle 51.4$ $146.3 \angle -158.7$ $149.2 \angle -161.1$ $231.0 \angle 130.9$ $222.4 \angle 129.4$ $99.8 \angle 141.9$ $99.3 \angle 141.4$ 403 $123.4 \angle 13.8$ $123.2 \angle 13.9$ $105.9 \angle -129.5$ $107.0 \angle -131.5$ $159.2 \angle 117.9$ $156.7 \angle 116.9$	115 (near the e-point) $96.1 \angle 40.7$ $95.6 \angle 41.1$ $124.6 \angle -155.2$ $127.4 \angle -158.3$ $216.3 \angle 125.5$ $209.6 \angle 124.4$ $83.3 \angle 131.2$ $83.5 \angle 131.1$ 638 $125.3 \angle 8.8$ $125.4 \angle 8.9$ $111.8 \angle -126.1$ $112.3 \angle -126.3$ $145.0 \angle 117.4$	133 $101.4 \angle 37.0$ $101.3 \angle 37.0$ $115.5 \angle -152.9$ $120.0 \angle -155.9$ $209.6 \angle 123.9$ $203.2 \angle 122.6$ $76.9 \angle 127.5$ $76.5 \angle 127.0$ 1074 $126.3 \angle 5.1$ $126.4 \angle 5.3$ $117.2 \angle -123.6$ $117.5 \angle -123.3$ $136.6 \angle 118.0$ $137.8 \angle 117.9$	144 $104.3 \angle 34.5$ $104.1 \angle 34.9$ $112.4 \angle -151.4$ $116.5 \angle -154.3$ $204.6 \angle 122.8$ $199.5 \angle 121.7$ $72.3 \angle 125.1$ $72.6 \angle 124.9$ 1614 $127.0 \angle 3.4$ $126.7 \angle 3.5$ $119.4 \angle -122.1$ $120.5 \angle -122.0$ $133.1 \angle 118.9$ $134.1 \angle 118.4$	166 $108.6 \angle 31.0$ $108.6 \angle 31.1$ $108.5 \angle -148.3$ $111.3 \angle -151.1$ $198.0 \angle 121.4$ $192.7 \angle 120.4$ $65.8 \angle 121.5$ $65.7 \angle 121.1$ 2318 $127.0 \angle 2.3$ $126.8 \angle 2.4$ $121.3 \angle -121.8$ $122.4 \angle -121.3$ $130.4 \angle 119.2$ $131.9 \angle 118.8$
C=8.8 [µF]	R_{f} V_{a} V_{b} V_{c} V_{c} V_{c} V_{c}	[Q] E S E S E S E S [Q] E S E S E S E S E E E S E E S E E S E E E S E E S E E E S E E S E E S E S E E E S E E S E E E E E S E E S E E S E E E S E E E E E S E E S E E E E S E	0 0.1 489.7 0.0 489.9 208.2 448.9 219.9 450.0 229.0 452.3 220.0 449.9 127.1 4179.9 127.0 479.9 127.0 479.9 107.8 429.7 109.9 430.0 107.3 4147.2 100.5 4120.9 195.1 420.9 190.5 4120.4	20 25.1 \angle 78.6 24.7 \angle 78.7 193.3 \angle -153.8 204.4 \angle -155.2 238.7 \angle 146.0 229.1 \angle 144.1 124.7 \angle 168.8 124.5 \angle 168.7 228 116.1 \angle 23.6 116.2 \angle 23.7 102.5 \angle -140.4 105.2 \angle -143.1 182.0 \angle 119.4 178.0 \angle 118.2	38 $44.6 \angle 69.5$ $44.9 \angle 69.2$ $177.4 \angle -156.8$ $187.3 \angle -158.7$ $241.5 \angle 141.0$ $231.5 \angle 138.9$ $119.4 \angle 159.7$ $118.8 \angle 159.2$ 269 $119.1 \angle 20.3$ $118.9 \angle 20.4$ $103.1 \angle -136.9$ $104.5 \angle -139.1$ $174.2 \angle 118.4$ $171.0 \angle 117.5$ $44.4 \angle 110.8$	80 $79.0 \angle 51.3$ $79.1 \angle 51.4$ $146.3 \angle -158.7$ $149.2 \angle -161.1$ $231.0 \angle 130.9$ $222.4 \angle 129.4$ $99.8 \angle 141.9$ $99.3 \angle 141.4$ 403 $123.4 \angle 13.8$ $123.2 \angle 13.9$ $105.9 \angle -129.5$ $107.0 \angle -131.5$ $159.2 \angle 117.9$ $156.7 \angle 116.9$ $30.6 \angle 104.3$	115 (near the e-point) $96.1 \angle 40.7$ $95.6 \angle 41.1$ $124.6 \angle -155.2$ $127.4 \angle -158.3$ $216.3 \angle 125.5$ $209.6 \angle 124.4$ $83.3 \angle 131.2$ $83.5 \angle 131.1$ 638 $125.3 \angle 8.8$ $125.4 \angle 8.9$ $111.8 \angle -126.1$ $112.3 \angle -126.3$ $145.0 \angle 117.4$ $19.6 \angle 99.2$	133 $101.4 \angle 37.0$ $101.3 \angle 37.0$ $115.5 \angle -152.9$ $120.0 \angle -155.9$ $209.6 \angle 123.9$ $203.2 \angle 122.6$ $76.9 \angle 127.5$ $76.5 \angle 127.0$ 1074 $126.3 \angle 5.1$ $126.4 \angle 5.3$ $117.2 \angle -123.6$ $117.5 \angle -123.3$ $136.6 \angle 118.0$ $137.8 \angle 117.9$ $11.7 \angle 95.9$	144 $104.3 \angle 34.5$ $104.1 \angle 34.9$ $112.4 \angle -151.4$ $116.5 \angle -154.3$ $204.6 \angle 122.8$ $199.5 \angle 121.7$ $72.3 \angle 125.1$ $72.6 \angle 124.9$ 1614 $127.0 \angle 3.4$ $126.7 \angle 3.5$ $119.4 \angle -122.1$ $120.5 \angle -122.0$ $133.1 \angle 118.9$ $134.1 \angle 118.4$ $7.7 \angle 94.3$	166 $108.6 \angle 31.0$ $108.6 \angle 31.1$ $108.5 \angle -148.3$ $111.3 \angle -151.1$ $198.0 \angle 121.4$ $192.7 \angle 120.4$ $65.8 \angle 121.5$ $65.7 \angle 121.1$ 2318 $127.0 \angle 2.3$ $126.8 \angle 2.4$ $121.3 \angle -121.8$ $122.4 \angle -121.3$ $130.4 \angle 119.2$ $131.9 \angle 118.8$ $5.3 \angle 93.6$

