244571438 2 A
Vol. 9, No. 5, pp. 1139-1144, 2008

Automatic Virtual Platform Generation for Fast SoC Verification

Jun-Mo Jung"

1% SoC AFE AT AF 7MY ERF Y

1*
&R

Abstract In this paper, we propose an automatic generation method of transaction level(TL) model from algorithmic
model to verify system specification fast and effectively using virtual platform. The TL virtual platform including
structural properties such as timing, synchronization and real-time is one of the effective verification frameworks.
However, whenever change system specification or HW/SW mapping, we must rebuild virtual platform and additional
design/verification time is required. And the manual description is very time-consuming and error-prone process. To
solve these problems, we build TL library which consists of basic components of virtual platform such as CPU,
memory, timer. We developed a set of design/verification tools in order to generate a virtual platform automatically.
Our tools generate a virtual platform which consists of embedded real-time operating system (RTOS) and hardware
components from an algorithmic modeling. And for communication beiween HW and SW, memory map and device
drivers are generated. The effectiveness of our proposed framework has been successfully verified with a Joint
Photographic Expert Group (JPEG) and H.264 algorithm. We claim that our approach enables us to generate an
application specific virtual platform 100x~1000x faster than manual designs. Also, we can refine an initial platform
incrementally to find a better HW/SW mapping. Furthermore, application software can be concurrently designed and
optimized as well as RTOS by the generated virtual platform

Key Words : SoC, Virtual Platform,

2 % B &=RoliE 7M ERES o183t M1 anxos AAYE dFs] A% #3HEY 2
Aol distel Aoketch Al shE EREL AT HF W] AN AlAdo] WRPE o witt
7 BRES AT F7HEQ AAEEE 27E o] AP o W AR st o £
AR s12s7) Siste] £ =EolHE=CPU, HEe|, UART 58 7124 848 748t 2444e] 2o
BajE)e gAsigt. o] stolHeE o gdte M ERES AF MAse ES SR o] &2 ¢
Hit)= RTOSE FASH: 7MF ZREL X5 AAsH HW/SW 7He] FAIE 973 mixe] Wit oujols &
gholw] B= AJATIct AQHE UL JPEGH H2640] A or AEsen 71E £5 el HEh
nfe w2 7HE ERES A5 AT+ Ul

1. Introduction

SoC (system-on-chip) designs have become so
complicated that they demand high-level modeling for
both design and verification. The state-of-the-art design

methodologies [1] have been proposed to increase the

productivity by raising the level of abstraction and these
have been provided seamless design flows. Among them,
[P reuse-based design and platform-based design
methodologies [2, 3] have gained lot of attention from
researchers and developers.

Especially, design

methodology based on virtual platform [4], which

'School of electronic & Information Eng. Kunsan National University(Professor)

"Corresponding Author: jung jun mo(jmjung@kunsan.ac.kr)
Received July 7, 2008 Revised October 14, 2008

Accepted October 16, 2008

1139

A2 sl Al A9l AT, 2008

captures the concept of the platform-based design
approach, has been widely accepted as a crucial research
issue.

However, most of the current design
methodologies[1-4]based on the virtual platforms are
focused only on building a new virtual platform by
assembling pre-designed IP blocks. Therefore, each IP
block must have been completely designed before the
system integration has done. Also, a different integration
of IP blocks will require redesign of software part from
scratch. Furthermore, even though most commercial EDA
tools [12, 13, 14] are capable of generating interfaces
between hardware software

components and parts

automatically, they cannot automatically partition
hardware/software and generate virtual platformfor a
given HW/SW partition. Hence, it takes long time to
manually redesign HW and SW parts for various HW/SW
partitions, and it takes even longer time to verify each
implementation.

In this paper, we propose an automatic generation of
TL modeling which effectively achieves fast system
design and prototyping. We developed a set of design
tools to generate a an application-specific virtual platform
automatically. From an algorithmic modeling, our tools
generate a virtual platform which consists of embedded
RTOS

user-application and hardware components which contain

(real-time operating system) including

user-logics. The effectiveness of our proposed framework .

has been successfully verified with an image
compression/decompression application. We claim that our
approach enables us to generate an application specific
virtual platform 100x~1000x faster than manual designs.
Also we can incrementally improve an initial platform to
find a better HW/SW mapping. Furthermore, application
software can be concurrently designed and optimized as
well as RTOS by the generated virtual platform. We
described briefly our idea in introduction. The related
works and verification methodology are presented in
section II, III. The case study and experimental results are

enumerated in section IV, V.

