RERIL PR S BREEY
Vol. 10, No. 12, pp. 3715-3724, 2009

Component Metrics to Measure Component Quality

Chul-Jin Kim' and Eun-Sook Cho*

'Dept. of Computer System, Inha Technical College
“Dept. of Software, Seoil University

ATdE F4 24¢ 99 AEdE =Y

Abstract Recently, component-based software development is getting accepted in industry as a new effective software
development paradigm. Since the introduction of component-based software engineering (CBSE) in later 90’s, the
CBSD research has focused largely on component modeling, methodology, architecture and component platform.
However, as the number of components available on the market increases, it becomes more important to devise
metrics to quantify the various characteristics of components. In this Paper, we propose metrics for measuring the
complexity, customizability, and reusability of software components. Complexity metric can be used to evaluate the
complexity of components. Customizability is used to measure how efficiently and widely the components can be
customized for organization specific requirement. Reusability can be used to measure the degree of features that are
reused in building applications. We expect that these metrics can be effectively used to quantify the characteristics of

components.

Q % AT So] QAN HEUE 7)Hte] AZEO] Afuto] AR TLA AZEY0] A giriyoR
drobEoei A1 glek. 1990t of ?J HEAE 7|9 & HEJEZIRE 2zEYo] Ak
(CBSD) ¥ At HEUE mEls, 7 E 5ol F2 FFEoigtt 1
i Aol 7hga AEUESY] 4t = CER Rk e
ot 7HHL°1 Ak Fadi 7] AR £ =R fEle AZEe] HAUES Hw, E3M, AAEAS &
A 5 de AESES Adeth BRE WEL PrdE 54AE Brlsketl *%9“7}%}#, 34 e
ﬂiﬁEﬂ 22]0] B3t et Wes duht agAo|HA ZyA Axente|zd 2 QlEXE S4seT)
AFS-EITE YARA L o= a];q]o]/};]_ F23 o Y AXUES AARLEE AEE 2AFE Lz ALFHCh A
ekt ol HESS HEUEY} Zhe EYES Aokt Hoh agAos Agd 5 gleet 7|

ghﬂ
O
e
N
%
.
LI
n‘ﬂ
=l
i
[m
mln
pech

Key Words : Component, Component-Based Development, Customizability, Reusability, Component Metric

1. Introduction introduced with new approach to address reusability
problem in software development. Various component

Object technologies have been often heralded as the platforms such as COM+, EJB, and CCM, component

silver bullet for solving software reuse problems since modeling techniques, component development tools, and
early 1980. However, it’s been known that objects are too component development processes were introduced
small-grained units, especially for enterprise application [1,3,5].

development projects. Component technology has been Component-oriented software development requires a

“Corresponding Author : Eun-Sook Cho(escho@seoil.ac.kr)
Received November 08, 2009 Revised December 04, 2009 Accepted December 16, 2009

3715

o

1=Aksl7| 28} 8] e 2] #1107 A123, 2009

considerably different approach from object-oriented (OO)
methods[4]. While OO methods develop systems by
defining functional and object models, component-based
development (CBD) methods utilizes commonality and
variability (C&V) analysis, components, component’s

interfaces, and relationships among components [1].
developed for OO

programming cannot be equally applied to CBD process.

Therefore, various metrics
Hence, in this paper, we propose component metrics that
can be efficiently applied in CBD process.

The paper is organized as follows. We first discuss
relevant OO metrics. These metrics focus on object
structure that reflects the complexity of each individual
entity, such as methods and classes, and on external
complexity that measures the interactions among entities,
such as coupling and inheritance. Then, we show the
limitations of existing OO metrics in applying to CBD. In
chapter 3, we propose three metrics to measure
component’s quality; complexity, customizability, and
reusability. We define each metric and suggest the
applicability of each metric in CBD. Chapter 4 presents a
case study conducted with the proposed metrics. Also, we

compare proposed metrics to existing metrics.

2. Related Works

2.1 Metrics for Object—Oriented System

Many different metrics have been proposed for
object-oriented systems.

The object oriented metrics measure principle
structures that, if improperly designed, negatively affect
the design and code quality attributes[2,6,12]. Existing
object oriented metrics are primarily applied to the

concept of classes, coupling, and inheritance[11].

