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Abstract  This research proposes a series of design procedures for discrete sizing optimization of truss 
structures. Most discrete sizing optimization methods for truss structures adopt stochastic approaches 
using metaheuristic algorithms. However, such methods involve many structural analyses until they find 
a discrete optimal solution, which is expensive. The primary motivation of this research is to suggest
a discrete design while reducing the number of structural analyses as many as possible. First, the 
structural optimization software GENESIS performs sizing optimization in a continuous design space 
using proven techniques. This provides an excellent optimal solution, and the proposed method is 
applied while assuming that the discrete optimal solution exists near the continuous optimum design.
For discrete sizing optimization of a truss structure, approximate models are generated near the 
continuous optimum point using the scikit-learn-one capability of machine learning libraries, leading to
a simple optimization problem. Then, the python library, PyGAD, is used to obtain a discrete optimal 
solution. Compared with existing methods, this research provides discrete designs requiring only 
0.38-52.0% of the number of structural analyses performed in other studies.

요  약  본 연구에서는 트러스 구조물의 이산 치수 최적화를 위한 일련의 설계 절차를 제안하고 있다. 기존 트러스 구조물
의 이산 치수 최적화 방법의 대부분은 메타휴리스틱 알고리즘을 사용한 통계적 접근 방식을 채택하고 있다. 그러나 이러
한 방법은 이산 최적해를 찾을 때까지 많은 해석을 요구하므로 고가이다. 본 연구의 주된 동기는 구조해석의 수를 최대
한 줄이면서 이산설계를 제안하는데 있다. 첫째, 잘 개발된 구조 최적화 기법이 포함된 상용 소프트웨어인 GENESIS를 
이용하여 연속설계 공간에서 최적해를 산출한다. 연속설계공간에서의 최적해는 우수한 해를 제공한다. 그 다음, 이산 
최적해가 연속 최적해 부근에 있다고 가정하여 제안하는 방법을 적용한다. 트러스 구조물의 이산 치수최적화를 위해 머
신러닝 라이브러리 중 하나인 scikit-learn에 내장된 기능을 사용하여 근사모델을 연속 최적해 근처에서 생성하여 간단
한 최적화 문제로 변환한다. 그런 다음 파이썬 라이브러리인 PyGAD를 사용하여 이산 최적해를 산출한다. 본 연구는
기존의 메타휴리스틱 알고리즘을 연계한 접근법에 비해 0.38 ~ 52.0%의 구조해석 횟수로서 이산설계를 제공하고 있다. 
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1. Introduction

The sizing optimization problem of truss 
structures should be treated in a discrete design 
space rather than a continuous design space if 
design variables are selected from a standard 
specification or design codes. The discrete sizing 
optimization problem has non-convex and 
combinatorial characteristics. Therefore, structural 
optimization techniques in continuous design 
space cannot be directly applied even though it 
was well developed. Most recent studies on 
discrete structural design have adopted stochastic 
approaches such as metaheuristic algorithms[1]. 
Since such methods do not use gradient 
information to find an optimal solution, they can 
be usefully applied to optimization problems, 
including multi-modal function, nonlinear function 
with noises, discontinuous function, etc.[2]. 
However, these methods inevitably require a lot 
of function calculations compared with gradient 
-based algorithms to find an optimal solution 
because the direct link between metaheuristic 
algorithms and structural analysis triggers 
numerous structural analyses. In addition, the 
quality of an optimal solution may depend on the 
parameters defined in the algorithm. Contrary to 
stochastic approaches, the deterministic 
structural optimization approach in continuous 
design space has the advantage of determining 
the optimal solution without many structural 
analyses because it uses a mathematically clearly 
defined sensitivity analysis, even though it 
provides a local optimum. This research aims to 
find a discrete solution by utilizing the advantage 
of continuous optimum design while reducing 
the number of structural analyses.

