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Abstract Dynamic Programming Matching (DPM) is a mathematical optimization technique for sequentially structured
problems, which has, over the years, played a major role in providing primary algorithms in pattern recognition fields.
Most practical applications of this method in signature verification have been based on the practical implementational
version proposed by Sakoe and Chiba [9], and is usually applied as a case of slope constraint p = 0. We found, in this
case, a modified version of DPM by applying a heuristic (forward seeking) implementation is more efficient, offering
significantly reduced processing complexity as well as slightly improved verification performance.
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1. Introduction eter, even if they are produced under the same envi-
ronment and by the same writer. Random variations

Signature verification techniques are generally exist, which can create portions of signals, deletions,
categorized into two groups depending on the type  additions and gaps due to pauses or hesitations of
of features used for the classification process: func- the writer [8].
tional approaches and parametric approaches. Dynamic Programming Matching (DPM)

In the first group, the trajectory of the signature is mathematical optimization technique for sequen-
considered as a mathematical time function, F(r). tially structured problems, which has, over the years,
The functions for both reference signature and test played a major role in providing primary algorithms
signature are compared for verification by evaluating for automatic signature verification [1, 5, 9, 11]. In

the similarity (or dissimilarity) between them. the pattern recognition field, it has been particularly
The main issue for this approach is how to evalu- used to eliminate the timing differences between two
ate the similarity between them. differently originating pattern signals. Hence it is

Obviously, the straightforward method for this called as the Dynamic Time Warping (DTW) method
evaluation will be linear correlation. However, this owing to its non-linear time-normalization function.

is not valid for signature verification as the two The DTW method matches two corresponding
samples generally have different signal lengths and functions on the time axis dynamically through
non-linear distortion with respect to the time param- compressing or expanding one axis so that the maxi-
mum fit is attained with the other. Most practical

s22 788 AR EA ety wa applications of this method in signature verification
wezjottf el A HEAISHE w4 (7. 10, 12, 14] have been based on the practical
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implementational version proposed by Sakoe and
Chiba [9], which is an analytical optimization method
unlike others' rather heuristic approaches.

For practical use in signature verification, it is
usually applied as a case of slope constraint p=0
as, apart from the fact that this provides the simplest
and the fastest implementation owing to the least
constraint (see Figure 2), the slope constraint on the
warping function has been noted to be merely time-
consuming.

The problem in the DPM application to signature
verification was that many writers have an unstable
pattern of signature writing, which confuses the
DTW mechanism. A different approach from the
opposite perspective to investigate the DTW function
is performed by applying a heuristic (forward seek-
ing) implementation of DTW under the assump-
tion that the applied patterns satisfy the precondi-
tions for the DTW function, i.e., the patterns have
only a monotonic and continuous shift on the time
axis. Thus a modified version of DPM in this con-
text is developed.

To verify the proposed method, experiments are
applied under the same conditions and using the
same data base to standardize and simplify the test
for both conventional and proposed DTW methods.

The results have proved the proposed method to
be efficient, offering significantly reduced processing
complexity as well as slightly improved verification

2. DPM for Signature Verification

2.1 DPM Basics [5, 9, 14]
Consider two different signals as sequences of
feature vectors:

A= a, a, ..
B= b|7 b'ly oy

» Qiy ooy 4

b, .., b

s o (1)
These two patterns, A and B, can be depicted in an
i-j plane as shown in Figure 1, where two patterns
are represented along the i-axis and j-axis, respec-
tively, and their matching stages are by a sequence

of points Sy, where Sy = (i, jw)-

'Other elastic matching methods include the peak matching
technique, a finite state machine approach and regional
correlation.
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Figure 1. DTW mechanism for time alignment.

To normalize these two signals with a N-stage
decision process, a sequence of decision functions
can be expressed as:

N

Dy = kgl Cil(gy> xp) (2)
where C; is a contribution function at k" stage for
the decision vector g, and the state vector xi(a;, b)).

DP matching seeks to find the optimum function
D(k, x;) at the k™ stage:

Optimum

D(k.»\'k)= D(k—l,_\-kv]) + Clqp xp) 1 (3)

9

In the context of the DTW algorithm, this problem
of determining the optimal sequence corresponds to
finding a minimum sequence of warping function
F(i4y juy). which is normally composed of two com-
ponents:

Fi=di jy X Wiy “4)
where d(i;, ji) is the k" occupancy cost and w(iy, ji)
is the corresponding weight.
Then the optimal objective function at the k"
stage, Dy, is given as:
Min

F, 5)

Dy = (Dy,_ +Fyl
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The optimal value of this function will be the result
of the sequence of recursive functions:

k

.k Z dim XWij,
_ Min 2 I=1 6
bp=p & |— (0 (©6)
I=1 w,
i=1
This is expanded as follows.
1. Initial condition:
Dy =d(f)) xw(f)) @
2. DP-equation:
Min
Dy= WDy )XWl ®)

3. Time-normalized distance:

k

where N = 2 w(f;)

I=1

One of the major important features of the DTW
processing is that the k™ decision function, F, does
not require any decision variables for the previous
stages other than F;_;:

It only depends on the value of F,_, and a number
of the present decision variables, which implies a
considerable complexity reduction for solving the
whole optimization problem otherwise requiring all
possible combinations of every variable.