2. Related Works

System-level design languages (SLDL) are developed

like SystemC, or SpecC available for modeling and
describing systems at different abstraction level. However,
the languages themselves do not define any details of
actualdesign flows. Recently, the transaction-level
modeling (TLM) has been commonly employed using
SLDLs in co-simulation frameworks to speed up the
simulation. The works in [5-7] presented the general
modeling issues related to the communication architecture
in the TL.In [8], AMBA 2.0 is modeled as TLM using
SystemC 2.0 language. However, there are no specific
definitions about the level of abstraction and the
semantics of transactions. Furthermore, proposals of TLM
only focus on simulation and lack the transformation of
models for implementation and synthesis. In [9, 10],
Pasricha et al., show an approach to explore the
communication design space using TLMs. However, they
do not address the problem of automatic generation of the
TLMs.

Recently, some commercial tools are beginning to
capture designs at the TL. The ConvergenSC of CoWare
[12] is one of such tools, and it explores the design space
using SystemC TLM [5] and validates the optimal system
model with embedded software. The CoCentric System
Studio of Synopsys [13] is a co-design and co-verification
tool based on a SystemC modeling. After the initial
design specification is transformed into a description of
high level language, each transformed module of the
system is mapped into a hardware component. The
of Mentor Graphics [14]] is a

platform-based SoC design and verification tool. It

Platform Express

represents system specification as a block diagram which
consists of blocks and busses. It includes high level
co-verification tool (Seamless) and RT level hardware
simulator (ModelSim) in order to verify the designed
system. Still, the designers are not able to achieve
significantly reduced system design cycles and required
system performance.

This s

computation and communication and to non-availability of

mainly due to the non-separation of
automatic generation tools of TLMs from high-level
models. In contrast to the existing schematic entry tools
that simply provide an interface for plugging existing
database models together graphically, the contribution of
this paper is to generate virtual platform, detailed TL

models from algorithmic models of the system.

1140

Automatic Virtual Platform Generation for Fast SoC Verification

3. Verification Methodology

1

conceptually. Common practice of system designs starts

Fig. shows our verification methodology
from abstract model verification at an algorithmic level
and continues with a platform generation based on a
manually determined HW/SW partition. This conventional
approach of building a virtual platform is quite effective
as long as we have a good partition of hardware and
software. If we want to explore various options of feasible
HW/SW npartitions, the conventional approach takes too
much time and effort to design and verify the various
virtual platforms. Furthermore, if we modify algorithmic
models, we cannot verify algorithm and virtual platform
at a same time. In order to support various HW/SW
mapping and fast virtual prototyping, we propose a
top-down TL modeling which consists of two levels:

algorithmic model and bus functional model.

H283 st
Result
'a‘ystem: nm n

Test

image
Funclional Sismuiation

Test
Image

Hokd Hwisw
Partitioned Hodud

Virtual Plattorm

{FPGAY .
Logiz emn!aﬁnn

. Sot Eowiigtion

[Figure 1] Proposed Verification Flow

3.1 Verification Methodology

Fig. 2shows the algorithmic TL model. As is often the
case with actual system design, development planning at
an early stage of virtual platform creation will
significantly affect the development time as well as the
quality of the entire system. In our approach, an
algorithﬁlic TL model captures the main functionality and
communication pattern of each individual IP and estimates

the system performance and the size approximately. On

1141

the other hand, the bus functional model is employed to
concretize the given algorithmic model into a valid
execution model which consists of bus transaction

behavior and system performance estimation.

e

OECODER MaIN
fs€ smaing

[Figure 2] Example of Algorithmic TL model

Algorithmic TL model aims for high simulation speed
and unified verification. In order to meet these criteria,
we modeled IPs as KPN (Kahn Process Network) [11]
models and separated the functional part from the
communication part of each IP model to achieve code
reusability. As 3, the

communication part can be accessed via "function calls."

shown in Fig. separated
For various communication schemes, function calls have
a unified set of programming interfaces. Therefore, all the
IPs use unified interfaces, and this enables us to explore

various communication models easily.