2.2 Weighted Methods per Class (WMC)

The WMC is a count of the methods implemented
within a class or the sum of complexities of the methods
(method

complexity). The second measurement is difficult to

complexity is measured by cyclomatic
implement since not all methods are assessable within the
class hierarchy due to inheritance. The number of

methods and the complexity of the methods involved is a

predictor of how much time and effortis required to
develop and maintain the class. The larger the number of
methods in a class, the greater the potential impact on
children; children inherit all of the methods defined in the
parent class. Classes with large numbers of methods are
likely to be more application specific, limiting the

possibility of reuse [7-10].

2.3 Limitations of Existing OO Metrics

In this section, we discuss difficulties of applying

existing object-oriented metrics into component
development and CBSD. It is not adequate in measuring
component’s qualification with object-oriented metrics
themselves discussed in previous section. The reason is
that as following:

1. Measurement unit is different. OO metrics only
focus on objects or classes. Component consists of one or
more classes as well as one or more interfaces. Existing
object-oriented metrics do not consider component itself
or component’s interfaces on measuring complexity,
cohesion, or coupling, and so on. Therefore, it is required
new metrics that measure complexity of component itself.

2. Measurement factor is insufficient. Because
object-oriented applications are developed with only
classes, almost OO metrics measure the complexity or
reusability by considering classes, methods, and depth of
class hierarchy. However, considering only these factors is
not adequate to measure the complexity or reusability of
component because components have more much
information such as interface, interface methods, and so
on. While
customizability of classes or objects, customizability of

CBD because

existing OO metrics do not consider

component is very important in
component’s customizability effects on reusability of

components in CBD.

3. Definition of Component Metrics

We will propose some metrics to measure complexity,
customizability, and reusability in this chapter. We define
metrics to measure the quality of designed components as
well as we propose metrics for measuring the quality of

implemented components[13]. Therefore, proposed metrics

3716

Component Metrics to Measure Component Quality

are classified into design metrics and implementation

metrics.

3.1 Measuring the Complexity

To measure the complexity, the cyclomatic complexity
is used in traditional program. Cyclomatic complexity
(McCabe) is used to evaluate the complexity of an
algorithm in a method. It is a count of the number of test
cases that are needed to test the method comprehensively.
The formula for calculating the cyclomatic complexity is
the number of edges minus the number of nodes plus 2.
A method with a low cyclomatic complexity is generally
better. Cyclomatic complexity cannot be used to measure
the complexity of a component because of inheritance in
a component, but the cyclomatic complexity of individual
methods can be combined with other measures to evaluate
the complexity of the component. Therefore, we propose
new complexity metric to measure complexity of a
component by complexity:
Component Complexity Metric (CCM). We classify CCM

combining cyclomatic
into four kinds of complexity metrics: component plain
complexity (CPC), component static complexity (CSC),
component dynamic complexity (CDC), and component
(CCC). While

cyclomatic complexity of these component complexity

cyclomatic complexity component
metrics is used in component implementation phase, other
complexity metrics can be applied in component design

phase.

3.1.1 CPC

The first approach used in order to measure the
complexity of each component is CPC. CPC is a metric
that measures the complexity of component itself by
calculating the sum of classes, abstract classes, and
interfaces, and the complexity of classes and methods.
CPC is expressed by the following formula:

[Def.1]

CPC(C) = CmpC + 2 cC, + iMC ’

i=1 Jj=1
where:
CmpC: is calculated by counting classes, abstract
classes, and interfaces,

Y,
i=1

: the complexity of each class, and

Y,
j=1

The CmpC is calculated by counting classes, abstract

: the complexity of each method.

classes, interfaces, and methods. The definition of CmpC
is given by:
[Def.2]

CmpC = i(Cmmt(C,)XW (C))+ iCount(I,)-# i(Caunt(MA IXW (M ,))

where:

Count(C): The count of the class of contained in a
component,

W(C): weight value of each class,

I: the interface of provided/used by a component,

Count(M): The count of the methods of classes
contained in a component, and

W(M): weight value of each method.

Classes contained in a component are divided into
internal classes and external classes. External classes are
imported classes from other reused library or packages.
Internal classes are identified classes during component
analysis and design in a domain. We give weight value to
internal classes because external classes are implemented
classes. Also, methods of internal classes are given weight
value because methods of external classes are only
invoked.

