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Abstract This research proposes a series of design procedures for discrete sizing optimization of truss
structures. Most discrete sizing optimization methods for truss structures adopt stochastic approaches
using metaheuristic algorithms. However, such methods involve many structural analyses until they find
a discrete optimal solution, which is expensive. The primary motivation of this research is to suggest
a discrete design while reducing the number of structural analyses as many as possible. First, the
structural optimization software GENESIS performs sizing optimization in a continuous design space
using proven techniques. This provides an excellent optimal solution, and the proposed method is
applied while assuming that the discrete optimal solution exists near the continuous optimum design.
For discrete sizing optimization of a truss structure, approximate models are generated near the
continuous optimum point using the scikit-learn-one capability of machine learning libraries, leading to
a simple optimization problem. Then, the python library, PyGAD, is used to obtain a discrete optimal
solution. Compared with existing methods, this research provides discrete designs requiring only

0.38-52.0% of the number of structural analyses performed in other studies.
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1. Introduction

The sizing optimization problem of truss
structures should be treated in a discrete design
space rather than a continuous design space if
design variables are selected from a standard
specification or design codes. The discrete sizing
optimization problem has non-convex and
combinatorial characteristics. Therefore, structural
optimization techniques in continuous design
space cannot be directly applied even though it
was well developed. Most recent studies on
discrete structural design have adopted stochastic
approaches such as metaheuristic algorithms[1].
Since such methods do not use gradient
information to find an optimal solution, they can
be usefully applied to optimization problems,
including multi-modal function, nonlinear function
etc.[2].

However, these methods inevitably require a lot

with noises, discontinuous function,
of function calculations compared with gradient
-based algorithms to find an optimal solution
because the direct link between metaheuristic
algorithms and structural analysis triggers
numerous structural analyses. In addition, the
quality of an optimal solution may depend on the
parameters defined in the algorithm. Contrary to
the

structural optimization approach in continuous

stochastic ~ approaches, deterministic
design space has the advantage of determining
the optimal solution without many structural
analyses because it uses a mathematically clearly

defined though

provides a local optimum. This research aims to

sensitivity analysis, even it
find a discrete solution by utilizing the advantage
of continuous optimum design while reducing
the number of structural analyses.

Although discrete sizing optimization of truss
structures is a classic topic, there are ongoing
studies on different methods due to the difficulty
in solving the problem. Most recent studies on
the discrete design of truss structures are looking
the solution by applying

for optimal
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metaheuristic algorithms. The already proven
and well-developed metaheuristic methods that
simulate natural laws or natural phenomena have
been used directly or modified to the discrete
design of truss structures. Such algorithms
include SA[3], PSOI[4], MBAI[5,6], GA[7], ESASSIS8],
MCSS[9], SSA[10], ADSI[1], DE[11], HHS[12],
ACCS[13], NMA[14], HDA[15], etc. Although these
algorithms cannot mathematically guarantee that
they will find the global optimum, they try to
find it in a stochastic or heuristic way. Still, the
discrete optimal solution can be obtained
through trial and error by setting appropriate
parameters related to each algorithm. However,
such a method requires many structural analyses
to find the discrete optimum design.

This research presents a series of design
procedures to overcome the disadvantage caused
by directly linking metaheuristic algorithms and
structural analysis in discrete sizing optimization.
A design process for discrete sizing optimization
of truss structures presented in this research is as
follows: First, it is assumed that a discrete
optimum exists around a continuous optimum.
Second, the optimal solution is calculated using
well-developed structural sizing optimization
techniques in continuous design space defined
within a design range using GENESIS[16,17], a
structural optimization software. Third, two to
four discrete candidates for each design variable
are selected near the continuous optimum. The
new lower and upper bounds for the discrete
design are specified considering the range of
discrete values determined in the previous stage.
Sample points are generated within this design
range according to the number of design
variables using the space-filling method for
generating approximate models. After performing
FE the

approximate models composed of polynomials

analysis on each sample point,

are created. In this process, the polynomials are
constructed using the class of scikit-learn[18],

one of the machine learning libraries. Once
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approximate models in polynomials are built,
any existing metaheuristic algorithm can be
applied to the optimization problem made of the
polynomials. Since all the objective and
constraint functions defined in the optimization
problem are replaced with the polynomials,
finding the optimal solution becomes a simpler
and more efficient process. While most existing
adopt the

implement discrete designs, this research is close

studies stochastic approaches to
to the deterministic approach.

