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A Study on Optimal Design of Single Periodic,
Multipurpose Batch Plants
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Abstract The purpose of this paper is to describe the design of a general multipurpose batch process or plant in
terms of a series of mathematical programing models, and to develop approach solution methodologies. The proposed
model for a single period is based on the formulation (MINLP; Mixed Integer Nonlinear Programming) of
Papageorgali and Reklaitis [1], but was linearized (MILP; Mixed Integer Linear Programming) so as to obtain an exact
and practical solution, and to allow treatment of uncertainties to be considered in expanding the plant. As a solution
stralegy a modified Benders' Decomposition was introduced and was tested on three example problems. The optimizing
solver, OSL code provided by the IBM Corporation, was used for solving the problems. The solution method was
successful in that it showed remarkable reduction in the computing times as compared with the direct solution method.
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1. INTRODUCTION

The recent rapid growth, change of market and
industrial needs in specialty chemicals, pharmaceuti-
cals and food products manufactured by batch plants
have raised the necessity of research in methods for
computer aided design. Especially, multipurpose
plants, which handles a variety of production system
and changeable scheduling, has been paid more
attention for last decade than simple multiproduct
plants due to frequent, globalized market change and
inevitable competition on cost minimization.

Pioneering research on multiproduct batch plants
with single product campaigns was reported by Rob-
inson and Loonkar [2]. That was followed up by
Sparrow et al. [3] who developed a model including
the optimal selection of the number of parallel units
as well as optimization over discrele equipment
sizes. Their solution approach was to use heuristics
and a branch and bound method. Another MINLP
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model was presented for the design of multipurpose
batch plants with single product campaigns (Gross-
mann and Sargent) [4]. This model was different
from the previous model in that a problem relax-
ation technique along with the integer enforcing
constraints was nsed and the number of units made
integer variables.

Subsequently, a few researchers introduced con-
sideration of semicontinuous units into the design to
broaden the scope of the batch plants considered
[5, 6]. The resulling problem (MINLP) has the num-
ber of batch and semicontinuous units considered as
discrele variables to be solved in the way suggested
by Grossmann and Sargent. Furthermore, heuristic
design principles, such as determination of parallel
units, merging or splitting of batch units, were pro-
posed for optimal design.

All the above models are restricted to single prod-
uct campaigns. Suhami and Mah [7] introduced an
MINLP model which yields the optimal selection of
configuration of compatible products (campaigns)
thal can be produced simultaneously. Obtaining the
best configuration among all candidates is a combi-
natorial problem which was solved using a heuristic
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rule. This work was extended by the “embedding
formulation” proposed by Vaselenak et al. [8]. In
that work, a superstructure was proposed that embeds
all the grouping of products that are candidates for
the optimal schedule. This model reduced the multi-
purpose design problem to an MINLP which avoids
the combinatorial complexity of testing alternative
product configurations as in the method of Suhami
and Mah. An alternative approach which was very
similar to the above, was made by Faqir and Karimi
[9]. They developed an efficient way to find a set of
dominant horizon constraints for describing the
superstructure of campaign.

More recently, a more general problem formula-
tion for multipurpose batch plants was reported.
Papageorgaki and Reklaitis [10] employed unit-task-
campaign allocation methods in the formulation to
identify the design configuration more specifically.
Also identical and non-identical parallel units were
considered in the MINLP model. All other varables,
except for unit-task-campaign allocation variables
were treated as continuous variables. To obtain a
solution for discrete equipment size, rounding off to
nearest discrete size was adopted as a heuristic.

All of the models that have been addressed so far
did not use an exact MINLP or MILP formulation to
get an optimal solution. Treatment of discrete vari-
ables as continuous introduces a gap between the
suboptimal solution and the irue optimal solution
that has not been resolved to date. Therefore, a more
rigorous formulation is needed at the expense of
greater computing effort, which might be reduced in
the near future by exploiting the problem structure.
A contribution along this lines was published in
1992 by Voudouris and Grossmann [11] who intro-
duced binary variables for denoting discrete equip-
ment sizes in their linearized MILP formulations.
Several cases such as those of single product cam-
paigns, multiple product campaigns, single produc-
tion routes and multiple production routes were
explored, but the results were not compared with
previous work.

