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Analysis and Case Study of a K-Stage Inspection System
Considering a Re-inspection Policy for Good Items
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Abstract In this paper, we address a design problem and a case study of a K-stage inspection system, which
is composed of K stages, each of which includes an inspection process and a rework process. Assuming the
type I and II errors of inspectors and the re-inspection policy for items classified as good, we determine the
smallest integer of K which can achieve a given target defective rate. If K does not exist, holding the current
values of the type I, II errors, we search reversely a new vector, (the defective rate of an assembly line, the
defective rate of a rework process), which can give the target defective rate. Our formulas and methodology
based on our K-stage inspection system could be applied and extended to similar situations with slight
modifications.
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1. INTRODUCTION disadvantages and may be even deprived of all its rights

as supplier. Hence, the strategy for reducing the outgoing

One of the current hot issues focused by BLU quality rate has been recently one of survival strategies [4].
(Back-Light Unit) suppliers is to reduce the average In order to improve AOQ, BLU suppliers must reduce
defective rate or the average outgoing rate (AOQ) of  basically the defective rates of their assembly lines.
BLU’s to support the 6¢ quality policies currently  However, the war against FM’s (foreign materials such as
implemented by LCD (Liquid Crystal Display) suppliers. dusts and threads), which are the major factor in defective
If an AOQ of BLU’s is lower than a demanded defective rates, has a limit that can not be exceeded. In case of one
rate, a BLU supplier may expect economical and of BLU suppliers, a single inspector is assigned at the end
managerial savings. On the other hand, if an AOQ of a BLU assembly line. If a finished BLU is accepted as

becomes higher, 2 BLU supplier must wait for various good, it is sent to a packing process for a lot operation.

Otherwise, it is sent to a rework process. After reworking,
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BLU consumer. Even though the BLU supplier knew the
basic and fundamental activities to attain the outgoing
defective rate given by a consumer, the simple and quick
method was just to select a good BLU well. Thus, the
BLU suppliers would like to know how to design and
operate their inspection system as well as how to forecast
in advance the sampled defective rate at the packing
process and the amount of rework.

Since most of papers related with a multiple inspection
sysiem assume different designs and operations in
addition to limited constraints, and suggest their
conclusions, it is not easy to search and utilize the
published results from previous papers. For reader’s
reference, we summarize some papers slightly related with
K-stage inspection system as below. Raz and Thomas [1]
presented a branch-and-bound method for determining an
optimum sequencing inspection plan for a group of
inspectors operating at different skill and cost levels.
Production and inspection costs for both accepted and
rejected items were considered, and dependencies among
successive inspections were permitted. Jaraiedi et. al
[2]presented a model which could be used to determine
the average outgoing quality for a product which had
multiple quality characteristics and which was subject to
multiple 100% inspections where the inspection was
subject to both type 1 and type Il inspection errors.
Assuming a fixed sequence of unreliable inspection
with known costs and inspection error

Avinadav

operations

probabilities of two types, and Raz
[31developed a model for selecting the set of inspections
that should be activated in order to minimize expected
total costs (inspection and penalties), and provided an
efficient branch-and-bound algorithm for finding the
optimal solution.

In this paper, by extending an existing BLU inspection
system mentioned above, we address a design problem
and a case study of the K-stage inspection system
assuming the re-inspection policy for items classified as
good. We determine the smallest integer of K which can

achieve a given target defective rate demanded by
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consumers. If K does not exist, holding the type I, 11
errors, we search reversely a new vector, (the defective
rate of an assembly line, the defective rate of a rework
process), which can give the target defective rate.

In Section 2, we describe our problems for a K-stage
inspection system in detail. In Section 3, we derive a
formula for the average defective rate just before packing
as a function of five factors (type I error, type Il error,
the defective rate of an assembly line, the defective rate
of a rework process, and K). In addition, we provide a
formula for finding a minimum integer of K so that the
target defective rate demanded by a consumer is attained.
Since the nonexistence of a minimum value of K
indicates that the target defective rate can not be attained,
we should search new combination of factors in order to
attain it. Hence, assuming that the vector, (type I error,
type II error), is fixed, we search and find anew vector
(the defective rate of an assembly line, the defective rate
of a rework process, and K) which can give the target
rate. In Section 4, a case study will be given and

analyzed.