SystemC Module

| Conmunication

Handler J

/

[Figure 3] IP modeling for TL communication

All IPs of the system are concurrently executed and
connected by point-to-point transaction communication
channels that carry sequences of data. These channels are
the FIFO channels of infinite length. The concurrent
processes of the system functionality read or write the
data through these FIFO channels with blocked reading

A7) &858 =R Al 98 ASZ, 2008

and writing operations. The systems are deterministic,
which implies that the execution order of the processes
will not affect the results by infinite FIFO channels.
All processes can be analyzed with a flattened structure
while general modules are constructed with a hierarchy.
The system can be analyzed more easily if each process
code is described by the legacy C/C++ code, and this
method can be enabled to estimate system’s costs at high

level as in [6].

3.2 Bus Functional TL Model

Practically, real systems cannot have FIFOs of infinite
length. Therefore, specific upper bounds for FIFOs must
be specified by the designer (thus making write operations
potentially blocking). In the bus functional TL model, we
model communication between modules using function
calls. These functional calls represent the transactions.
Within TL modeling,

different processes by reading and writing shared data

data are exchanged between

variables. From our empirical study, we learned that FIFO
channel can be represented by internal memory of finite
size. For scheduling of data communication by the arbiter,
data is required to have information on the master
number.
Table 1

communication. The

shows an example code for data

‘read’ function of ‘sc_fifo_in’

channel for receiving data can be represented as
‘Bus_read(type, address, data, size)’ function call. Only
the information of address, size, and type (i.e., burst mode
or direct mode) are explicitly described but all the other

details are implicitly implemented in the separate library.

[Table 1] FIFO vs. bus

3.3 Comparison of reference C model
and SystemC TL model

We developed stimulus generator and comparator to
verify between reference C model and SystemC TL model
in Fig. 4. The comparison results can certify the
designated SystemC TL model from reference C model.
The algorithmic TL and the bus functional TL model also
can be compared by this method.

[Figure 4] Stimulus Generator and Comparator

4. Generation of bus functional TL model

The example in fig. 5 gives us an overall framework
of our virtual platform generation. The software processes
of the partitioned PFG are transformed into a set of tasks
for generic RTOS. Generic RTOS consists of kernel, APIs
and device drivers. Hardware modules are transformed
TL model. FIFO channels of
algorithmic TL model are concretized into APIs of RTOS

into bus functional

library.

ey
intarface

o |]

Mastor HYaw

fnterface

Siave
nterface

Dk

Channel Example code
FIFO data = FIFO_in_chl.read()
TL Bus slave->Bus_read(type, address, data, size)

We adopt a bus functional TL model as a data
HW/SW

co-simulation. And, the bus protocol is defined as general

communication model to achieve fast
as possible. The virtual platform consists of ISS, memory,
timer, UART and user IPs. In this virtual platform, only
the information of address, data, length, and type is

described to achieve high-abstract bus model.

{RTOS Litrary

APts

SW Codu Communication Hardware Wrapper
‘Generation Refinament
nat RS S i
| VO Startup Code
SwW ;‘:S!swm‘ Mamory Map vagrl:cks :!llh
Component Davice Drivers ppe

o] Platform Reconfiguration
& Intagration

Exocutable S0C
Virtuat Platform

[Figure 5] Flow of virtual platform generation

1142

Automatic Virtual Platform Generation for Fast SoC Verification

Virtual platformgenerator can be divided into three

parts: software code generation, hardware wrapper

generation, and communication refinement. Software
code generation part generates C codes in order to be
simulated by an ISS. These C codes include generic
RTOS. In other words, the generated codes are a set
of tasks for generic RTOS. Hardware refinement part
generates bus functional TL model from algorithmic TL
model. The communication channefs between hardware
and software are refined into RTOS with APIs from
FIFO channel by the communication refinement part.
Fig. 6 shows the simulator architecture. The SoC
virtual platform will be run by SystemC simulation kemel
on the host machine. And the benchmark program will

run on the virtual platform after cross-compilation.

{ SystemC Simulation Kemel

[Figure 6] Simulator architecture

To evaluate our methodology and the effectiveness of
our approach, we specified the algorithmic TL model of
JPEG and H.264 decoder using SystemC 2.1, and then
applied to our tools.

