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In-Plane Vibration Analysis of Curved Beams Considering Shear
Deformation Using DQM
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Abstract DQM(differential quadrature method) is applied to computation of eigenvalues of the equations of
motion governing the free in-plane vibration for circular curved beams including both rotatory inertia and shear
deformation. Fundamental frequencies are calculated for the members with clamped-clamped end conditions and
various opening angles. The results are compared with numerical solutions by other methods for cases in which
they are available. The differential quadrature method gives good accuracy even when only a limited number of
grid points is used.

Key Wonds: circular curved beam, DQM, fundamental frequencies, rotatory inertia, vibration,
shear deformation, numerical solution

Q 9 FHH(curved beam)e] I WAJ(rotatory inertia) ¥ HcHH T (shear deformation)S 3t HH LH(in—plane)
AGREE skl U[RFLAEOM)S olgdte] 1A-11% AR (boundary conditions)Zt ThFE F¥Zt
(opening angles)o]] w2 AEF4x(frequencies)S AAFSIGTE DQME] A= YPdll(exact solution) Ex= ThE ”‘Xlﬁﬂfi‘]
(Rayleigh-Ritz, Galerkin = FEM) A9} v 3} ow, DQME A2 QA (grid points)S ARE3lol HEHst |42}
£ moizan

1. introduction Owing to their importance in many fields of technology
and engineering, the vibration behavior of elastic curved
Curved beams are used frequently in highway bridge beams has been the subject of a large number of
structures. Curved alignments of highway bridges and investigations. Despite of a number of advantages, a
interchanges have been necessary for the smooth curved member behaves in an extremely complex manner
dissemination of traffic in large urban areas. The  as compared to a straight member, and practicing
construction cost and time of curved beams associated  engineers have often been discouraged by the complexity
with the substructure have been found to be significantly ~ because of the initial curvature. However, the
reduced by the use of curved beams. Furthermore, the mathematical difficulties associated with curved members
construction time is a factor of immense importance in  have been largely overcome with the application of digital
the selection of a suitable structural system where the computers and the development of numerical methods.
construction site needs to be used for other operations The early investigators into the in-plane vibration of
during the construction period (Kang and Yoo [1]). rings were Hoppe [2] and Love [3]. Love [3] improved on
Hoppe's theory by allowing for stretching of the ring.

The study reported herein is sponsored by Hoseo Lamb [4] investigated the statics of incomplete ring with

University 2004 academic rescarch funds. various boundary conditions and the dynamics of an
'Department of Automotive Engineering, Hoseo University incomplete free-free ring of small curvature. Den Hartog
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natural frequency of circular arcs with clamped ends, and
his work was extended by Volterra and Morell [6] for the
vibrations of arches having center lines in the form of
cycloids, catenaries or parabolas. Archer [7] carried out
for a mathematical study of the in-plane inextensional
vibrations of an incomplete circular ring of small cross
section with the basic equations of motion as given in
Love [3] and gave a prescribed time - dependent
displacement at the other end for the case of clamped
ends. Nelson [8] applied the Rayleigh-Ritz method in
conjunction with Lagrangian multipliers to the case of a
circular ring segment having simply supported ends.
Recently, Irie et al. [9] have analyzed circular arches
based on Bresse-Timoshenko beam theory in which both
rotatory inertia and shear deformation are taken into
account.

A rather efficient alternate procedure for the solution
of partial differential the method of
differential quadrature which was introduced by Bellman

equations is

and Casti [10]. This simple direct technique can be
applied to a large number of cases to circumvent the
difficultics of programming complex algorithms for the
computer, as well as excessive use of storage. This
method is used in the present work to analyze the free
in-plane inextensional and shear deformable vibrations of
curved beams with clamped-clamped boundary conditions
and various opening angles. The lowest frequencies are
calculated for the member. The curved beams considered
are of uniform cross section and mass per unit of length.
Numerical results are compared with other numerical

solutions .