2, PROBLEMS STATEMENT

As shown in Figure 1, our K-stage inspection system
consists of K stages, each of which includes an inspection
process and a rework process. In the first stage, if an item
coming off from an assembly line is classified as good by
the first inspector, then it is sent to the second inspection
process. Otherwise, it is immediately reworked by the first
reworker (Practically speaking, both inspection and
rework can be made by the same operator) and, then it is
sent to the second inspection process. In the second stage,
items are treated in the same manner and so on. In the
last K-th stage, an item classified as good is sent to the
packing process and an item classified as bad is reworked
and immediately sent to the packing process without

inspection.
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Fig 1. A process diagram of our K-stage inspection system

We assume that inspectors make two kinds of errors of

judgment; rejecting a gooditem (type I error) or accepting

a bad item (type II error). Let & and B be the
probabilities of a type I and type II errors by an inspector

respectively. Let 9o and 4rbe the average defective rate
of items coming off from an assembly line and the

average defective rate at a rework process respectively,
and without loss of generality assume that 90>9¢ where

9s is a given target defective rate. Then, the average
defective rate of items at the packing process, denoted by
9k, can be expressed as a function of a wvector
(a9ﬂ’q0:qR7K), ie., f(a’ﬂ’qo:qu). Our objective is
to find the smallest integer of K, denoted by K", such that
‘?K = f(d:,éa‘?o:‘?RaK)ch where (d’ﬁ"ioﬁk) is the
estimate of (a,ﬂ,q(,,q R). In other words, our first

problem can be stated as follows:

INSP : Given (dsﬁ:éos‘}ch), find K such that we
Minimize K

subject to Gy = f( 28404z, K ) =4c

In case that K “does not exist or when an alternative
for (qoqu’K) is needed, it is natural to search new

combination of (@, B.90,95- K ) in order to achieve 9c .
Since finding those values of a new vector is very
complicated, assuming that (&,,ﬁ) does not change, we
search (‘70:5.3’1?)50 that the average defective rate of
items at the packing process, denoted by az?,

may

achieve 96 . That is,
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:ﬂ:qc), find (‘70’%:12) such that ‘71?

Aa.8.3,3,. )

SP : Given (0}

U

3. ANALYSIS OF OUR INSPECTION
PROBLEMS

3.1 Derivation of 9x and Some Properties
As shown in Figure 2, for a positive integer k, let G,
and Bibe the numbers of good and bad items given to

the (k+1)-th inspection stage respectively. Let Robe the
number of items coming into the first stage of our

K-stage inspection system and let Gy and By the

numbers of good and bad items given to the first

inspection stage respectively. Clearly, Gy =(1-9,)R; and

By =4,Ry. The numbers used in this paper are assumed

to be real since Rois big enough to justify this

assumption.

Let Noic(5) and Npc(®) be the numbers of good
items that are judged as good and bad by the k-th

inspector respectively. Let Ng5(k) and Nis(k) be the
number of bad items that are judged as good and bad by
the k-th inspector respectively.

NoigB)= 1-a)G,

Then, for a positive

integers k, Ny (k)=aG, | and

Ngis(b)= BBy and NB/B(k)=(l_ﬂ)Bkvl.

# Good
{ ems
Q‘/,

Bad
items

By /

Fig. 2. A flow diagram for the number of good and bad
jtems classified after the k-th inspection

Let &+ be the number of items sent to the k-th rework

process. Since R, is the sum of the number of good items

classified as bad and the number of bad items classified

as bad, Rican be expressed as
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Rk=NB/G(k)+NB/B(k)=aGk—l+(l_ﬂ)Bk—l

for k=1, 2, -, K (D

After reworking at the k-th rework process, since

Gibecomes the sum of the number of good items
classified as good and the number of good reworked

items, we have

G, =Ngic(k) 1 (1= )R, =(1- )G + (1~ q,)R,

for k=1, 2, -, K 2)
Similarly, we have
B, =Ng5(k) + 4R, = BB, + 4z R,

for k=1, 2, ---, K 3)

Since we assume that all the items passing through the
K-th rework process are sent to the packing process
without inspection, the average defective rate at the

packing process can be expressed as

By BB+ Ry
qK=GK+BK= GK+BK
for K=0, 1, 2, - @

In order to derive an analytical expression for 9x, we

need to prove the following properties. For convenience,
let 7 and 2 be (I-2)g,+B(-4;) and og,(1-7)"
respectively. Without loss of generality, we assume that

0<a,B,94,9z <1,

Property 1. For a nonnegative integer k, G, +B, =R,
Proof : By definition, Gy+By =R, For a positive

integer k, we have

G, +B, =(1-a)G,,, +(1-q )R, + B, , + 4R,
(Using Eq.(2) and Eq.(3))
=(1-a)G,,+ BB, +aG,, +(1-p)B,
(Using Eq.(1))
=G, +B,,

It follows that Gx +B, =Gy +B, =R,
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Property 2. If 0<@. 5,4z <1, then 0<7<1.