Ags seen so far, a rigorous and general formulation
of the multipurpose batch plant design problem based
only on a mathematical description excluding heu-
ristics and/or simplifying assumptions has not been
given yet.
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To achieve this, it i necessary to generate a
robust batch plants model with discrete and continu-
ous variables. To guarantee optimality, an MILP
model would be preferably used. Because so-called
performance enhancing techniques such as SOS,
bounding, valid cuts, and so on, along with existing
MILP commercial algorithms can be applied. Fur-
thermore, a linear model takes on the role of a step-
ping stone for a stochastic batch plant model that
will be presented in the future.

The formulation to be presented here is a fully
and rigorously linearized version of that of Papa-
georgaki and Reklaitis [1].

2. MATHEMATICAL FORMULATION

2.1 Decomposition Approach to Mixed Integer
Problems

The difficulty in the solution of mixed integer
problems is that, due to the combinatorial nature of
these problems, there are no optimality conditions,
such as a Kuhn-Tucker point in the continuous case.
That point can be directly exploited for developing
efficient solution methods. A relatively well-estab-
lished method for dealing with this class of prob-
lems is decomposition (or partition), whose appli-
cability to a problem strongly depends on the prob-
lem structure.

Decomposition was introduced in the linear pro-
gramming context by Danzig, a pioneer in that area,
as the Danzig-Wolfe decomposition [12]. This method
was used to handle large scale linear programming
problems by splitting the original problem into sev-
eral subproblems according to the structure of the
matrix, The idea was extended and exploited in
mixed-variable problems by Benders [13]. Theoreti-
cal development of a programming problem (master;
which may be discrete, nonlinear etc.) and a linear
programuming problem (subproblem) from a mathe-
matically complicated original problem was discussed
and a computational procedure for solving those
problems was presented in his work. This work was
extended comprehensively by Geoffrion [14, 15].
Papageorgaki [1]. They employed a modified Bend-
ers’ decomposition for solving an MINLP problem,
in which the master problem was reduced to an
MILP by mathematical manipulations and the sub-
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problem was simply an NLP. Lee [16] also exploited
Benders' decomposition to solve a heat exchanger
network scheduling problem.

2.2 Original Model Formulation

A general multipurpose batch plant design model
has been reported by Papageorgaki and Reklaitis
[10]. That formulation is structured as follows;

£
min Y, aNU.(V.)*

(1)
e=1
subject to
Y Y X2l VYiVm 2)
keEec P,
Ximer T Ximer &1 e e",ViVmVk 3)
Xitm-myek ¥ XimextXigm+ 1yex =2
n=1, m=-1lexe ViVvinvk )
Xiper € 2 Xyvor ViVk &)
e'e Py
Y, nyBu=Q; Vi (6)
ke k
B, X N,_,V.IS, A ViVkme TA, 7
ee P‘m
By2 Y X, ViVkme TA, (8)
eceP,
Ne = E NGimekNimek VEVk (9)
(im)e Ue
NU,, o SNZ¥X, . Yizme TAjee P, ;Vk
(10)
NU, 2 X Viime TAjee P, Vk amn
NG, SNGow X Xy Visme TA; Yk
ce P (12)
TLy 2 Xipertime/ NGy Yisme TAje € Py Vi
(13)
TLR<TLE Y X X ViVE (14)
meTA; e P,
Y TysH (15)
ke K
T,zn, VivVk (16)
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with only integer variables, X;,., and some variable
bounds.

Subscripts i, m, ¢ and k denote product, task
equipment type and campaign, respectively. TA;, P,
and U, are sets related to tasks and types of equip-
ment and X is also a set of campaigns. X, denotes
0-1 unit-task-campaign assignment variables and V,,
N, are unit capacity and number of units of type e,
respectively. NUye and NG,y describe the number
of units in parallel in phase and the number of paral-
lel groups which are out of phase. TL,, T and ny
denote the limiting cycle time, campaign length, and
number of balches, respectively, The two constant
parameters, t, and S,, stand for the processing
times and the equipment size factors.