2. System and Governing Equations

The uniform curved beam considered is shown in
Figure 1. A point on the centroidal axis is defined by the
angle A, measured from the left support. The tangential

and radial displacements of the arch axis are y and gy,

respectively. ¢ is the radius of the centroidal axis. A

mathematical study of the in-plane inextensional
vibrations of a curved beam of small cross section is
carried out starting with the basic equations of motion as

given by Love [3]. Following Love [3], the analysis is
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simplified by restricting attention to problems where there

is no extension of the center line. This condition requires

that ¢p and ¢ are related by

w= —— 1)

Fig 1. Curved beam considered

If rotatory inertia and shear deformation are neglected,
the differential equation governing the free flexural
terms of the

vibration of this curved beam, in

displacement gy, can be written as

EL [ 5% ot 821)) 62( Bzv)
= v )

— Tt T = m— (v —
at \ a6° 86 56* ot 56*
or
v v v mal? (v
2 = —— 3
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in which each prime denotes one differentiation with
respect to the dimensionless distance coordinate, X,

defined as
_ 0
X= ) C))

Here, m is the mass per unit length, 6, is the opening

angle for the curved beam, w is the circular frequency of
vibration of the system, £ is the Young's modulus of

elasticity for the material of the arch and I is the area

moment of inertia of the cross section.
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If the curved beam is clamped at § =0 and 0 =46,

then the bdundary conditions take the form

v=20 )
2]
w=—%=0 6)
2
%4—1;:0 @

®
The differential equations governing the in-plane
vibration of a circular arch based on the Bresse-

Timoshenko beam theory, in which both rotatory inertia
and shear deformation are taken into account were given
by Irie et al. [9] as

Eow 1+ w ko k v
2(1+u)aTg_(1"\2 52 )T' 2(1+u)9_[,+(”2(1+u))ﬁ1,_0
©)
_k—*i,+ ’Lﬁ_(bk_ﬂ\zk_g)w.( k +,\2ﬁ)£=0
2(1+v) a8, " 62 "2(1+v) 52 2(1+v) st
(10
E W B L8 v’ k 21K v
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Here, f is the shear correction factor depending on
the shape of the cross section, V is the Poisson's ratio of

the arch and W is the slope of the displacement curve
due to pure bending. For simplicity of the analysis, the

following dimensionless variables have been introduced:

si=A e/ I, N=mdJ/EL (12)

where g is the slenderness ratio of the arch. The

quentities k2, k? and k22 are the dimensionless

parameters defined as
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ki=(d/4a) % k%= kEEZ(1+ k),
Ei= kE(1+4 R*+ kY (13)

for an arch with circular cross section of diameter

and
k%= (h/2a) coth(h/2a) — 1 (14)
E2= k2(1+ R+ (1/3)(h/2a) * (15)

kRi= B2 B2+ k'+(h/2a) 21+ (1/3)(R/2a) ?
(16)

for an arch with rectangular cross section of height };.
If the arch is clamped at #=0 and #=46,, then the

boundary conditions take the form

w(0) =(0) =v(0) =w(b,) =4 (8,) =v(f,) =0
a7n

3. Differential Quadrature Method

The differential quadrature method (DQM) was
introduced by Bellman and Casti [10]. By formulating
the quadrature rule for a derivative as an analogous
extension of quadrature for integrals in their introductory
paper, they proposed the differential quadrature method as
a new technique for the numerical solution of initial value
problems of ordinary and partial differential equations. It
was applied for the first time to static analysis of
structural components by Jang et al. [11]. The versatility
of the DQM to engineering analysis in general and to
structural analysis in particular is becoming increasingly
evident by the related publications of recent years. Kang
and Han [12] applied the method to classical and shear
deformable theories of circular curved beams. Kang [13]
and Kang and Kim [14] studied the vibration analysis of
curved beams using DQM. From a mathematical point of
view, the application of the differential quadrature method
to a partial differential equation can be expressed as

follows:
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M=

L{f(z)},= Y W, f(z)) for 4,j=1,2,3,.., N
j=1
(18)
where L denotes a differential operator, x j i the

discrete points considered in the domain, f(a:]-) is the

W..

function values at these points, W/,

is the weighting
coefficients attached to these function values and N
denotes the number of discrete points in the domain. This
equation, thus, can be expressed as the derivatives of a
function at a discrete point in terms of the function values
at all discrete points in the variable domain.