Although discrete sizing optimization of truss 
structures is a classic topic, there are ongoing 
studies on different methods due to the difficulty 
in solving the problem. Most recent studies on 
the discrete design of truss structures are looking 
for the optimal solution by applying 

metaheuristic algorithms. The already proven 
and well-developed metaheuristic methods that 
simulate natural laws or natural phenomena have 
been used directly or modified to the discrete 
design of truss structures. Such algorithms 
include SA[3], PSO[4], MBA[5,6], GA[7], ESASS[8], 
MCSS[9], SSA[10], ADS[1], DE[11], HHS[12], 
ACCS[13], NMA[14], HDA[15], etc. Although these 
algorithms cannot mathematically guarantee that 
they will find the global optimum, they try to 
find it in a stochastic or heuristic way. Still, the 
discrete optimal solution can be obtained 
through trial and error by setting appropriate 
parameters related to each algorithm. However, 
such a method requires many structural analyses 
to find the discrete optimum design. 

This research presents a series of design 
procedures to overcome the disadvantage caused 
by directly linking metaheuristic algorithms and 
structural analysis in discrete sizing optimization. 
A design process for discrete sizing optimization 
of truss structures presented in this research is as 
follows: First, it is assumed that a discrete 
optimum exists around a continuous optimum. 
Second, the optimal solution is calculated using 
well-developed structural sizing optimization 
techniques in continuous design space defined 
within a design range using GENESIS[16,17], a 
structural optimization software. Third, two to 
four discrete candidates for each design variable 
are selected near the continuous optimum. The 
new lower and upper bounds for the discrete 
design are specified considering the range of 
discrete values   determined in the previous stage. 
Sample points are generated within this design 
range according to the number of design 
variables using the space-filling method for 
generating approximate models. After performing 
FE analysis on each sample point, the 
approximate models composed of polynomials 
are created. In this process, the polynomials are 
constructed using the class of scikit-learn[18], 
one of the machine learning libraries. Once 



Discrete Sizing Optimization of Truss Structures Using Continuous Optimization and Machine Learning Tools

399

Fig. 1. Selection of a discrete candidate set

approximate models in polynomials are built, 
any existing metaheuristic algorithm can be 
applied to the optimization problem made of the 
polynomials. Since all the objective and 
constraint functions defined in the optimization 
problem are replaced with the polynomials, 
finding the optimal solution becomes a simpler 
and more efficient process. While most existing 
studies adopt the stochastic approaches to 
implement discrete designs, this research is close 
to the deterministic approach.

The suggested design method provides feasible 
discrete designs while significantly reducing the 
number of structural analyses compared with 
existing studies. The efficiency of the proposed 
design process is measured through three 
standard test problems of 10-bar, 25-bar, and 
72-bar truss structures, and the results are 
compared with existing methods. The design 
process is implemented in Python, and 
PolynomialFeatures, a class of the machine 
learning library scikit-learn[18], and Python 
library PyGAD[19] are used.

2. Design process 

2.1 Determination of continuous optimum 
    design 

The structural sizing optimization formulation 
for the test problems is presented as follows: 

  (1)
  ≤ ≤      (2) 
 ≤  ≤        or (3)
≤  ≤  (4)

where W, x, xL, xU,  , , ne, and subscript all 
represent weight, design variable vector, its 
lower and upper bounds, stress, displacement, 
number of elements, and allowable value, 
respectively. The structural sizing optimization to 

find the optimum design with continuous 
variables is performed by using GENESIS. The 
optimization by GENESIS mostly requires only 10 
or so detailed FE analyses to achieve the 
optimum, even when there are huge numbers of 
design variables and constraints[17]. 

2.2 Selection of discrete candidates  
A discrete optimal solution is assumed to exist 

near the continuous optimum obtained by the 
structural sizing optimization techniques and 
deterministic algorithm. The location of the 
continuous optimum point of each design 
variable, corresponds to one of the five types in 
Fig. 1. The circle in Fig. 1 means an element of 
a discrete set. If the location of xi

* exists between 
the lower and upper bounds as shown in Fig. 
1(a), a total of four discrete values, two each, 
centering continuous optimum point from up to 
down, are selected as discrete candidate values. 
On the other hand, if xi

* is located as shown in 
Fig. 1(b) or (c), a total of three discrete values, 
including the upper or lower bound, are selected 
as discrete candidate values. Finally, if xi

* 

converges to the lower or upper bound, a total of 
two discrete values, including the lower or upper 
bound, are selected as discrete candidate values. 
When all discrete candidates are determined for 
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each design variable, new lower bounds, LBd, and 
new upper bounds, UBd, are defined from the 
discrete candidate set.