We generated bus functional TI. codes from
algorithmic TL codes manually and automatically as in
table 2. Overall model complexities are given in terms of
code size using lines of code (LOC) as a metric. To
quantify the actual refinement effort, the number of
modified lines (Mod. LOC) is calculated as the sum of
lines inserted and lines deleted whereas code coming from
library modelsbecause the conventional methods and tools

cannot generate any codes for user-applications. We

1143

assume that an expert can write correct 10 lines code per
hours. Thus, manual refinement would require some of
man-days for complex system designs. Automatic
generation, on the other hand, completes in a several
seconds. This means that our method and tool can reduce

huge efforts of designer.

[Table 2] Automatic generation

Design];,&00((1: Manual Tool
JPEG Encoder 1325 ~ 6 days < 1 sec
JPEG Decoder 1470 ~ 6 days < 1 sec
H.264 Decoder 7242 ~ 30 days < 1 sec

Table 3 compares the execution time measured on a
SPARC with 1024 Mbytes of memory, running SOLARIS
8 for one macro block of JPEG image. The results show
that the proposed co-simulation approach is about forty
times faster than the conventional BFM for JPEG
encoding/decoding of an 800 by 600 image.

[Table 3] Speedup of proposed framework

Conventional BFM Prop. TL Bus
one block
.4 . 5
8 by 8) 26.4 seconds 0.63 seconds
one image
(800 by 600) 35.2 hours 0.84 hours
6. Conclusion
We built TL library which consists of basic

components of virtual platform such as CPU, memory,
UART and ETC. We developed a set of

design/verification tools in order to generate a virtual

timer,

platform automatically from HW/SW partitions. The
effectiveness of our proposed framework has been
successfully verified with an image
compression/decompression application, We claim that our
approach enables to generate an application specific
virtual platform 100x~1000x faster than manual designs.
And we can refine an initial platform incrementally to
optimize HW/SW mapping. Furthermore, application

software can be concurrently designed and optimized as

gkl ett slheiAl A9 Alss, 2008

well as RTOS by the generated virtual platform. In future,
we will expand our methodology to support various

on-chip-network architectures.

7. References

[17 J. Um, et al., "A Systematic IP and Bus Subsystem
Modeling for Platform-Based System Design,” DATE,
2006.

[2] A. Sangiovanni-Vincentelli, al.,, "Benefits and

Challenges for Platform-Based Design," DAC, 2004.

A. Sayinta, et al, "A Mixed Abstraction Level

Co-simulation Case Study Using SystemC for System

on Chip Verification," DATE, 2003.

H. Lekatsas, et al., "Coco: A Hardware/Software

Platform for Rapid Prototyping of Code Compression

Technologies," DAC, 2003.

L. Cai and D. Gajski, "Transaction Level Modeling: an

Overview," CODES, 2003.

. Moussa, et al., "Exploring SW Performance Using

SoC Transaction-Level Modeling,” DATE, 2003

A K. Deb, et al., "System Design for DSP Applications

in Transaction Level Modeling Paradigm,” DAC, 2004.

M. Caldari, et al, "Transaction-Level Models for

AMBA Bus Architecture Using SystemC 2.0," DATE,

2003.

S. Pasricha, et al. "Extending the Transaction Level

Modeling Approach for Fast

Architecture Exploration,” DAC, 2004.

[16] S. Pasricha,
Synthesis of Bus-Based Communication Architectures,”
DAC, 2005.

[11] G. Kahn, "The Semantics of a Simple Language for
Parallel Programming,” in Proc. of IFIP Congress,
1974.

[12] ConvergenSC, Coware Inc., http://www.coware.com

[13] CoCentric System Studio, Synopsys Inc.,

et

(3]

(4]

[

(6]

7

{8}

9

[Woer)

Communication

et al. "Floorplan-Aware Automated

Attp://www.synopsys.com
[14] Platform Express, Mentor Graphics Corp.,
http://www.mentor.com

1144

Jun-Mo Jung [Life Member]
Feb. 1987: Hanyang University
BS in electronics engineering

eb. 1989: Hanyang University
MS in electronics engineering
eb. 2004: Hanyang University
Ph.D in electronics engineering
eb. 1989 —~ Mar. 1996 : Samsung
Electronics, ASIC Design Center
~Mars. 2005 :

2004 Hanyang Cyber University,

* ar.
Assistant Professor in computer engineering

® pr 2005 - : Kunsan National University, Associate
Professor in electronics & information engineering

<Research Area>
VLSI Design, SoC Design, SoC Test & Verification,
Test Scheduling