The general form of the function f(z) is taken as
N

flz)=2" for k=1,2,3, ., (19

If the differential operator L represents an nth

derivative, then

ZNJ ij-'L'?_l =(k-1)(k—=2) -~ (k-n)xf_"—l

J

—

for 5, k=1,2,3,., N (20)

This expression represents N sets of N linear algebraic
giving a unique solution for the weighting
Wy
Vandermonde matrix which always has an inverse, as

equations,

coefficients, since the coefficient matrix is a

described by Hamming [15].

4, Application

Applying the differential quadrature method to
equation (3) gives
1 ma w?
21
where B, [);; and F; are the weighting coefficients

fourth-

respectively, along the dimensionless axis.

for the second-, and sixth-order derivatives,

The boundary conditions for clamped ends, given by
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equation (8), can be expressed in differential quadrature

form as follows:

v,=0 at X=0 22)
vy=0 at X=1 @3)
N
DA =0 at X=0+3 24)
i=1
N
YAy ;=0 at X=1-6 @5)
j=1
N
Y B, =0 at X=0+26 26)
=1
N
YiByyp=0 at X=1-20 @7
7=1
Applying the differential quadrature method to

equations (9), (10) and (11) gives

_ 21K 1
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k N k Zkg
2(1+v) af, EAU“’JH“ Z-FEIBij'I’Z)j"[?(l'FV)i/\ s_gw"‘
k NI
+[2(1+y)+’\ sj]av‘_o 29)
1+ g EA LI 35
a9 i~ )+ 52 i 821 i
_kel¥E 1
+[2(1+V) 53 laui'o G0)

The boundary conditions for clamped ends, given by
equations (17), can be expressed in differential quadrature
form as follows:
€3))

wi=¥,= v,=0a X=0

wy= ¥ y= vy=03a X=1 (32)

This set of equations together with the appropriate
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boundary conditions can be solved to obtain the
fundamental natural frequency for in-plane vibration of a

circular arch.

5. Numerical Results and Comparisons

A of this

curved beam is calculated by differential quadrature and

The fundamental frequency parameter

is presented together with results from other methods
including shear deformation.

Tables 1 and 2 present the results of convergence

studies relative to the number of grid points & and the &
parameter, respectively. Table 1 shows that the accuracy
of the numerical solution increases with increasing /V and
passes through a maximum. Then, numerical instabilities
arise if /V becomes too large. The optimal value for N is
found to be 11 to 13. Table 2 shows the sensitivity of the

numerical solution to the choice of §. The optimal value

for 8 is found to be 1X107% to 1x107% which is

obtained from trial-and-error calculations. The solution

accuracy decreases due to numerical instabilities if &
becomes too small. All results are calculated using 13
grid points and §= 1x10°°,

Auciello and De Rosa [16] determined the natural
frequencies of the arches using the SAP IV or SAP 90
finite element method (FEM). Exact solutions were
carried out by Archer [7]. Table 3 shows that the
numerical results by the DQM are in excellent agreement
with those by the SAP IV FEM and those by exact
solutions in the case of neglecting rotatory inertia and
shear deformation. However, the SAP IV FEM was quite
expensive because 60 finite elements were employed, as
described by Auciello and De Rosa [16]. The results are

summarized in Table 3.