The suggested design method provides feasible
discrete designs while significantly reducing the
number of structural analyses compared with
existing studies. The efficiency of the proposed
design process is measured through three
standard test problems of 10-bar, 25-bar, and
72-bar truss structures, and the results are
compared with existing methods. The design
Python, and

process is implemented in

PolynomialFeatures, a class of the machine
learning library scikit-learn[18],

library PyGAD[19] are used.

and Python

2. Design process

2.1 Determination of continuous optimum
design
The structural sizing optimization formulation

for the test problems is presented as follows:

Minimize W) 1
st.—oy< olz)c oyli=1,...n,) )
—bu < 0, (x) < 6, (inode, j=xz,y,0rz) (3)

—I;< T< Ty 4)

where W, x, x1, xv, 0, 0, n. and subscript a//
represent weight, design variable vector, its
lower and upper bounds, stress, displacement,
and allowable value,

number of elements,

respectively. The structural sizing optimization to

find the optimum design with continuous
variables is performed by using GENESIS. The
optimization by GENESIS mostly requires only 10
or so detailed FE analyses to achieve the
optimum, even when there are huge numbers of

design variables and constraints[17].

2.2 Selection of discrete candidates

A discrete optimal solution is assumed to exist
near the continuous optimum obtained by the
structural sizing optimization techniques and
deterministic algorithm. The location of the
continuous optimum point of each design
variable, corresponds to one of the five types in
Fig. 1. The circle in Fig. 1 means an element of
a discrete set. If the location of x exists between
the lower and upper bounds as shown in Fig.
1(a), a total of four discrete values, two each,
centering continuous optimum point from up to
down, are selected as discrete candidate values.
On the other hand, if xi is located as shown in
Fig. 1(b) or (c), a total of three discrete values,
including the upper or lower bound, are selected
as discrete candidate values. Finally, if x
converges to the lower or upper bound, a total of
two discrete values, including the lower or upper
bound, are selected as discrete candidate values.

When all discrete candidates are determined for

upper bound  upper bound upper bound upper,bound upper.bound

; 11

lower bound  lower bound lower bound lower bound lower bound
(a) (b) () (d) (e)

* continuous optimum, x;" O discrete candidate

Fig. 1. Selection of a discrete candidate set
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each design variable, new lower bounds, LBi, and
new upper bounds, UBi are defined from the

discrete candidate set.

2.3 Suggested design procedure

The following design process is proposed for

the discrete sizing optimization of truss
structures as follows.

Step 1: An optimal solution is calculated using
the structural optimization techniques in the
continuous design space defined in Eq. (4). The
optimum point obtained in this way is called the
continuous optimum point. In this process,
active constraints are extracted among the
constraints to create efficient approximation
functions, and GENESIS, a software that includes
structural optimization techniques, is used.

Step 2: In the neighboring range of the
continuous optimum point, discrete values are
chosen as described in Section 2.2. A discrete
candidate set is made for each design variable.
Based on the discrete candidate sets for design
variables, ZBy and UBy for discrete design are
defined.

Step 3: Sample points are created to generate
the quadratic polynomials of the response values
such as weight, displacement, and stress included
in Eq. (1) to (3). The sample points are created
between LBy and UBy using the Latin hypercube
design, one of the space-filling methods. The
number of sample points, ns is determined as
follows in consideration of number of design
variables n, number of training data n, number
of test data me, and number of polynomial

coefficients mp.

ny,, =round(1.5n,),n,, =round(0.2n,,), ®)
Ny =Ty, + Mye
n,=1+2n+ nln=1) ©®)

Then, FE analysis is performed for each

sample point. The number of sample points

means the number of FE analyses in this step.
Step 4: Using PolynomialFeatures, a class of
Python library scikit-learn implementing machine
learning algorithms creates the quadratic
functions of responses in Eq. (1)-(3), but only the
responses for displacement and stress included in
the active constraints set in Step 1 are
considered. Only sample points are used to
generate the quadratic polynomials while
sample points to calculate the RMSE. The RMSE

to an i response, y is calculated as

RMSE,; or RMSE,; = )