The complexity of each class (CC) contained in a
component is calculated by counting single attributes of
each class as Single Attribute (SA) and complex attribute,
(i.e. attribute which type is a class), as Complex Attribute
(CA). Then, we define CC as following formula:

[Def.3]

cC = i(counz(SA,.) + 2 (Count(CA))XW (CA,))

i=1 j=1
where:

Count(SA): The count of single attribute,

Count(CA): The count of complex attribute,

W(CA): Weight value of each complex attribute.

The complexity of each method of classes is calculated
by counting parameters of each method. Simple argument
is counted as SP, while complex argument, such as
objects, is counted as CP. Also, complex arguments are
given with weighted value because complex arguments
contain another arguments in it. MC is given by following

formula:

3717

b/ 45 8)=5x) 107 4123, 2009

[Def4]

MC = i Count(SP) + i (Count(CP)xW(CP,))

i=1 Jj=1
where:
Count(SP): The count of single argument,
Count(CP): The count of complex argument, and

W(CP): Weight value of each parameter.

3.1.2 Component Static Complexity

The second approach used in order to measure the
complexity of each component is CSC. CPC only focuses
on the number of classes, interfaces, methods, and
parameters declared in a component, while CSC focuses
on how complex the component’s the internal structure.
CSC is a metric that measures the complexity of internal
structure in a component with a static view. Therefore, the
static complexity of each component is calculated by
counting relationships among classes contained in a
component. We define the CSC as following formula:

[Def. 5]

CSC = i(count(R,)xW(R,.)

i=1

where:

Count(R): The count of each relationship between
classes, and

W(R): Weight value of each relationship.

There are four relationships between classes as UML
specification.[4] According to accessibility between
classes, the size of weight vale for the relationships is
defined. We give the weight value as following priority:

Dependency<Aggregation<Generalization<Aggregation
<Composition.

On counting relationships, if there are

n-ary
relationships among classes, n-ary relationship should be

converted into binary relationship.

3.1.3 Component Dynamic Complexity

The third approach used in order to measure the
complexity of a component is CDC.

CSC only focuses on how complex the component’s
the internal structure, while CDC focuses on how many
message passing is occurred in a component. CDC is a
metric that measures the complexity of internal message

passing in a component with a dynamic view. Therefore,

the dynamic complexity of each component is calculated
by counting messages passed between classes contained in
a component. We define the CDC as following formula:

[Def. 6]

CDC =Y DC(IM,)

i=1
where:
Y Dc(M)

=1

[Def. 7]

: the complexity of each interface method.

DC(IM) = i (Count(Msg,)x Freq(Msg,)+ MC(Msg,))

i=1
where:
Msg: the message passed between classes,
Freq(Msg): the frequency of messages passed between
classes, and
MC(Msg): the complexity of each message, equal to
the MC defined in [Def. 4].

3.1.4 Component Cyclomatic Complexity

The fourth approach used in order to measure the
complexity of a component is CCC. While previous three
metrics (i.e. COFP, CSC, CDC) are used in a component
design time, CCC is wused after the component
implementation is finished. Therefore, other three metrics
are calculated by using class diagram, interaction diagram,
and component diagram, while CCC is computed by using
developed source code. The difference between CPC and
CCC is that the complexity of interface method declared
in the interface of a component is based on cyclomatic
complexity metric used in traditional program. CCC is
defined as following formula:

[Def.8]

CmpC+iCC[+iMCj+iCCMk

CCC= i1 j=1 k=1

where:

CmpC: the sum of classes, interfaces, and interface
methods defined in [Def. 2],

m

S

i=1
contained in a component, and

Yc,
j=1

the sum of complexity of each class

: the sum of complexity of each interface

3718

Component Metrics to Measure Component Quality

method.

The complexity of each class and of each interface
method is equal to the [Def. 3] and [Def. 4]. However,
the cyclomatic complexity of each method implemented in
a class may be computed because CCC is calculated by
using implemented component source code. We define the
cyclomatic component method as following formula:

_Y.ceum,

[Def. 91 = & —edges —nodes +2

[Def.9] is referred to [9]. The formula for calculating
the cyclomatic complexity is the number of edges minus

the number of nodes plus 2.