Proof : Since 0<a,8,9, <1, it follows that 0<7.

If Bzl-a, r=(-a)q, +B(-qg,)
SPgp+BA-q) =B <1,

If B<l-a, r=(1-a)g,+B(1-q,)
<(l-a)g+(1-a)l-gz) =1-a<l.

Therefore we have, 0<7<1. O

Property 3. If 0<a,/,4; <1, then

1) Gi= R{1-p)=(g5 - p)r*},
for k=0, 1, 2, -, K

@) Bi=Rolp+(go- )"},
for k=0, 1, 2, ---, K

@) R=Ro{1-a-p)a, - p)e*”

+a(l-p)+(1-B)p},

for k=1, 2, -, K

Proof : (1) For k=1, 2, ---, K, we have,

G,=(1-a)G, ,+(1-go)R,

(Using Eq.(2))

—(1-a)G,,+(1-q,) {6G,, + (1~ DB, }
(Using Eq.(1))

~(1-04,)G,,+(1-q;) (1~ BB, ,

—(-09)G, 1 4 (1-q;) U= BYR, =G, )
(Using Property 1)

={1-2)g, + BU-g)IG 1+ (1—q,) 1= HR,

=16, +(1-q,) (- PR,

Since 7#1 from Property 2, solving the above first

order linear difference equation and letting £ be

_(-g,)1- PR,

1-7

}Tk " (1-g,)1-B)R,

]_,

g, (1-7)" | we have
R

Gk={G°
ad )r" +R0(1—
T

_Ro['—qo"'l il

1-7
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(- (1-g)1-p)=1-1-0q,)
_R1-p) (g, - 0"}

Since the above equation holds true when k=0, (1)

holds true for a nonnegative integer k.

(2) Since Bk=R0_Gk,

we have, Bk=Ro{P+(‘Io‘P)Tk},
Since the above equation holds true when k=0, (2)

holds true for a nonnegative integer k.

(3) For k=1, 2, -, K, we have,
R,=aG,+(1- P)B,.; (From Eq(l))
_Rf1-a- B, - p)r +al-p)+ - Pp)|
(Using Property 3-(1) and (2)) O

Proposition 4. If 0<@, 8,4, <1, then for a

nonnegative integer K,

(1) qx= P+ =p)r"

@) Mg dx=p

Proof : (1) Using Eq.4), Property 1, and Property
3-(2), for a nonnegative integer K, we have

_Be By
dx= Gy +B, =R, =P+ —p)7"

(2) Since 0<z<1, limg,, 7 =0 It follows that

liml(—mo qK =p . O

If inspectors are perfect, that is, (a ’ﬁ)=(0,0), then
using Proposition 4, 9x =909 % and 9 converges to zero.
On the other hand, when inspectors are imperfect, that is
(asﬂ)=(1,1), gg=1-(1-q,)1- 40" and 9« converges

to one. It follows that the feasible region of dxcan be
theoretically represented as the light dark area as shown

in Figure 3. It can be observed that our inspection system

does not always guarantee that 9x will decreases as K

increases. Hence, it will be useful to derive some

conditions that guarantee 9x <9c.

A
1

N (@i

&, (@.R=(0.0

Fig 3. The feasible region of 4k

Proposition 5. If 0<a,/,4, <1, for a nonnegative

integer K,

(1) If 0<qy <P, then 9« is a strictly increasing
function of K. That is, 9xu <9x.

@) If 99=P, then 9x is a constant. That is,
Gxa =49 = P.

(3) If P<qo<1 then dx is a strictly decreasing

function of K. That is, 9x+ <9x.

Proof : Using Proposition 4-(1)
UF S _ql(:(p_ qo)(l" T)TK . Since (1— T) >0

and 7¥>0, (1), (2), and (3) hold true. O

From Proposition 4 and Proposition 5, the shape of
9k, depending on P, will become one of three shapes as
shown in Table 1. The case that 0<doSP s
meaningless since 9x will not decrease as K increases.
The case that # <496 <! always guarantees that dx will

decreases as K increases.

Table 1. Three shapes of 9k

O0<go<p Q=P pP<gy <1

9 g g

L e .
‘ [ L e e
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3.2 Determination of X~
It can be observed that the case that £ <90 <1 does
not always guarantee that 9x <9¢ since there is a case
limy ., gx 295 if

that 0<a,B.9, <1,

Thus,
P<qy <1 ang liMy,..9x <4 then from Proposition 4
and Proposition 5, there exists a positive integer K~ such
that 9x+ <96 . Now, K can be derived as follows. Define

l’ x'] to be the smallest integer greater than or equal to x.