Step 5: A formulation of sizing optimization of

the truss structure set in Eq. (1) to (4) is modified

as follows:
Minimize mx) ®
Subject to o,(z)s o, —(iter—2)x RMSE, (9)
(2217 7nas)
§,(z)s 0, (iter—2)x RMSE, (10)
(i =10 sn,)
LB, < z< UB, (1D

where jter, m.s, and n. represent the number of
outer iterations, the number of active stress
active

constraints, and the number of

displacement  constraints.  This formulation
approximates only the responses included in the
active constraints extracted in Step 1. The
displacements and stresses approximated by the
polynomials in Eq. (9), (10) inevitably have errors
with true values. Therefore, if the allowable
values set in Eq. (2), (3) are used as they are, then
the exact discrete optimal solution may not be
obtained. To overcome that, the allowable values
of the inequality constraints are relaxed or
tightened by introducing RMSE values. The
modified allowable values are indicated on the

right-hand side of Eq. (9), (10) by reflecting iter
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Table 1. Continuous optimal solutions due to starting points

Case % (in) x (in®) w (/)
10-bar Case 1 1.62 32.168, 1.620, 23.375, 15.250, 1.621, 1.620, 8.427, 22.581, 21.575, 1.620 548.31
10-bar Case 2 5.00 32.097, 1.621, 23.389, 15.261, 1.620, 1.621, 8.419, 22.612, 21.582, 1.620 548.29
10-bar Case 3 33.0 32.128, 1.622, 23.514, 15.301, 1.620, 1.622, 8.454, 22.431, 21.579, 1.660 548.46
25-bar Case 1 0.10 0.100, 0.538, 3.400, 0.100, 1.828, 0.947, 0.431, 3.400 484.27
25-bar Case 2 1.50 0.100, 0.458, 3.400, 0.100, 1.879, 0.960, 0.463, 3.400 484.10
25-bar Case 3 3.40 0.100, 0.450, 3.400, 0.100, 1.886, 0.961, 0.466, 3.399 484.12
72-bar Case 1 0.20  |1.887, 0.512, 0.100, 0.100, 1.269, 0.511, 0.100, 0.100, 0.524, 0.517, 0.100, 0.100, 0.156,|  379.62
0.546, 0.411, 0.569
72-bar Case 2 2.00  |1.884, 0.513, 0.100, 0.100, 1.268, 0.512, 0.100, 0.100, 0.524, 0.517, 0.100, 0.100, 0.156,|  379.63
0.546, 0.411, 0.570
72-bar Case 3 320  |1.887, 0.512, 0.100, 0.100, 1.271, 0.511, 0.100, 0.100, 0.523, 0.517, 0.100, 0.100, 0.157,|  379.62
0.546, 0.411, 0.568
and RMSE. That is, for the active constraints the initial value & times to compensate for falling
determined in Step 1, the relaxed or tightened into a local optimum point.

allowable values are determined by considering
the RMSE for the responses and the iter. The
allowable values become tighter as iter increases.
The solution of the formulation of Eq. (8)-(11)
can be infeasible, which is checked and filtered
in step 7 through an FE analysis.

Step 6: Since all the responses in Eq. (8)-(11)
are substituted with the polynomials, the desired
outcome is achieved with less computing time
regardless of which metaheuristic algorithm is
used in calculating the discrete optimum point.
In this research, PyGADI[19],

Python library for implementing the genetic

an open-source

algorithm, is utilized to solve Eq. (8)-(11) in the
As the of

parameters constituting the genetic algorithm

discrete design space. values
increase, the probability of finding a global
optimum point also increases. However, this

of

parameters that inevitably affect the calculation

process may result in extreme values
time. Although the formulation consists of simple
polynomials, it may require numerous function
calculations in the optimization process, taking a
substantial amount of calculation time, thus
this

Therefore, appropriate values are assigned to the

undermining the purpose of research.
parameters included in PyGAD, and the genetic

algorithms are repeatedly applied while changing
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Step 7: The & solutions performed in step 6 are
sorted in ascending order based on the size of
objective function values. Then, FE analysis is
performed on the discrete design variables with
If the
constraints in Eq. (2), (3) are satisfied, a final

the smallest objective function value.

decision is made regarding the discrete optimal
solution, and the design process ends. If any of
the constraints of Eq. (2), (3) is violated due to
the FE analysis, then the following combination
of design variables is reviewed. As a result of the
FE analysis, if it is found that a constraint not
included in the active constraints is violated, it is
added to the active constraints and returns to
Step 5. If any feasible solution is not obtained up
to number j=4-1, move to the next step.

Step 8: The case that any feasible solution is
not found from Step 7 to the A-th iteration is due
to the modified allowable values defined in Eq.
9), (10). Thus, the allowable values included in
the second terms on the right side of Eq. (9), (10)
are tightly adjusted. When the modified allowable
values are set in Step 5, the design process
proceeds to Step 6. Inclusion of the number of
iterations representing the circulation of Step 5
to Step 7 is to relax or tighten the allowable

values.
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3. Test examples and results.