Table 2. The experimental and simulation data of V_a , V_b , V_c and V_n according to level of a-phase fault unit: $[V] \angle^{\circ}$

E: Experimental measurement value, S: Simulation value

시뮬레이션 결과를 검증하기 위해 실험장치를 통해 R_f 값을 16개로 변경하면서 대지전압 및 중성점 전압의 크기와 위상을 각각 측정하였다. 계측오차 및 실험장치 의 특성으로 시뮬레이션결과와 약간의 오차는 있었지만 변동특성은 다르지 않았고, 동일한 규칙성을 가지고 변 동하는 것을 확인하였다. 다만, 지락상인 a상은 시뮬레이 션과 유사했지만 건전상 b상은 작은 오차범위 내에서 전 반적으로 작게, c상은 반대로 큰 값으로 측정되었다. 또 한, 대지정전용량이 클수록 건전상에서 나타나는 오차가 조금 더 큰 것을 알 수 있었다.

본 논문에서는 이와 같이 지락 고장에 따른 시뮬레이 션을 실제 실험을 통해 비교 분석하고, 검증하였다. 만 약, 선박의 기관사가 기관실의 배전계통에서 LCR 메터 로 대지정전용량을 측정하고, 계통 전압을 측정할 수 있 다면 본 논문처럼 시뮬레이션을 실시할 수 있다. 이를 이 용하면 선박의 기관사는 지락고장의 정도에 따른 대지전 압과 중성점 전압 변동 추이를 확인할 수 있어 지락고장 에 대한 면밀한 분석이 가능하다. 다만, Fig. 7에서도 확 인할 수 있듯이 배전용량이 큰 선박 즉, 대지정전용량이 큰 경우에는 어느 정도 오차를 고려해야 할 필요가 있다.