2.3 Suggested design procedure
The following design process is proposed for 

the discrete sizing optimization of truss 
structures as follows.

Step 1: An optimal solution is calculated using 
the structural optimization techniques in the 
continuous design space defined in Eq. (4). The 
optimum point obtained in this way is called the 
continuous optimum point. In this process, 
active constraints are extracted among the 
constraints to create efficient approximation 
functions, and GENESIS, a software that includes 
structural optimization techniques, is used.

Step 2: In the neighboring range of the 
continuous optimum point, discrete values are 
chosen as described in Section 2.2. A discrete 
candidate set is made for each design variable. 
Based on the discrete candidate sets for design 
variables, LBd and UBd for discrete design are 
defined.

Step 3: Sample points are created to generate 
the quadratic polynomials of the response values 
such as weight, displacement, and stress included 
in Eq. (1) to (3). The sample points are created 
between LBd and UBd using the Latin hypercube 
design, one of the space-filling methods. The 
number of sample points, ns is determined as 
follows in consideration of number of design 
variables n, number of training data ntr, number 
of test data nte, and number of polynomial 
coefficients np.

     
   

(5)

  

 (6)

Then, FE analysis is performed for each 
sample point. The number of sample points 

means the number of FE analyses in this step.
Step 4: Using PolynomialFeatures, a class of 

Python library scikit-learn implementing machine 
learning algorithms creates the quadratic 
functions of responses in Eq. (1)-(3), but only the 
responses for displacement and stress included in 
the active constraints set in Step 1 are 
considered. Only sample points are used to 
generate the quadratic polynomials while  
sample points to calculate the RMSE. The RMSE 
to an i response, yi is calculated as 

 or  




 




 
   (7)

Step 5: A formulation of sizing optimization of 
the truss structure set in Eq. (1) to (4) is modified 
as follows:

  (8)
  ≤   ×

  ⋯ 
(9)

≤  ×
  ⋯ 

(10)

 ≤ ≤  (11)
               

where iter, nas, and nad represent the number of 
outer iterations, the number of active stress 
constraints, and the number of active 
displacement constraints. This formulation 
approximates only the responses included in the 
active constraints extracted in Step 1. The 
displacements and stresses approximated by the 
polynomials in Eq. (9), (10) inevitably have errors 
with true values. Therefore, if the allowable 
values set in Eq. (2), (3) are used as they are, then 
the exact discrete optimal solution may not be 
obtained. To overcome that, the allowable values 
of the inequality constraints are relaxed or 
tightened by introducing RMSE values. The 
modified allowable values are indicated on the 
right-hand side of Eq. (9), (10) by reflecting iter 
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Case x0 (in2) x* (in2) w*(lbf)

10-bar Case 1 1.62 32.168, 1.620, 23.375, 15.250, 1.621, 1.620, 8.427, 22.581, 21.575, 1.620 548.31 
10-bar Case 2 5.00 32.097, 1.621, 23.389, 15.261, 1.620, 1.621, 8.419, 22.612, 21.582, 1.620 548.29 
10-bar Case 3 33.0 32.128, 1.622, 23.514, 15.301, 1.620, 1.622, 8.454, 22.431, 21.579, 1.660 548.46
25-bar Case 1 0.10  0.100, 0.538, 3.400, 0.100, 1.828, 0.947, 0.431, 3.400  484.27

25-bar Case 2 1.50  0.100, 0.458, 3.400, 0.100, 1.879, 0.960, 0.463, 3.400 484.10
25-bar Case 3 3.40  0.100, 0.450, 3.400, 0.100, 1.886, 0.961, 0.466, 3.399 484.12