Let (&3ﬂ9é0’ék) be an estimated vector of (a,ﬂ,qo,qR)_

Theorem 6. If 0<d’[3aék <l and

lim,_,, g4 =/3<q(; <éo<1, then
na
K =|In?

where #=(~@)d, +BU-4,), p=06,(1-7)" and

Proof : Given (daﬂ"}o:‘}ch ), we need to obtain the

smallest value of K such that Gx=

f(d,/},éo,émK)S 96 . Let KEbe the real number

such that f(dsﬂ’éo’éR?KE)=qG. That is, using

Proposition 4-(1), we have f(d7ﬂiq()9éR’KE)
P+ (G, - P)E* = g5,
Since P * éo, solving the above equation for Kz gives

2=(1-@), +B1-4p),

KE lnd)/lnfwhere
p=ag,(1-7)" , and &= PN~ A" Since
limy ., gx <9 and 9x is a strictly decreasing function
of K from Proposition 5-(3), K" will be the smallest

integer greater than or equal to Kz, Hence, we can

express K as K' = I—KE-I = [_lnc?)/lnﬂ. o

3.3 Estimation of (@.5)

There might be various methods for estimating (0! B).
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In this paper, we suggest an indirect method for

estimating (a,ﬂ)as follows. Two equations can be

obtained from Property 3-(3) and Proposition 4-(1) as

follows.

R
a "qO)a‘qoﬂzR_l_qo

0

(&)

(1-9)qza+q,(1-92) =9, — 449, (6)

Since it is practically possible to estimate both

(490:91-9x) and (RosR.), the right hand sides of Eq.(5)
and Eq.(6)will be constants. Thus, we can obtain the
following estimators by solving simultaneously the above

two equations.

1 [, . R, .
— ZL(-
4= (l—éo){ql qo+R0( ‘IR)} @
&,
=4 " R ®)

3.4 A Procedure for Our Search Problem
Nonexistence of K’ indicates that our K-stage
inspection system with the current vector, (d’ﬁ’éo7ék ),
can not achieve 9c. There might be several ways in order
to meet ¢ . In this paper, we assume that (a,,B) can not
be controlled and that we can control (qqu) from
(Gord) to (@osdie) such that /168,50 Te- K )=T5 =40
for a positive integerE .

In our search problem, (‘70:‘7R )can be casily
determined by holding 9x since we can derive a linear
equation for o by holding dx. On the other hand,
holding 4y gives a nonlinear equation for Gx. By holding

4r and using Proposition 4-(1), we have,

¥ =P+(G—P)T" =45 ©

where 7 =(1-a)g, +ﬁ(l—§R) and P=04,(1-7)",



A7 &S =R A A8 A4E, 2007

Hence, we can express 9o as a function of (Ge>K) as

follows and we can obtain (q

O’qR’K) when (‘7;:,1?) is

given.

-K

9o = P+ —P)T (10)

4, A CASE STUDY

After collecting related data from a BLU supplier for
six months, we estimated (qO’ql’qR’RO’Rl) as (16.1%,
1.53%, 5.0%, 1,200,000 units, 193,000 units). Using
Eq(7) and Eq(8), we estimated (@%8) as (0.8453%,
4.5083%). Since the target defective rate of the BLU
supplier in study was 8,000 PPM, K exists in our case
study since limg .. 9% was computed using Proposition
4-(2) as 466 PPM < 8,000 PPM =9c . The values of 9

for K=2, 3, 4, 5 based on our model were computed
sequentially as 1,836 PPM, 592 PPM, 477 PPM, 467

PPM as shown in Figure 4, clearly we have K'=2. The

same result can be obtained from Theorem 6 since
#=9.2406%, P =0.0466%, and &=4.6933%. It can be

observed that the value of 9 drops with the biggest
slope when K=1, and that the falling slope between the

successive values of K decreases very slowly as
Kincreases.
18% [
18
1% i
12
1%
&%
%
%
% :
M EREIRER 1 s | 6 l 7] 8 | 9 1o_¢
—— AQQ)| 16,1000 |1.5300%]0.1836% 0.0592%4 0.047 %4, 0.046 00466241 0.0466Y 0466

Fig. 4. The value of 4 given that (d’ﬂ’éo:éx)=
(0.8453%, 4.5083%, 16.1%, 50%)

For reader’s reference, the values of K~ depending on
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(‘Im‘IR) are computed and summarized in Table 3.