The problems of 10-bar, 25-bar, and 72-bar
truss structures are representative examples used
as test problems to benchmark and compare a
discrete sizing optimization method of truss
structures. The problems are solved by applying
the suggested design process. The unit systems
represented in existing studies are used as they
are to compare the results of this research with
those of existing studies. The results of the
present and existing studies are compared with
the optimum weight, NSA(number of structural
analyses), FEET(estimated elapsed time), and
CWconstraint violation). In the comparison table,
the weight in existing studies using stochastic
approaches indicates the best weight, while the
NSA in existing studies is the minimum number
in the case of multiple trials. The ZES of the
present study is the total elapsed time up to the
final decision, including the continuous optimal
solution calculation time, FE analysis performing
time for sample points, polynomial building time,
and discrete optimal solution calculation time
using PyGAD. In contrast, the FES of existing
studies is only the estimated total calculation
time of the FE analyses required for NSA by
considering the FE analysis for one time in the
computer with 2.20 GHz-2 Processor-CPU and
64GB-RAM. For each test problem, while changing
the initial values three times, represented as Case
1, Case 2, and Case 3, the continuous optimum
designs are obtained using GENESIS. The discrete
optimal solutions are determined by applying the
steps of the proposed design process for each
Table 1

. e e 0 .
summarizes the initial values, x’ and continuous

local continuous optimum design.

optimal solutions, x for each test problem. In all
examples, £ is set to 10.

3.1 10-bar truss

The 10-bar truss structure[13-15], as shown in
Fig. 2 has the material properties of density p

‘ 360 in 360 in
) 3) (1)
v 1 2
7 8 9 10 £
5 6|2
y o
x 3 4
L
(6) (4) (2)
P,=10 Ib; P,=105 Ib;

Fig. 2. 10-bar truss structure

=0.1 Ib/in®, and young's modulus E=10,000 ksi.
The design variable is the cross-sectional area of
each element, thus n=10, and for this sizing
optimization problem, ¢, is 2.0 in, and o, is
25,000 psi. The discrete design variables are
selected from the set, S={1.62, 1.80, 1.99, 2.13,
2.38, 2.62, 2.63, 2.88, 2.93, 3.09, 3.13, 3.38, 3.47,
3.55, 3.63, 3.84, 3.87, 3.88, 4.18, 4.22, 4.49, 4.59,
4.80, 4.97, 5.12, 5.74, 7.22, 7.97, 11.50, 13.50,
13.90, 14.20, 15.50, 16.00, 16.90, 18.80, 19.90,
22.00, 22.90, 26.50, 30.00, 33.50} in”. From Table
1, it can be seen that the same optimal solution
is obtained even if the initial values are changed.
The discrete optimal solution is obtained from
the first number of iterations (iter=1), which is
compared with existing studies as shown in
Table 2. The suggested discrete optimum design
is the same as SA[3], aeDE[11], SSA[10], ADS[1],
HHS[12], EFA[20], ACCS[13], and NMA[14], thus
lies in the feasible region. In other studies, the
weight of HPSO and MBA increases by 0.75% and
0.31%, respectively, and HDA provides an infeasible
design. Looking at NSA, the NSA of this research
is only 0.38~14.6% compared with ADS, which

a=200in
b=75in
¢=100in

Fig. 3. 25-bar truss structure
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Table 2. Comparison of discrete designs for the 10-bar truss