72-bar Case 1 0.20 1.887, 0.512, 0.100, 0.100, 1.269, 0.511, 0.100, 0.100, 0.524, 0.517, 0.100, 0.100, 0.156, 
0.546, 0.411, 0.569 

379.62

72-bar Case 2 2.00 1.884, 0.513, 0.100, 0.100, 1.268, 0.512, 0.100, 0.100, 0.524, 0.517, 0.100, 0.100, 0.156, 
0.546, 0.411, 0.570 

379.63

72-bar Case 3 3.20 1.887, 0.512, 0.100, 0.100, 1.271, 0.511, 0.100, 0.100, 0.523, 0.517, 0.100, 0.100, 0.157, 
0.546, 0.411, 0.568 

379.62

Table 1. Continuous optimal solutions due to starting points

and RMSE. That is, for the active constraints 
determined in Step 1, the relaxed or tightened 
allowable values are determined by considering 
the RMSE for the responses and the iter. The 
allowable values become tighter as iter increases. 
The solution of the formulation of Eq. (8)-(11) 
can be infeasible, which is checked and filtered 
in step 7 through an FE analysis.

Step 6: Since all the responses in Eq. (8)-(11) 
are substituted with the polynomials, the desired 
outcome is achieved with less computing time 
regardless of which metaheuristic algorithm is 
used in calculating the discrete optimum point. 
In this research, PyGAD[19], an open-source 
Python library for implementing the genetic 
algorithm, is utilized to solve Eq. (8)-(11) in the 
discrete design space. As the values of 
parameters constituting the genetic algorithm 
increase, the probability of finding a global 
optimum point also increases. However, this 
process may result in extreme values of 
parameters that inevitably affect the calculation 
time. Although the formulation consists of simple 
polynomials, it may require numerous function 
calculations in the optimization process, taking a 
substantial amount of calculation time, thus 
undermining the purpose of this research. 
Therefore, appropriate values are assigned to the 
parameters included in PyGAD, and the genetic 
algorithms are repeatedly applied while changing 

the initial value k times to compensate for falling 
into a local optimum point. 

Step 7: The k solutions performed in step 6 are 
sorted in ascending order based on the size of 
objective function values. Then, FE analysis is 
performed on the discrete design variables with 
the smallest objective function value. If the 
constraints in Eq. (2), (3) are satisfied, a final 
decision is made regarding the discrete optimal 
solution, and the design process ends. If any of 
the constraints of Eq. (2), (3) is violated due to 
the FE analysis, then the following combination 
of design variables is reviewed. As a result of the 
FE analysis, if it is found that a constraint not 
included in the active constraints is violated, it is 
added to the active constraints and returns to 
Step 5. If any feasible solution is not obtained up 
to number j=k-1, move to the next step.

Step 8: The case that any feasible solution is 
not found from Step 7 to the k-th iteration is due 
to the modified allowable values defined in Eq. 
(9), (10). Thus, the allowable values included in 
the second terms on the right side of Eq. (9), (10) 
are tightly adjusted. When the modified allowable 
values are set in Step 5, the design process 
proceeds to Step 6. Inclusion of the number of 
iterations representing the circulation of Step 5 
to Step 7 is to relax or tighten the allowable 
values.
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Fig. 2. 10-bar truss structure