Eq. (1) is a nonlinear objective function consisting
of the equipment capital cost. Eq. (2) insures that
each task is allocated to at least one unit and one
campaign. Eqs. (3) and (4) require that only one
type of equipment is allowed at each stage and no
unit can be reused in the same production line. In
Eq. (5), all the tasks inb the production of a specific
product in a specific campaign must be completed in
that campaign.

The model has also a constraint that the total pro-
duction of a product over the entire horizon has to
meet the production demand (Eq. (6)). The batch
size cannot exceed the minimum capacity of the
production line (Eq. (7)). Eq. (9) describes the
restriction on the utilization of each type of equip-
ment. In Eq. (13) we can see that the limiting cycle
time is the maximum of the possible group process-
ing times. Eq. (15) is the production horizon con-
straint. Finally Eq. (16) insures that each campaign
accomimodates the total production time for a prod-
uct which is assigned to the campaign.

2.3 Modification of the Model

We propose to make this model more rigorous
with the conversion of continuons variables to inte-
ger ones so as to insure true optimality. We will also
attempt to remove the nonlinearity in the model. The
following development is based on the original
model, but uses linearization introduced via the
mathematical treatment shown below.

The first step in the linearization is to discrelize
the size of the units. That is, the index j was intro-
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duced with a new binary variable, ¥,
sible, discrete unit sizes.

7 to denote pos-

a7

The total number of units of any type, N,, can be
expressed in the same way;

mox

Ne= Z p*Zpe
p=1

(18)

Thus, the new objective function of OP becomes as
follows:

rnux m ax

min Z Z Z PaVe YJ'—’*Z

=1 J_Jmm e=1

ul i

19)

We next apply a well-known mathematical device to
the above function. which is nonlinear, to result in a
linear formula. Note that the binary product, Y*Z
becomes unity only when Y and Z are both unity;
otherwise, that product would be zero.
Mathematically this can be stated as follows;

Yie+Zpe— Ot S 1 20

Y.

J

227 01, 2 0 1)

where o is a newly introduced binary variable for
Y=Z. Equations (7) and (9) can be modified in a
similar way.

From Eq. (6)-(7), eliminating B, we obtain

2 X

nkaUimekVe/Sime 2 Z niszk = Q

ke K ea P, ke K
or

z 2 nz'kNUimekVe/Sime z Qi

heK eg P

m
By introducing

mix

q
NimekVe = Z E qvjeﬁqjimek!
g=1 mn

max

Ninwk: z qujimek and quimek=

q=1

BLTES

quimekY ¢

Eq. (6) is transformed to the following form;
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m 1K jm
Z Z 2 Z ik qj:mekveq/Sune = Q
ke KeaP,, g=1 ;=™ (67)

By introducing a new continuous variable, PI e
(the product of ny, and b fBje), the following three
inequalities become equivalent to Eq. (6).

m.m TR

av,
z 2 z Z PPIq_]zmek = Q (22)
ke K ee me J Jmm q= 1 lme
Plf]j”‘ﬂf-’k < n?/lax qjimek (23)
P]:/_/tmek =n ik (24)

In the same way, Eq. (13) and (16) can be combined
into one constraint (elimination of TLy).

ikXimeL

Lz 5,

I;

me
imek

By introducing a mew binary vatiable, Gy, the
quantity of Xi./NG i, can be replaced with 2 g™
ngmek/ 8-

Finally, we obtain

max

£ time
T2y, ~—PSLm (25)
g=1 g
where PSIgimek=n1ngimek
PS[gimek = ng:'&ngimek (26)
PSLper S0y 27
z PSI gimek 2 (28)
g=1ccp,

Eq. (28) is necessary since T} otherwise would be
reduced to zero,

2.4 Linearized Original Problem (LOP; MILF)
Objective

prnax jmnx £
min Y, Y X aupeVieo,,

(29)
p= 1 J Jmm e=1
Assignment and Connectivity
I“ﬂ)( jmi\x m RES
Z 2 2 e 2 1 (30$)
= - qn g o
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Y Y Xzl ViVm (31)
keKeel,,