References

- D. H. Lubich, "High Resistance Grounding and Fault Finding on Three Phase Three Wire (Delta) Power Systems", 1997 IEEE Annual Textile, Fiber and Film Industry Technical Conference, pp. 1–5, May. 1997. DOI: https://doi.org/10.1109/TEXCON.1997.598534
- [2] J. P. Nelson, P. K. Sen, "High-Resistance Grounding of Low-Voltage Systems: A Standard for the Petroleum and Chemical Industry", IEEE Transactions on Industry Applications, vol. 35, no. 4, pp. 941-948, Aug. 1999. DOI: https://doi.org/10.1109/28.777204
- [3] J. C. Das, R. H. Osman, "Grounding of AC and DC Low-Voltage and Medium-Voltage Drive Systems", IEEE Transactions on Industry Applications, vol. 34, no. 1, pp. 205-216, Feb. 1998. DOI: https://doi.org/10.1109/28.658747
- [4] A. Somani, B. K. Johnson, H. L. Hess, "Evaluation of grounding and protection methods for a shipboard power system", IEEE Electric Ship Technologies Symposium, pp. 117~124, Jul. 2005. DOI: http://dx.doi.org/10.1109/ESTS.2005.1524664
- [5] Y. H. Lee, K. T. Ryu, "Characteristics on the Neutral Point Potential of Line-to-Ground Voltage according to Line-to-Ground Fault in Resistance Ground system for Ships", Journal of the Korea Academic-Industrial cooperation Society, vol. 19, no.5 pp. 689-696, May. 2018. DOI: https://doi.org/10.5762/KAIS.2018.19.5.689

- [6] D. D. Shipp, and F. J. Angelini, "Characteristics of different power systems grounding techniques: fact & fiction", Conference Record of the IEEE Industry Applications Society Annual Meeting, vol. 2, pp. 1535-1544, Aug. 1988. DOI: https://doi.org/10.1109/IAS.1988.25261
- [7] Y. Li, X. Meng, X. Song, "Application of signal processing and analysis in detecting single line-to-ground (SLG) fault location in high-impedance grounded distribution network", IET Generation, Transmission & Distribution, vol. 10, no. 2, pp. 382–389, Feb. 2016. DOI: <u>https://doi.org/10.1049/iet-gtd.2015.0555</u>
- [8] B. Fan, G. Yao, W. Wang, X. Yang, H. Ma, K. Yu, C. Zhuo, X. Zeng, "Faulty phase recognition method based on phase-to-ground voltages variation for neutral ungrounded distribution networks", Electric Power Systems Research, vol. 190, pp. 1-11, Jan. 2021. DOI: <u>https://doi.org/10.1016/j.epsr.2020.106848</u>

류 기 탁(Ki-Tak Ryu)

[정회원]

- 2008년 2월 : 한국해양대학교 대학원 기관시스템공학과(공학석사)
- 2011년 2월 : 한국해양대학교
 대학원 메카트로닉스공학과(공학 박사수료)
- 2001년 3월 ~ 2005년 7월 : 현대 상선 엔지니어

• 2007년 5월 ~ 현재 : 한국해양수산연수원 교수

〈관심분야〉 비선형제어, 최적제어, 선박전기 및 전력시스템, AC드라이브

이 윤 형(Yun-Hyung Lee)

[정회원]

- 2004년 2월 : 한국해양대학교 대학원 기관시스템공학과(공학석사)
 2007년 8월 : 한국해양대학교 대학원 메카트로닉스공학과(공학 박사)
- 2008년 2월 ~ 2014년 6월 : 한국 항만연수원 교수
- 2014년 7월 ~ 현재 : 한국해양수산연수원 교수

〈관심분야〉

유전알고리즘 이론 및 응용, 퍼지제어, 비선형제어, 시스템 식별, 선박전기 및 제어시스템