2.2 DPM Implementation

Sakoe and Chiba [9] provided a practical solution
for Equation (6), which originally was proposed for
speech recognition. Since then, this method has been
extended for use in signature verification and has
been widely accepted for practical applications in
this field [2, 4, 7, 8, 10, 12, 14].

Restrictions on the warping function

To provide a safeguard against unusual deviations
during the warping process and to keep a desirable
warping gradient, two conditions are imposed on the
warping function:
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1. Adjustment window (see Figure 1)

liCk) - j(k)lr (10)

where r is an adequate value for the window size.

This is to prevent unusual deviations from the
warping function, which is based on the assumption
that the normal time-axis fluctuation does not cause
an excessive timing difference.

2. Slope constraint

An appropriate slope constraint is imposed to
keep the warping gradient from an undesirable time
warping (see Figure 2).

1

Di/\jk = IT]DfL

9

Let the pattern at k" stage, (ix,ji), be a simplified
term, (i, j), then Equation (9) becomes:”

Dp=12
b(:’— i-n ¥ 2dG gy +dg, o+ dgy
Dy joay+2d o0y +dyy,
Djj=Min D(i—l,j—l)+d(i,j)
D gjn+2d;_,j+dy,,
Dii-3jon+2di_ap+di_yj+dg)
(1
2)p=0
Djon+dgyy
D1j=Mm D(i—l,j-1)+2d(i,j) (12)
Dy jy+dyy)
A2 //7
Hp=12 2)p=0 3yp=1 4Hp=2

Figure 2. DTW slope constraint.

’Sakoe gave two types of slope constraint, the symmetric
and asymmetric forms. Here only the former is concerned
for convenience' sake. No significant effect has been noted
with respect to the types.
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IHprp=1
D 1 jony+2d;; 1 +dg,
D= Min Doy j-ny+2dy (13)
D ajon+2di, j+dg,
Hp=2
D(l 2.~ 3)+2d(1 1,j-2) +d1/—1)+d(l!
Dij=Min\D;_\ ;1) +2d,

Dy oy +2d oy +daojy+day

(14)

For practical use in signature verification, it is usu-
ally applied as a case of slope constraint p = 0 as in
Equation (12) as, apart from the fact that this pro-
vides the simplest and the fastest implementation
owing to the least constraint (see Figure 2), the
slope constraint on the warping function has been
noted to be merely time-consuming [7].”

Sakoe and Chiba [9] gave an example of practical
implementation of DTW, which is depicted in Fig-
ure 3. In the figure, the flow of the DTW solution
for Equation (6) is diagrammed from the initializa-
tion according to Equation (7) to the time-normal-
ization as in Equation (9). Unlike Equation (6),
which uses variable “k”, for indexing from the first
stage, 1, to the final stage, “K”, this implementation
“i, /", to iterate “J” times the DP-
equation (8) (see Figure 1) for the sequential solu-

uses two indices,

tion. The ajustment window size is applied as vari-
able “r”.

2.3 Experimentation

An experiment was performed to investigate how
the nature of signatures affects the performance of
DTW. It was relevant to the issue about the vulnera-
bility of the DTW mechanism to relatively variable
signature patterns.

For this experiment, the data base consists of two
contrasting types of signature sample groups:

1. Group I has the members who have relatively
“stable” signature patterns.

2. Group II members have relatively “unstable”

*Only a small constraint may introduce a minor benefit with
a relatively heavy system latency.
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Figure 3. DTW implementation.

patterns in signature writing.

Group I has a membership of 15 writers and
Group 1I 24. A total of 50 signatures was collected
from each member in five sessions. Each individual
donated ten signatures in each session. Random
forgeries, i.e., signatures generated by others, were
used for the forgery samples, on the same grounds.

To eliminate effects arising from the variation of

magnitude and orientation, a precise normalization
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Figure 4. Group I DPM result.
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Figure 5. Group II DPM result.

0 3 6 9

process in the spatial domain was performed (refer
to Section 3.2.3).

The performance in terms of the equal error rate
was measured as a function of the adjustment win-
dow size applying the f(x, y) function.