Fig. 3. 25-bar truss structure

3. Test examples and results.

The problems of 10-bar, 25-bar, and 72-bar 
truss structures are representative examples used 
as test problems to benchmark and compare a 
discrete sizing optimization method of truss 
structures. The problems are solved by applying 
the suggested design process. The unit systems 
represented in existing studies are used as they 
are to compare the results of this research with 
those of existing studies. The results of the 
present and existing studies are compared with 
the optimum weight, NSA(number of structural 
analyses), EET(estimated elapsed time), and 
CV(constraint violation). In the comparison table, 
the weight in existing studies using stochastic 
approaches indicates the best weight, while the 
NSA in existing studies is the minimum number 
in the case of multiple trials. The EES of the 
present study is the total elapsed time up to the 
final decision, including the continuous optimal 
solution calculation time, FE analysis performing 
time for sample points, polynomial building time, 
and discrete optimal solution calculation time 
using PyGAD. In contrast, the EES of existing 
studies is only the estimated total calculation 
time of the FE analyses required for NSA by 
considering the FE analysis for one time in the 
computer with 2.20 GHz-2 Processor-CPU and 
64GB-RAM. For each test problem, while changing 
the initial values three times, represented as Case 
1, Case 2, and Case 3, the continuous optimum 
designs are obtained using GENESIS. The discrete 
optimal solutions are determined by applying the 
steps of the proposed design process for each 
local continuous optimum design. Table 1 
summarizes the initial values, x0 and continuous 
optimal solutions, x* for each test problem. In all 
examples, k is set to 10.

3.1 10-bar truss 
The 10-bar truss structure[13-15], as shown in 

Fig. 2 has the material properties of density ρ

=0.1 lb/in3, and young’s modulus E=10,000 ksi. 
The design variable is the cross-sectional area of 
each element, thus n=10, and for this sizing 
optimization problem,  is 2.0 in, and  is 
25,000 psi. The discrete design variables are 
selected from the set, S={1.62, 1.80, 1.99, 2.13, 
2.38, 2.62, 2.63, 2.88, 2.93, 3.09, 3.13, 3.38, 3.47, 
3.55, 3.63, 3.84, 3.87, 3.88, 4.18, 4.22, 4.49, 4.59, 
4.80, 4.97, 5.12, 5.74, 7.22, 7.97, 11.50, 13.50, 
13.90, 14.20, 15.50, 16.00, 16.90, 18.80, 19.90, 
22.00, 22.90, 26.50, 30.00, 33.50} in2. From Table 
1, it can be seen that the same optimal solution 
is obtained even if the initial values are changed. 
The discrete optimal solution is obtained from 
the first number of iterations (iter=1), which is 
compared with existing studies as shown in 
Table 2. The suggested discrete optimum design 
is the same as SA[3], aeDE[11], SSA[10], ADS[1], 
HHS[12], EFA[20], ACCS[13], and NMA[14], thus 
lies in the feasible region. In other studies, the 
weight of HPSO and MBA increases by 0.75% and 
0.31%, respectively, and HDA provides an infeasible 
design. Looking at NSA, the NSA of this research 
is only 0.38~14.6% compared with ADS, which 
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x*(in2) HPSO[4] SA[3] MBA[6] aeDE[11] SSA[10] ADS[1] HHS[12]
 x1 30.00 33.50 30.00 33.50 33.50 33.50 33.50
 x2 1.62 1.62 1.62 1.62 1.62 1.62 1.62
 x3 22.0 22.90 22.90 22.90 22.90 22.90 22.90
 x4 13.50 14.20 16.90 14.20 14.20 14.20 14.20
 x5 1.62 1.62 1.62 1.62 1.62 1.62 1.62
 x6 1.62 1.62 1.62 1.62 1.62 1.62 1.62
 x7 7.97 7.97 7.97 7.97 7.97 7.97 7.97 
 x8 26.50 22.90 22.90 22.90 22.90 22.90 22.90
 x9 22.00 22.00 22.90 22.00 22.00 22.00 22.00
 x10 1.80 1.62 1.62 1.62 1.62 1.62 1.62

W*(lbf) 5531.91 5490.74 5507.75 5490.74 5490.74 5490.74 5490.74
NSA 50,000 10,500 3,600 2,550 5,050 1,000 5,000