x(in?) HPSOI[4] SA3] MBAIG] aeDE[11] SSA[10] ADS[1] HHS[12]
X1 30.00 33.50 30.00 33.50 33.50 33.50 33.50
x 1.62 1.62 1.62 1.62 1.62 1.62 1.62
X3 22.0 22.90 22.90 22.90 22.90 22.90 22.90
x4 13.50 14.20 16.90 14.20 14.20 14.20 14.20
x5 1.62 1.62 1.62 1.62 1.62 1.62 1.62
X5 1.62 1.62 1.62 1.62 1.62 1.62 1.62
X7 7.97 7.97 7.97 7.97 7.97 7.97 7.97
X8 26.50 22.90 22.90 22.90 22.90 22.90 22.90
Xy 22.00 22.00 22.90 22.00 22.00 22.00 22.00
X10 1.80 1.62 1.62 1.62 1.62 1.62 1.62
W*(Iby) 5531.91 5490.74 5507.75 5490.74 5490.74 5490.74 5490.74
NSA 50,000 10,500 3,600 2,550 5,050 1,000 5,000
EETE) 17,000 3,570 1,224 867 1,717 340 1,700
CU%) 0 0 0 0 0 0 0
Table 2. (continued)
x (in?) EFA[20] ACCS[13] NMA[14] HDA[15] Present study
Case 1 Case 2 Case 3
X1 33.50 33.50 33.50 33.50 33.50 33.50 33.50
x 1.62 1.62 1.62 1.62 1.62 1.62 1.62
X 22.90 22.90 22.90 22.00 22.90 22.90 22.90
X4 14.20 14.20 14.20 14.50 14.20 14.20 14.20
x5 1.62 1.62 1.62 1.62 1.62 1.62 1.62
X5 1.62 1.62 1.62 1.62 1.62 1.62 1.62
X7 7.97 7.97 7.97 7.97 7.97 7.97 7.97
X3 22.90 22.90 22.90 22.90 22.90 22.90 22.90
X 22.00 22.00 22.00 22.00 22.00 22.00 22.00
X10 1.62 1.62 1.62 1.62 1.62 1.62 1.62
W*(Iby) 5490.74 5490.74 5490.74 5469.14 5490.74 5490.74 5490.74
NSA 2,050 2,650 2,880 7,950 139 146 143
EETG) 697 901 979 2,703 186 188 187
CU%) 0 0 0 0.38 0 0 0

had the smallest NS4 among existing studies.
When comparing EE7, the EET of this study is
only 1.1~55.3% compared with existing studies.

3.2 25-bar truss

The discrete design of spatial 25-bar truss
structure[13-15] shown in Fig. 3 is to determine
the cross-sectional areas grouped into eight as
follows: xi(A1), x(A2~As), x3(Ae~Ao), xa(A10~Ar),
x5(A1~A1), x6(A1s~Ar), x(As~Az), and xs(Ax~Ass).
This truss structure is made of the material with
0=0.1 Ib/in> and E=10,000 ksi. The discrete
design variables are selected from the set, S={0.1,
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2,
1.3, 1.4, 1.5 ,1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3,
2.4, 2.6, 2.8, 3.0, 3.2, 3.4} in>. For the sizing

403

optimization problem, ¢, is 0.35 in, and o, is
40,000 psi. The loading condition is summarized
in [13-15].

From Table 1, we see that the same optimal
solution is calculated even though the initial
values are changed. The results are summarized
in Table 3, compared with existing studies. The
first iteration (iter=1) in the design process gives
the optimal solution. All studies except HAD,
which provides the infeasible solution, yield the
same results. Looking at the NSA, this study is
the smallest number, followed by NMA with 250.
All other existing studies have more than 1000.
The NSA of this study is only 0.42~52.0 % of that
of existing studies. On EE7, NMA has the smallest
value, followed by this study.



FAte71&te=E A A23d A9E, 2022

Table 3. Comparison of discrete designs for the 25-bar truss

X HPSO SA MBA aeDE SSA HHS EFA ACCS NMA HDA Present study
(in?) [4] [3] @] [11] [10] [12] [20] [13] [14] (15] Case 1 Case2 | Case3
X1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
x2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.4 0.3 0.3 0.3
b e 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4
X4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
X5 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 1.9 2.1 2.1 2.1
X6 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
X7 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.4 0.5 0.5 0.5
X8 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4
W(Iby) 484.85| 484.85| 484.85| 484.85| 484.85| 484.85| 484.85| 484.85| 484.85| 482.83| 484.85| 484.85| 484.85
NSA 25,000 7,900 2,150 1,678| 5,050 5,000 1.300 2,560 250 7,450 104 120 130
EET) 9,063 2,864 779 608 1,831 1.813 471 928 01 2,701 252 258 262
CU%) 0 0 0 0 0 0 0 0 0 0.6 0 0 0

3.3 72-bar truss

The discrete design of spatial 72-bar truss
structure[12,13,15]

determine the cross-sectional areas grouped into

shown in Fig. 4 is to
sixteen as follows: xi(Ai~Ag9), x(As~A12), x3(Aiz~Ase),
x4(A17~A18),  x5(A1o~A2),  x6(A2s~As0), x7(As31~Asd),
x8(A35~A36), x9(A37~Ag0), x10(Ad1~Adg), x11(Aso~As2),
x12(A53-Asq), x13(As5~Asg), x14(Aso~Ass), x15(A67~Ar0),
and xi16(A71~A72). This truss structure is made of
the material with p=0.1 Ib/in> and E=10,000 ksi,
and the discrete design variables are selected
from the set, $={0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5 ,1.6, 1.7, 1.8,
1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.6, 2.7, 2.8, 2.9, 3.0,