Y XSl VisVm;Vk (32)
e Py

Xl(m n)e k+X1mek+X,,(m+ De'k = =2
n=1,m-1e#e Vi:Vm;Vk (33)
leek = Z Xim'e’k <1 Vi;vm;e € P'_m;Vk

e€ Py (34)

Equipment Bounds

MAX max max

q 4
Z P 2 ) Z 2 z qgwpgimek Ve;Vk
(melU,g=1g=1 (35)

Baich Size

L max

’ g qVie .
Bu< Y X >, Sjﬁqj,-mek Vi:Vm;Vk

ce Py j=f"" g=1"ine (36)

Bu<BR* X X, ViVk (37)
ecP

B, 2B 2 X, ViVk (38)
ee P,

Production Demand

I q" qV,
1 e
Z Z 2 2 S, PIqumek— Q Vi; Vm
keK e, j=j" 4=1 7 (39)
quﬁmkin?z.ax gjimer Vi;Vmie € P NkVq;Vj

(40)

Plimex Snyg VisVmiee P, VEVg V) (41)

Production Horizon
X

1
xS PS Ly ViiTmic € Pinh (42)

gimek im»
g=1

PSLiner Stk Goimex VisVmie € P5V,, VkiVg

(43)

s Vime

PSI Vi;Vmie € P,;,:V,

gimek = i

Vik:Vg (44)

Iﬂl’

max

g
> ¥ PSLuazny VisVeVk (45)

g=1¢ecp

m

Y T,<H (46)

ke K

Campaign Ordering

Y COuz Y €Oy, k=1, K" 1=A,B,C..
iel iel (47)
COy2 Xy VisVk (48)
COy= Z X VLVE (49)
ec P
Subsidiary Constraints

jmux

> Y,<1 Ve (50)
j min

YJE < Z Z Ximex Ve (51)
j=im (me U, e K
Jmnx
M+ Y Y,z Y S Xiper Ve (52)
i=i" Gme U, ke K

where M = Maximum of

Z Z Ximek

Gm)e U, ke K

pm:\x X
Y Z,=3 ¥, Ve (53)
p= :jmm
. quimek"Xnnek Vi Vm e le’Vk (54)
g=
Ggiimek=Ximek VZ vm € le Vk (55)
g=1
Y, +Z, -0, < 1 Vp;Vj:Ve (56)
Y +Z, 240,21 VpiVjiVe (57)
YA U imex—Bgjimex € 1 VisVmie € P, ;Vk;Vj; Vg
(58)
Yje+ qumek_z*ﬁqjimek z1
Vi;Vm;e e P,,;Vk;V];Vg (59)
Gtmek+Ulmck a)qgimekg]
Vi:Vmie € P,,:Vk;Vj;Vq (60)
Gtmek+Utmek —2: kC")q‘r_zin'xek 20
Yi:Vm;e € P,,;Vk;Vj;Vg (61)

For reduction of degeneracy in the campaign-
product assignments, the indicator variable COy is
introduced to ensure that the lower indexed cam-
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paigns involve more products. Eq. (50)-(52) simply
state that only one size j of equipment type ¢ must
be chosen if the equipment type is used; in the same
manner as for Z. U and G in Eq. (53) through (55).
Eq. (56) through (61) are just the logical “AND”
constraints for the related variables.

11 is worth mentioning a minor advantage hidden
in the formulation. When alpha represents the cost
terms in the model and at least one of ¥ and Z is
zero, the optimizing algorithm will naturally set
alpha to zero. Eq. (57), then, can be deleied, because
it is redundant.

3. SOLUTION STRATEGY

3.1 Modified Bender's Decompasition

Computing experience with direct solution approach
to large MILP's indicates that these kinds of problems
normally can require enormous computing effort. As
a result we undertook the investigation of Decompo-
sition Methods which are known to yield good
approaches to large problems with special structural
characteristics [14, 13].

Decomposition usually involves the construction
of two problems derived from the original one,
namely the master problem (MP) and the sub-prob-
lem (SP). The master problem is a broad relaxation
of an original one, while the sub-problem is just the
original one except that the values of ‘complicating’
variables are fixed, thus making the sub-problem
much easier 10 solve. Lower bounds on the original
problem are given by a properly formulated master
problem (in the case of minimization) while an upper
bound is provided by the solution of the sub-prob-
lem. Solving the two problems repeatedly, and tight-
ening the lower bound given by the master problem
will lead to oplimality under appropriate termination
conditions.