Figure 4 is the DPM performance result from
Group I and Figure 5 is from Group Il

From these results, it has been observed that the
nature of signature samples has a considerable effect
on the DTW performance:

1. For Group I, in which each member has a sta-
ble signature pattern, DTW has ideally functioned at
zero error rates with smaller window sizes. Increas-
ing the window size over 14% has caused the degra-
dation of the error rate performance.

2. For Group II, in which most members have
variable signature patterns, the DPM performance
has been considerably degraded. The window size of
4% has recorded the best result at the equal error
rate of 9%, which is slightly better than the results
of 10% with neighbouring window sizes.

To understand how the nature of signature sam-
ples affects the DTW performance, further investiga-
tions are carried out in the following sections.

2.4 Warping Mechanism

To investigate the time warping mechanism, a
graphical illustration of DTW functioning was car-
ried out for each of the two groups.

Unlike Group I, in which the DTW functioning
for most members showed the typical warping tra-
jectory as in Figure 1, many members of Group II
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Figure 6. Group 11 DTW result.

showed a malfunctioned DTW trajectory as in Fig-
ure 6.

It was observed that when the time domain fluctu-
ation exceeds a certain limit (in this experiment, it
was about 5% of the whole duration of a signature
signal), the time warping mechanism often loses its
correct trajectory, begins to malfunction and ends up
trailing along one boarder of the adjustment window
until it finds a possible optimum point which has a
better solution for DP-function (Equation (8)) than
the points on the boarder. For Group II, the fluctua-
tion mostly originates not from a monotonic and
continuous shift on the time axis (the pre-conditions
for DTW [9]) due to a natural variation during the
signature generation but from random noise owing
to the excessively variable nature of the signature
pattern. Once the DTW function for Group II loses
the trajectory due to random noise, it takes longer to
correct its trajectory than is the case in Group I in
which the original trajectory can be found in the
near vicinity of the spot where the function is lost.

This implies that, under worst conditions, the
DTW function can become a compensation function
which randomly keeps relaxing the time domain
fluctuation according to a window limit until the sit-
uation becomes better, which results in a random
compensation and accordingly degrades the DTW
performance. This malfunctioning in those cases can



2bet7) A F8ke) =R A Al4d A2, 2003

be enlarged as the window size increases.

2.5 Discussion

From the experiments in the previous sections in
this chapter, the following have been observed:

1. Applying precise normalization as preprocess-
ing results not only in an error rate performance
improvement but also in a smaller optimal window
size, which implies that normalization helps reduce
the variation of a pattern.

In this regard, it is strongly implied that the “time
domain fluctuation” in on-line signature verification
originates not only from the natural variation during
signature generation due to temporal pauses and
hesitations of the writer as usually referred to [8]
but also from the attitude variation, including the
change of the relative placement and orientation of
the signature, during signature collection in the con-
text that normalization in this study mainly corrects
such variations. Figure 7 illustrates an example
where the same pattern in the spatial domain is pro-
jected on the time axis as different patterns owing to
an attitude variation. In the figure, the left hand side
is for the spatial domain where a pattern is differ-

Figure 7. Time variation from attitude variation.

ently oriented and the right hand side is for the time
domain where the pattern is projected as different
patterns according to the orientation on the time
axis, T.

2. Inherently variable patterns which do not sat-
isfy the preconditions of continuity and monotonic-
ity for DTW significantly degrade the DTW perfor-
mance even though they have been precisely nor-
malized.

3. Generally, for the precisely normalized signa-
tures, the larger adjustment window over the opti-
mum size negatively affects the performance.

These observations lead to a further investigation
using the modified DTW, which adopts a forward-
seeking strategy, as described in the following sec-
tion.

3.Development of Modified DPM

The problem in the DPM application to signature
verification in the preceding sections, which applied
the implementational version proposed by Sakoe and
Sato [9], was that many writers have an unstable
pattern of signature writing, which confuses the
DTW mechanism. In this section, a different approach
from the opposite perspective to investigate the
DTW function is performed by applying a heuristic
(forward seeking) implementation of DTW under
the assumption that the applied patterns satisfy the
preconditions for the DTW function, i.e., the pat-
terns have only a monotonic and continuous shift on
the time axis. Under such ideal conditions, there is
little necessity of DTW functioning for all cases at
the preceding stage (see Equation (8)) as the func-
tion is continuously increasing.

Aigorithm

If the optimal objective function at the 4-1" stage,
Dpg_1, has been correctly selected, and the function
satisfies the necessary conditions of continuity and
monotonicity for DTW [9] and it does not have an
abnormal (excessive) fluctuation® on the time axis,

1 th

then Equation (8) can be alternatively expanded as:

“This was assumed for DTW mechanism in Sakoe and
Chiba (9] and became the ground for implementing the
adjustment window condition.
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Figure 8. MDTW slope constraint.
Min
ka = ka_l + F, [d(f) x w(f)] (15)

A slope constraint then can be imposed as in Figure
8 to maintain a normal time warping gradient, which
corresponds to the slope constraint for Sakoe's ver-
sion as in Figure 2.