EET(s) 17,000 3,570 1,224 867 1,717 340 1,700
CV(%) 0 0 0 0 0 0 0

Table 2. Comparison of discrete designs for the 10-bar truss

 

x*(in2) EFA[20] ACCS[13] NMA[14] HDA[15] Present study
Case 1  Case 2 Case 3

 x1 33.50 33.50 33.50 33.50 33.50 33.50 33.50
 x2 1.62 1.62 1.62 1.62 1.62 1.62 1.62
 x3 22.90 22.90 22.90 22.00 22.90 22.90 22.90
 x4 14.20 14.20 14.20 14.50 14.20 14.20 14.20
 x5 1.62 1.62 1.62 1.62 1.62 1.62 1.62
 x6 1.62 1.62 1.62 1.62 1.62 1.62 1.62
 x7 7.97 7.97 7.97 7.97 7.97 7.97 7.97 
 x8 22.90 22.90 22.90 22.90 22.90 22.90 22.90
 x9 22.00 22.00 22.00 22.00 22.00 22.00 22.00
 x10 1.62 1.62 1.62 1.62 1.62 1.62 1.62

W*(lbf) 5490.74 5490.74 5490.74 5469.14 5490.74 5490.74 5490.74
NSA 2,050 2,650 2,880 7,950 139 146 143

EET(s) 697 901 979 2,703 186 188 187
CV(%) 0 0 0 0.38 0 0 0

Table 2. (continued)

had the smallest NSA among existing studies. 
When comparing EET, the EET of this study is 
only 1.1~55.3% compared with existing studies.

3.2 25-bar truss
The discrete design of spatial 25-bar truss 

structure[13-15] shown in Fig. 3 is to determine 
the cross-sectional areas grouped into eight as 
follows: x1(A1), x2(A2~A5), x3(A6~A9), x4(A10~A11), 
x5(A12~A13), x6(A14~A17), x7(A18~A21), and x8(A22~A25). 
This truss structure is made of the material with 
ρ=0.1 lb/in3 and E=10,000 ksi. The discrete 
design variables are selected from the set, S={0.1, 
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 
1.3, 1.4, 1.5 ,1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 
2.4, 2.6, 2.8, 3.0, 3.2, 3.4} in2. For the sizing 

optimization problem,  is 0.35 in, and  is 
40,000 psi. The loading condition is summarized 
in [13-15].

From Table 1, we see that the same optimal 
solution is calculated even though the initial 
values are changed. The results are summarized 
in Table 3, compared with existing studies. The 
first iteration (iter=1) in the design process gives 
the optimal solution. All studies except HAD, 
which provides the infeasible solution, yield the 
same results. Looking at the NSA, this study is 
the smallest number, followed by NMA with 250. 
All other existing studies have more than 1000. 
The NSA of this study is only 0.42~52.0 % of that 
of existing studies. On EET, NMA has the smallest 
value, followed by this study. 
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Fig. 4. 72-bar truss structure

x*

(in2)
HPSO

[4]
SA
[3]

MBA
[6]

aeDE
[11]

SSA
[10]

HHS
[12]

EFA
[20]

ACCS 
[13]

NMA
[14]

HDA
[15]

   Present study
Case 1  Case2  Case3

 x1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
 x2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.4 0.3 0.3 0.3

 x3 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4
 x4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

 x5 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 1.9 2.1 2.1 2.1
 x6 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

 x7 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.4 0.5 0.5 0.5 
 x8 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4

W*(lbf) 484.85 484.85 484.85 484.85 484.85 484.85 484.85 484.85 484.85 482.83 484.85 484.85 484.85
NSA 25,000 7,900 2,150 1,678 5,050 5,000 1,300 2,560 250 7,450 104 120 130

EET() 9,063 2,864 779 608 1,831 1,813 471 928 91 2,701 252 258 262
CV(%) 0 0 0 0 0 0 0 0 0 0.6 0 0 0

Table 3. Comparison of discrete designs for the 25-bar truss

3.3 72-bar truss 
The discrete design of spatial 72-bar truss 

structure[12,13,15] shown in Fig. 4 is to 
determine the cross-sectional areas grouped into 
sixteen as follows: x1(A1~A4), x2(A5~A12), x3(A13~A16), 
x4(A17~A18), x5(A19~A22), x6(A23~A30), x7(A31~A34), 
x8(A35~A36), x9(A37~A40), x10(A41~A48), x11(A49~A52), 
x12(A53~A54), x13(A55~A58), x14(A59~A66), x15(A67~A70), 
and x16(A71~A72). This truss structure is made of 
the material with ρ=0.1 lb/in3 and E=10,000 ksi, 
and the discrete design variables are selected 
from the set, S={0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 
0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5 ,1.6, 1.7, 1.8, 
1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.6, 2.7, 2.8, 2.9, 3.0, 