The dual of a mathematical programming problem
has been used in decomposition of MILP's because
the feasibility of the solution can be double-checked
and proper development of the master problem can
be achieved by using the duality theorem. However,
the applicaiion of that principle may be restricied
only to a class of MILP's with small number of inte-
ger variables; because, otherwise, the derived master
problem which should have as much integrality as

the original problem can not be handled properly.

Therefore, we choose a primal (as opposed to a
‘dual’) method in selecting the so-called “complicat-
ing variables” and building master and sub prob-
lems, In our formulation, the variables (especially
integers) are categorized according to their charac-
teristics. The key to solving the problem lie with the
assignment variables since those will define the
design of the batch plant and provide tight bounds
so that the other integer variables have much fewer
structural combinations when searched using the branch
and bound technique. Consequently, we found that
the assignment variables can serve properly as com-
plicaling variables. With those variables fixed we
still have an MILF, sub problem but solving it becomes
much easier than the initial formulation using the
branch and bound node search.

A master problem is a relaxed form of the original
formulation. Also it will only produce integer values
ol the complicating variables. Then, we can take
advantage of simplicity of the MINLP formulation,
in which the complicaling variables. at most, are
bounded in integers while the other ones are contin-
vous. This property will save the time for the
exhaustive node search required from solving the
larger MILP otherwise.

3.2 Master Problem and Integer Cut

As mentioned before, the master-problem is a
relaxation of (LOP). The simplest type of relaxation
of an MILP is an LP-relaxation, where all binary
variables are treated as continuous. But this does not
give us a tight lower bound since it results in too
many integer variables with fractional values. A
modification of (OP), rather than (LOP) was consid-
ered to get a better master problem and thus improv-
ed lower bound. We next outline the procedure of
building a suitable master problem.

From (OP) we know that

VeNUimc'k
B, < —£_—tmek (62)
Sime
Lime -
Ty, TLit 2 Mg o (63)
n, B, =0 (64)
1= ik i
ke K

Combining all of these inequalities into one, we
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obtain,

T,V.NU,

ime
St

kNGimk
- >0, (65)
ime'ime

Now we define (wo new variables, TCAP;,.. and TV,
as follows;

TCAP lmc'k=VeN UzmekN Gimk (66)
TV.=V.N, 67)
Therefore, Eq. (64) can be written as
T,TCAP,,
e 20, (68)
imetinlé’

On the other hand, from Eq. (9) we can derive the
following equation.

V.N 2 VeVk

& e

z VENGunkNUimek
(im)= U,

or

TV, = VeVk

€

Y. TCAP
(ime Uc

(69)

mek

But the above formulation is still not rigorous
since many variables that must be integer-valued
remain as comntinuous. Then we need to discretize
the variables, TV, N and V in order to prevent the
master problem from producing a relatively poor
bound. Finally we obtain the following formulation.

T/:TCAP[mk
TSt 20 70
imetime
Y 2 VixPray,,z Y, TCAP, VeVk
j=i""r= ! time U, (71)
Also

17“\.1‘(

Xime/: = Ninmk < N[,Z 2 P HZ/M’ (72)
p=1

TCAPmek = V:;mef‘]mxXimek (73)

TCAPmek 2 V:nuxximek (74)

with Eq. (28)-(33), Eq. (43)-(46) and Eq. (50).

For solving a master problem. two factors are pre-
requisite. First, integer culs are needed in order to
exclude the previous integer solutions from the next

solution sets that will be given by the next master
problem. The forms of these cuts are as follows
[17]:

2 Xnm'k_ Z Ximfk < |Sll -1 (75)
ve S0

xe §1
where Sl :{Ximek l Xxmek=] } and SOZ{Ximeklxlmek=O}

The other device is to remove the nonlinearity in
Eq. (66) by parameterizing the variables, 7.