@ 5 (19)
< 18]
| 1;7 3 r _( )
3 5 9
51 15)
(16) Z B 5
49
4 13 45 3, a4
A 4
AL S,
1) 33 (11}
. 31
(9)) ~7/(10)
2p 2 <8 2477
1 p-
<
®), L 7)
(5) = © 4
! ‘9 S5 Xs .
! I a=120 in
> 4 QU 5=120 in
a" i @ y_ c=60in
P b

Fig. 4. 72-bar truss structure

3.1, 3.2} in>. 6, and o, are given as 0.25 in and

25,000 psi, respectively. The loading condition is
summarized in [12,13,15]. Table 4 shows the final
results compared with existing studies. Although
the HDA has the smallest weight, it is an
design. Compared with existing
studies, this study's NS4 is only 0.62~9.68% and

the EET is only 2.09~32.72%.

infeasible

4. Concluding remarks

Although the structural sizing optimization

technique, including sensitivity analysis in
continuous design space, is well established in
theory, applying it to discrete designs is not
general. Instead, most recent studies have used
heuristic algorithms, which inevitably result in

This

proposes a fast and economical design based on

increased structural analyses. research
the optimal solution obtained from the structural
sizing optimization techniques in continuous
space and machine learning tools. The proposed
design process, if the number of design variables
is known, the numbers of training data and test
data are determined, and a discrete optimal
solution is calculated based on this, which is

close to a deterministic way.
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Table 4. Comparison of discrete designs for the 72-bar truss

HPSO MBA IMBA IMCSS SSA HHS ACCS HDA Present stud
[4] [5] [6] [9] [10] [12] [13] [15] Case 1 Case 2 | Case 3
X1 2.1 2.0 1.9 2.0 2.0 1.9 2.0 2.3 2.0 2.0 2.0
X2 0.6 0.6 0.5 0.5 0.5 0.5 0.5 0.4 0.5 0.5 0.5
X3 0.1 0.4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
X4 0.1 0.6 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
X5 1.4 0.5 1.4 1.3 1.3 1.4 1.3 1.2 1.3 13 1.3
X6 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
X7 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
X8 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
X9 0.5 1.4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
X10 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
X11 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
X12 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
X13 0.2 1.9 0.2 0.2 0.2 0.2 0.2 0.1 0.2 0.2 0.2
X14 0.5 0.5 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6
X15 0.3 0.1 0.4 0.4 0.4 0.4 0.4 0.3 0.4 0.4 0.4
X16 0.7 0.1 0.6 0.6 0.6 0.6 0.6 0.8 0.6 0.6 0.6
W*(Iby) 388.94 385.54 385.54 385.54 385.54 385.54 385.54 379.2 385.54 385.54 385.54
NSA 50,000 9,450 3,200 3,625 5,050 5,000 12,000 7,800 306 310 297
EETE) 24,688 4,666 1,580 1,790 2,493 2,469 5,925 3,851 515 517 511
CU%) 0 0 0 0 0 0 0 35.59 0 0 0

The main motivation of this research is to
provide a discrete design while reducing the
number of structural analyses as many as
possible. This research is compared with existing
studies through three examples and the following
results are observed. The NSAs are only
0.38~14.60%, 0.42~52.0%, and 0.62~9.68% for
the 10-bar, 25-bar, and 72-bar

respectively. In comparison, the FES of existing

trusses,

studies is not possible to measure exactly and it
represents only the estimated total calculation
time obtained by multiplying the number of
structural analyses times the one-analysis time
based on the computer used in this study.
However, the EET of this study is the measured
time taken on the entire process from
continuous optimization to discrete optimization.
In the case of the 25-bar truss design, the EET of
NMA is 34.73% smaller than that of this study.
Excluding that, the EET of this study is only
1.10~55.30%, 3.14~54.77%, and 2.09~32.59% for
the 10-bar, 25-bar, and 72-bar

respectively. The discrete designs

trusses,
of three
examples converge to the same optimum point

regardless of the initial values, but this is not
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theoretically guaranteed. In future research, the
suggested method will be applied to the shape

optimization problems design of truss structures.
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