3.1, 3.2} in2.  and  are given as 0.25 in and 
25,000 psi, respectively. The loading condition is 
summarized in [12,13,15]. Table 4 shows the final 
results compared with existing studies. Although 
the HDA has the smallest weight, it is an 
infeasible design. Compared with existing 
studies, this study’s NSA is only 0.62~9.68% and 
the EET is only 2.09~32.72%.

4. Concluding remarks

Although the structural sizing optimization 
technique, including sensitivity analysis in 
continuous design space, is well established in 
theory, applying it to discrete designs is not 
general. Instead, most recent studies have used 
heuristic algorithms, which inevitably result in 
increased structural analyses. This research 
proposes a fast and economical design based on 
the optimal solution obtained from the structural 
sizing optimization techniques in continuous 
space and machine learning tools. The proposed 
design process, if the number of design variables 
is known, the numbers of training data and test 
data are determined, and a discrete optimal 
solution is calculated based on this, which is 
close to a deterministic way. 
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HPSO
[4]

MBA
[5]

IMBA
[6]

IMCSS
[9]

SSA
[10]

HHS
[12]

ACCS
[13]

HDA
[15]

Present study
Case 1 Case 2 Case 3

x1 2.1 2.0 1.9 2.0 2.0 1.9 2.0 2.3 2.0 2.0 2.0
x2 0.6 0.6 0.5 0.5 0.5 0.5 0.5 0.4 0.5 0.5 0.5
x3 0.1 0.4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
x4 0.1 0.6 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
x5 1.4 0.5 1.4 1.3 1.3 1.4 1.3 1.2 1.3 1.3 1.3
x6 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
x7 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
x8 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
x9 0.5 1.4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
x10 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
x11 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
x12 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
x13 0.2 1.9 0.2 0.2 0.2 0.2 0.2 0.1 0.2 0.2 0.2
x14 0.5 0.5 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6
x15 0.3 0.1 0.4 0.4 0.4 0.4 0.4 0.3 0.4 0.4 0.4
x16 0.7 0.1 0.6 0.6 0.6 0.6 0.6 0.8 0.6 0.6 0.6

W*(lbf) 388.94 385.54 385.54 385.54 385.54 385.54 385.54 379.2 385.54 385.54 385.54
NSA 50,000 9,450 3,200 3,625 5,050 5,000 12,000 7,800 306 310 297

EET(s) 24,688 4,666 1,580 1,790 2,493 2,469 5,925 3,851 515 517 511
CV(%) 0 0 0 0 0 0 0 35.59 0 0 0

Table 4. Comparison of discrete designs for the 72-bar truss

The main motivation of this research is to 
provide a discrete design while reducing the 
number of structural analyses as many as 
possible. This research is compared with existing 
studies through three examples and the following 
results are observed. The NSAs are only 
0.38~14.60%, 0.42~52.0%, and 0.62~9.68% for 
the 10-bar, 25-bar, and 72-bar trusses, 
respectively. In comparison, the EES of existing 
studies is not possible to measure exactly and it 
represents only the estimated total calculation 
time obtained by multiplying the number of 
structural analyses times the one-analysis time 
based on the computer used in this study. 
However, the EET of this study is the measured 
time taken on the entire process from 
continuous optimization to discrete optimization. 
In the case of the 25-bar truss design, the EET of 
NMA is 34.73% smaller than that of this study. 
Excluding that, the EET of this study is only 
1.10~55.30%, 3.14~54.77%, and 2.09~32.59% for 
the 10-bar, 25-bar, and 72-bar trusses, 
respectively. The discrete designs of three 
examples converge to the same optimum point 
regardless of the initial values, but this is not 

theoretically guaranteed. In future research, the 
suggested method will be applied to the shape 
optimization problems design of truss structures.
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