4, RESULTS AND DISCUSSION

The MILP's were solved using OSL (Optimizing
Subroutine Library) [18], which is encoded in FOR-
TRAN(C) on an IBM AIX/6000 system. The flow
diagram for solving LOP is given in Figure 1.

First, we start by solving a master problem, and
solve a sub-problem (LOP) which matches with fixed
X-values (equipment assignment to tasks and cam-
paigns). Then a master-problem that will produce
another set of X-values with a reasonable lower bound,
excluding the former set of X's (manifested as inte-
ger cuts) is solved. Nexl lermination conditions are
tested, namely, whether the current lower bound
exceeds the current upper bound or not, or the mas-
ter problem is eventually infeasible. When the termi-
nation conditions are satisfied, the iterations arc
stopped because the optlimal solution is found or the
problem is proved 10 be infeasible/unbounded. Oth-
erwise, we return to solve the next sub-problem and

NC:begin with NC

Decrement by 1

NC=0

TG

O

[=]

° Infeasibje

i SOLVEMASTER PRQELEM _](—

= | Feasible 2
Tic X 8

S (B> UE = « %
\ No =
\* [ SOLVE SUB-PROBLEM

NC:no. ot campaigns
LB lower bound

UB uppel bound

T: campalgn length
X: aasignment
IC integer cut

Figure 1. The Flow Diagram of the Bender's Decom-
position Algorithm for a Single Period Model
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Table 1. Data for calculation of Equipment Cost

Equipment Type Cost Coeff. Cost Exponent
El 200 0.6
E2 220 0.6
E3 280 0.6
E4 300(360) 0.6
E5 350 0.6

Table 2. Equipment and operation information in test
problem 1

Max. No. of Groups (out of phase) 1
Max. No. of Unit (in phase) 2
Allowable Unil Sizes (kg) 2000, 3000, 4000

Time Horizon (hr) 6000
Demand in product A (kg/horizon) 600000
Demand in product B (kg/horizon) 450000
Demand in product C (kg/horizon) 600000
processing limes and size factors (parenthesis)
. Equipment Type
Product. Task El 55 5 o

AT 35020 25(12)

AT2 2.5(1.5) 2.0(1.2)

B.T1 3.5(1.2) 3.9(1.6)

B.T2 4.1(1.8)

B.T3 30(1.2) | 3232

Table 3. Equipment and operation information in test

problem 2

Max. No. of Groups (out of phase) 2

Max. No. of Unit (in phasc) 2
Allowable Unit Sizes (kg) 2000, 3000, 4000
Time Horizon (hr) 1000
Demand in product A (kg/horizon) 50000
Demand in product B (kg/horizon) 60000

processing times and size factors (parcnthesis)

Product Task Equipment Type
El E2 E3 E4

ATI 50(1.2) 45(1.25)

AT2 3.001.3) 2.5(1.2)
AT3 40(1.1) 45(1.1)

BTI 6.0(14) | 55(1.2)

BT2  [40(1.15) 30(1.2)
CTI 75(1.5)

CT2 6.5(1.2)

CT3 6.0(1.1) 5.001.2)

repeat the procedure.

Note that the integer culs are accumulated and the
values of the parameterized variables, T, are replac-
ed with updated ones from the previous sub- prob-
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Table 4. Equipment and operation information in test
problem 3

Max. No. of Groups (out of phase) 1

Max. No. of Unil (in phase) 2
Allowable Unit Sizes (kg) 2000, 3000, 4000
Time Horizon (hr) 6000
Demand in product A (kg/horizon) 600000
Demand in product B (kg/horizon) 500000
Demand in product C (kg/horizon) 600000
Demand in product D (kg/horizon) 600000

processing times and size factors(parenthesis)

Product. Task Bquipment Type
El E2 E3 E4 E5
ATI 4.5(1.25)
AT2 3.0(1.3)
AT3 4.0(1.1)
B.T1 6.0(1.4)] 5.5(1.2)
B.T2 4.0(1.15)
CT1 7.5(1.5)
cT2 6.5(1.2)
CT3 5.0(1.2) 16.0(1.2)
D.T1 5.001.2)
D.T2 3.001.3) 2.5(1.2)
D.T3 6.5(1.1)

lem whenever a new master-problem is created. By
treating 7, as a parameter, which is the only nonlin-
ear element in the master-problem, we can remove
all nonlinearity from the master problem.