For the practical application, it is implemented as
follows:

Hp=12
D, . =d,

R [Py + Min
d(i 3+ D)+d G+ 2,5+ D+d3GE + g+ D)
Al +25i+ D +2d(3Ga+ 1 g+ 1)
3d(is .+ 1,j+1)

d(i + 1 ji+2)+2d3 + 1), + 1)
dliy + 1 +3)+d3 0+ 1 +2)+d (e + g+ 1)

(16)
2)p=0
dii,_, s ket 1)
Diln.il\ = DiA i + Min d(ik—| + l’jk“l +1)
dl,_ +1,j,. D
(17)
3Hyp=1
di,_+1,j,_,+2)
ka‘jA = DiL_|jL_| + Min d(ik—l + l’jk—l + 1)
d(iy_(+2,j,_,+1)
(13)
4HYyp=2
d(ip_1+2, jr_1+3)
Dim = Dik..u‘k.. +Minld(i,_+1,j,_;+1)
dli,_+3,j,_,+2)
(19)
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Figure 9. MDPM implementation.

Equation (15) in the modified DPM (MDPM) ver-
sion, firstly, has a strong point compared to Equa-
tion (8) in the conventional DPM (CDPM) as it
requires only one DTW process at each decision
stage while the conventional one requires this pro-
cess as many times as the window size. Hence, this
alternative method can reduce the computational
complexity.

Figure 9 diagrammatically illustrates the practical
implementation of this modified DPM method.

4. Experimentation

To compare the performances of both DPM meth-
ods, the same error rate performance tests were
applied to the modified DPM (MDPM) for the two
groups. Figure 10 is the result for Group I and Fig-
ure 11 is for Group II.

For both of the two groups, the modified DPM
(MDPM) method has shown an equal or better per-
formance compared to the conventional DPM (CDPM)
method with smaller window sizes while it has a
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Figure 11. Group I MDPM result.

considerably degraded performance with larger win-
dow sizes.

For Group I, MDPM as well as CDPM has recorded
a zero error rate: for stable signature patterns, MDPM
performs well as CDPM does. But its performance
becomes degraded as the window size increases.

For Group 11, the best performance has been recorded
by MDPM with the window size of 4 percent: for
unstable patterns, MDPM has a slightly better per-
formance than CDPM with smaller window sizes.

As for CDPM, the original data, the position func-
tion flx,y), has the best result and the second time
derivative of the position signal, the acceleration
function, has the worst performance, which corre-
sponds with the previous assumption for CDPM that
the derivative loses the information included in the
original signal as the derivation process is repeated,
which consequently causes the performance degra-
dation.

Through all experiments, MDPM has shown equal
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or better performance than CDPM. The observations
on the verification performance with regard to rele-
vant parameters all correspond with those for CDPM.

5. Conclusion

During the experiments for CDPM, it was observed
that applying precise normalization such as prepro-
cessing results in both an improvement in error rate
performance and a smaller optimal window size.
Accordingly, it was thought that the time domain
fluctuation can also originate from the attitude varia-
tion during signature collection as the normalization
process mainly reduces this geometrical variation.

The results from the for MDPM, which has been
proposed for stable patterns satisfying the precondi-
tions for DPM, applied under the same conditions as
for CDPM, have also confirmed these implications
as all the results have corresponded to the previous
results for CDPM. Some results have even empha-
sized the assumed trends, e.g., if normalization is
more precisely carried out, the optimal window size
is reduced.

At this stage, it is worth recalling that the princi-
pal function of DPM is to eliminate the timing dif-
ferences between two differently originating pattern
signals.

The previous experiments have suggested three
major factors which cause the timing differences:

1. The temporal variations during signature gener-
ation due to temporal pauses and hesitations of the
writer.

2. The geometrical variations due to attitude varia-
tions during signature collection including the change
of the relative placement and orientation of the sig-
nature.

3. The random variations which do not satisfy the
preconditions of continuity and monotonicity for DTW.

The results from the experiments have shown that:

1. The temporal variations are ideally applied to
DTW. Patterns which are affected only by these
variations produce a good DTW result. (See the
experimental results for Group 1.)

2. The geometrical variations due to attitude
change can be removed by using precise normaliza-
tion, which correspondingly improves the error rate
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performance.

3. The random variations cannot be corrected. Pat-
terns which are severely affected by these variations
produce the worst DTW results. (See the experimen-
tal results for Group II.) Their influence can be min-
imized by reducing the adjustment window size.
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