Table 2. The value of K depending on (90.42) given
that (@.8)= (0.8453%, 4.5083%)

4r

9
5%
10%
15%
20%
25%
30%
35%
40%
45%
50%

0% | 5% {10%(15%|20%125%{30%|35%140%|45%

L

MININ[NININ N == -
BRI [N RIN NN —
WIWIW IR NN N IR =
WIWIWWIW W W NI
W DJJ\JJ WIW W IWININ
ELRE- TR RN E R N AVER RVER RUCRE )
il islbIAISBIWIW
Rl nia b i
EEEEN RN R N K N Ko N WA SRS 2 E 3

When K'=2, the value of 4y is computed as 1,836
PPM, which is much lower than 8,000 PPM. As shown

in Table 3, as long as 9z=5%, 8,000 PPM can be
achieved by either a 2-stage inspection system with
8.200% < 90 £=88.2817% or a l-stage inspection system

with 9o S=8.2000%. In other words, if a quality control
manager would like to reduce the value of K from two to
one without changing 9z, he/she might set the target
defective rate of 9oas 8.200%. He/she might set (40,91:)
from (G0-5)=(16.1%, 5.0%) to (d0-8x)=(9.2377%, 4%)
An

or (qo,qk)=(10.5426%, 3%) and so on.

appropriatechoice among many alternatives may be

selected depending upon circumstances of a company.

Suppose that 9c=400 PPM. Since M. qx =466
PPM, we can not achieve 400 PPM at all using the
current values (0.8453%, 4.5083%, 16.1%, 5.0%) of

(d,ﬂ,éoaén)regardless of any value of K. As discussed,

holding (d’/?), we search the curve of (‘70,‘71:), all the

points on which can achieve 400 PPM. By setting some
practical combination of (qm[z) for K=1, 2, 3 and
‘7x=0%, 1%, .., 4%, using Eq.(15), we compute and

summarize 9o°s in Table 4. For example, if the company
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improves (@0-4x) from (G0-Gx)=(16.1%, 5.0%) to cither

(@31 )=(2.3667%, 3%) or (@o>3x)=(5.3719%, 2%), then
the given target defective rate of 400 PPM can be
theoretically achieved by a 2-Stage inspection system(i.c.,
K =2). Suppose that a 1-stage inspection system must be

used and that the cumrent value of 9z (=5%) can not be

reduced. Then, if you can not reduce 9o, the target

defective rate of 400 PPM can not be achieved.

Table 3. (qo’qu) when (d’ﬂ’qc)=(0.8453%,
4.5083%, 8,000 PPM).

(Entries =9 %, n.e. = nonexistence)

G 7 A K-=1 K=2
10% | 5.4548% | 0.0089% | 14.5111% ne.
20% | 64012% | 0.0181% | 12.2335% ne.
30% | 7.3477% | 0.0274% | 10.5426% ne.
4.0% 8.2942% 0.0369% 9.2377% n.e.
50% | 9.2406% | 0.0466% | 8.2000% | 88.2817%
6.0% | 10.1871% | 0.0565% | 7.3552% | 71.7035%
70% | 11.1335% | 0.0666% | 6.6540% | 59.2341%
80% | 12.0800% | 0.0769% | 6.0627% | 49.6281%
9.0% | 13.0265% | 0.0875% 5.5573% 42.0777%
10.0% | 13.9729% | 0.0983% 5.1204% 36.0401%

Tabie 4. (%@nK) when (d,ﬂ,qc)=(o.s453%,
4.5083%, 400 PPM).(Entries =90 %)

dx 4 s K=1 R=2 | K=3
0.0% | 4.5083% | 0.0000% | 0.8873% | 19.6804% | n.e.
1.0% | 5.4548% | 0.0089% | 0.5783% | 10.4475% | n.e.
2.0% | 6.4012% | 0.0181% | 0.3608% | 5.3719% | 83.7%
3.0% | 7.3477% | 0.0274% | 0.1993% | 2.3667% | 31.9%
4.0% | 8.2942% | 0.0369% | 0.0746% | 0.4918% | 5.5%
5.0% | 9.2406% | 0.0466% n.e. ne. n.e.

5. CONCLUDING REMARKS

In this paper, assuming the type L, II errors and the
re-inspection policy for items classified as good, we

provide a formula for determining the smallest value of K

which can achieve a given target defective rate. If the
value of K does not exist, holding the type I, II errors,
we provide a procedure for searching a new vector, (the
defective rate of an assembly line, the defective rate of a
rework process), which can give the given target defective
rate. Our formulas and methodology based on our K-stage
inspection system could be applied and extended to
similar situations with slight modifications.

Further research may be concentrated on the study for
the selecting ability of an inspector due to the
psychological warfare or variation, and the study for
determining an optimal defective rate in terms of costs

and benefits due to the reduction of defective rate.
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