The values A corresponding to the lowest natural
frequencies are evaluated for circular arches of rectangular
and circular cross-sections under clamped-clamped end
conditions including shear deformation and numerical

results are compared with transfer matrix solutions by Irie
et al. [9]. The shear correction factor, /& is taken to be

0.85 for the rectangular cross section and 0.89 for the

circular cross-section and the Poisson's ratio of the arch,
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V, 1s 0.3. The results are summarized in Tables 4 and 5.
As it can be seen, the numerical results show excellent
agreement with the solutions by Irie et al. [9] except
1257 in Table 5. According to Irie et al. [9], the
frequency parameters of rectangular cross-section arches
are generally smaller than those of circular cross-section
arches and the difference between them is very small. It
seems, therefore, that 12.57" should be 10.57. From Table

6, the higher values of s andf have little effect on

the fundamental natural frequency parameters for both

cases of neglecting shear deformation and including shear
deformation. However, the lower values of g and 6,

have a significant effect on the frequencies for both cases.
In general, as the slenderness ratios of a beam cross
section become smaller, the frequencies become more

significant.

[Table 1]

)\=(ma4w2/E'Iz)1/ 2, for in-plane vibration of thin

Fundamental  frequency  parameters,

curved beams with clamped ends including a range

of grid point,8, = 180"

Archer [7] . .
(Exact) Number of grid points
A= (ma*w?/ EL)Y? 7 9 11 13
4.3841 5.0586 | 4.1740 | 4.3975 | 4.3844
[Table 2] Fundamental frequency parameters,

A=(ma' w?/ETI,) "2, for in-plane vibration of
thin curved beams with clamped ends including a

range of O, 6, =180

Archer [7] 5
(Exact)
A= (ma'w?/ B [1x1072 {1x107 % [1x10°* | 1x107% [1x107¢
4.3841 4.8845[4.4301 | 4.3885 | 4.3844{4.3840
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[Table 3]} Fundamental frequency parameters, ) = (ma*w?/ EL)"?, for in-plane vibration of thin curved beams
with clamped ends

6, A=(ma*w?/EI,) '
degrees Archer [7] Galerkin Rayleigh-Ritz SAP 1V DQM
(Exact) finite element
30 ’ 228.18 222.36 222.36 222.36
60 55.221 53.737
90 23.295 22.624
120 12.225 11.847
150 7.194 6.958
180 4.384 4.539 4.384
270 1.395 1.395
324 0.789 0.789
360 0.566 0.566

[Table 4] Fundamental frequency parameter of in-plane vibrationi = (ma*w?/ £7,)Y? for clamped-clamped arches

with circular cross-section including shear deformation; Vv = 0.3

Sy o o (degrees) Irie et al. [9] DQM
60 23.75 23.758
20 120 10.61 10.613
180 4.151 4.1543
60 52.82 52.827
100 120 11.79 11.793
180 4375 4.3757

[Table 5] Fundamental frequency parameter of in-plane vibration) = (ma'w?/ EIL)"?

for clamped-clamped arches with rectangular cross-section including shear deformation; V = 0.3

S, <] 0(degrees) Irie et al. [9] DQOM
60 23.70 23.709
20 120 12.57" 10.585
180 4.143 4.1478
60 52.78 52.795
100 120 11.79 11.792
180 4.374 4.3755

798




In-Plane Vibration Analysis of Curved Beams Considering Shear Deformation Using DQM

[Table 6] Fundamental frequency parameter of in-plane vibration = (ma*w?/EL)"? for clamped-clamped arches
with circular cross-section neglecting shear deformation and including shear deformation using DQM;

vV =203
8, Neglecting shear Including shear deformation
degrees deformation S, - 20 S, - 100
60 53.74 23.76 52.83
120 11.85 10.61 11.79
180 4.384 4.154 4.376

6. Conclusions

The differential

compute the eigenvalues of the equations of motion

quadrature method was used to

governing the free in-plane inextensional and shear
deformable vibrations of curved beams. The present
method gives results which agree very well with the
numerical solutions by other methods for the cases treated

while requiring only a limited number of grid points.
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