Cost coefficients of all equipment are given in
Table 1. Operation information inputs for three ex-
ample problems are shown in Tables 2 through 4.

Figures 2 to 4 show three illustrative results [or
the test problems. In Figure 3. we can see that due
to the common usage of most equipment in every
production line, the maximum number of campaigns
is arranged for production and product B needs the
larger units of El and E3 (all the others are smallest

CAMPAIGN 1 CAMPAIGN 2
A B
K2 11 ‘ El i——-{ 12 H B3
BA=1000 BA=1111
NOB=50 NOB=201
+ 175hrs » 825hrs ———

Figure 2. Optimal Configuration of Test Problem 1 (BA:
batch size; NOB: number of baiches; A and B: products)
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CAMPAIGN 1 CAMPAIGN 2 CAMPAIGN 3
A B C
BA=1538 BA=1429 BA=1333
NOB=390 NOB=180 NOB=408
4+—— 1950hrs ——w+—— 9D0hrs ——w+—— 3060hrs ——

Figure 3. Optimal Configuration of Test Problem 2 (BA:
batch size; NOB: number of baiches; A, B and C: prod-
ucts)

CAMPAIGN 1 CAMPAIGN 2 CAMPAIGN 3
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BA=1538 BA=1739 BA-1667
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Figure 4. Optimal Configuration of Test Problemn 3 (BA:
batch size; NOB: number of batches; A, B, C and D: prod-
ucts)

in size) to meet the demand within the limited time
of campaign 2. Products (A and D) and (B and D),
in Figure 4, are shown to be allocated in campaigns
1 and 2, respectively, allowing the cheapest equip-
ment, E1, all in use. However, the cost minimization
objective function chose another campaign 3 (2700
hrs) rather than dual use of expensive equipment, E3
and E4 for even shorter production period.

Three examples tested were computationally intrac-
table in a sense that they cannot be solved directly
with the number of integer variables presented in
Table 8. Even the smallest problem (test 1) with 288
integers took 3701.76 seconds to be completed; the
others were beyond reasonable computing capability.

By the decomposition cxplained in the previous
section, tremendous benefit in reducing computing
time was achieved (see Table 5). The integer cuts,
Eq. (75). were estimated not to be so effective in
these sample problems because they were not closely
related to some other key integer variables, o, Byimers
and @, except for Xj,... The resulls are shown in

Table 5. Computing results of test problems (NP: No. of
Products; NI: No. of Integer variables; NC: not compu-
table, MP: master, SP: sub problem, Direct: original MILP)

problem | NP | NI | CPU(s) MP Sp Direct
Test 1 2 288 55.18 3.34 46,08 |3701.76
Test 2 3 500 | 1270.13 | 33855 | 47975 | NC
Test 3 4 727 | 13080.11 | 3213 6664 NC

Table 8. The problems, however, still exhibit the
exponential increase of computing efforts needed under
the decomposition method as the problem grows in
size.

5. CONCLUSIONS

This research is about the optimal design in terms
of units-campaigns arrangement and the correspond-
ing unit size and the item numbers (parallel groups)
in general multipurpose batch plants. Exact, optimal
solution o the design problems was sought through
a modified Bender's Decomposition algorithm with
breaking an integer-flooded problem into a relaxed
master problem and a sub-problem, which were con-
necled with the unit-task-campaign assignment vari-
ables serving as the complicaling variables. The plant
was assumed to be operated under NIS (no interme-
diate storage) policy and cuch task to be performed
with a constant processing time in its assigned unit.

The decomposition was successful in the sense
that it converled an originally intractable problem to
two problems of manageable size thal required rea-
sonable computing times. providing that the number
of integer variables involved in the subproblems is
not oo large. However, the loosely embedded inte-
ger cuts should be extended 1o the other integer vari-
ables which are critically related o the complicating
variables and most probably contribute to reduce the
number of branches and bounds being searched. Also,
further algorithmic improvement should be attempied
to downsize the master problem in more relaxed
form in order to obtain reasonable computation
times even with expansion of design problem size.
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