@
@

While loop:
3-3+2=2

If/then:
3-3+2=2

Sequence:
1-2+2=1

[Fig. 1] Example of Cyclomatic Complexity

For a sequence where there is only one path, no
choices or option, only one test case is needed. An IF
loop however, has two choices, if the condition is true,
one path is tested; if the condition is false, an alternative
path is tested. Figure 1 shows examples of calculations
for the cyclomatic complexity for four basic programming

structures.

3.2 Measuring the Customizability

The one of component’s characteristics is component

customization. If a component does not provide

customizable interfaces, reusability of a component
becomes low because application developers want to
customize reusing components according to theirs
purpose. Therefore, customizability of component should
be considered in a component development process. In
this chapter, we present customizability metric may be
used in a component design phase or after the component
development.

In order to

measure customizability, we use

component’s variability methods as following formula:
[Def. 10]

Y Count(CVM,)
cy ==
2 Count(CIM ;)

=1
where:
CV: Component variability to measure customizability,
Count(CVM): the count of method for customization
Count(CIM): the count of method declared in each
interface
According to [Def. 8], CVM is redefined as following
formula:
[Def.11]

CVM = i (Count(CVMa,)) + i Count(CVMm,) + i Count(CVMw,))
i=1 1

= =
where:

Count(CVMa): the count of the method for attribute
customization,

Count(CVMm): the count of the method for behavior
customization,

Count(CVMw): the count of the method for workflow
customization,

W(CVMm): Weight value for behavior customization
method, and

W(CVMw): Weight value for workflow customization
method.

As given in [Def. 11], we assign weight value into
behavior customization methods and workflow
customization methods. The reason is that those methods
are more complex than attribute customization methods.
Furthermore workflow customization methods are more
complex than behavior customization methods because
they contain several business methods in a workflow
customization. Then, the priorities are given as following
customization method<behavior

order: attribute

customization<workflow customization method.

3.3 Measuring the Reusability

We propose two approaches to measure the reusability
of component in this paper. The one is a metric that
measures how a component has reusability, while the
other is a metric that measures how a component is

reused in a particular application.

3719

o

1=Aksl7| 28} 8] e 2] #1107 A123, 2009

The first approach is component itself reusability (CR).
CR metric may be used at design phase in a component
development process. CR is calculated by dividing sum of
interface methods providing commonality functions in a
domain into the sum of total interface methods. We define
the CR as following formula:

[Def. 12]

i(COunt(CCMi)

i=l

R X, Count(CIM ;)
j=1

where:

Count(CCM): The count of each interface method for
providing common functions among several applications
in a domain, and

Count(CIM):

interfaces provided by a component.

The count of methods declared in
The second approach is a metric to measure particular
component’s reuse level per application in a CBSD. We
call that Component Reuse Level (CRL). CRL is divided
into CRLLOCs and CRLFunc. While CRLLOCs is
measured by using Lines of Code (LOC), CRLFunc is
measured by dividing functionality that a component
supports into required functionality in an application.
The CRLLOCs, expressed as a percentage, for a

particular application is given by:

[Def. 13]

Reuse(©) 100%
CRLLOCs(C)= Size(C)
where:

Reuse(C): The lines of code reused component in an
application,
Size(C): The total lines of code delivered in the

application.

The CRLFunc is expressed with:

[Def. 14] CRLFunc(C)= Sum of

functionality in a

supported
component/Sum of required

functionality in an application

According to the [Def.14], the more many functions
are supported in a component, the more much the

reusability of a component in an application. If we apply

this metric to a component used different applications for
the same domain, we get the reusability of a component

in a domain.

4. Case Study

This is the conclusions for our paper.4. Case Study
and Assessment

In order to measure complexity, reusability,
customizability, we apply proposed metrics into several
projects proceeded in the banking domain. The reason is
that because various components for the same purpose
may be developed in the same domain, we may measure
the complexity,

customizability, and reusability of

components. In this chapter, we demonstrate the
measurement results by applying metrics into component
design and implementation. Also, we discuss the
difference of between existing metrics and proposed
metrics.

We will estimate the costs and effort for component
development or component-based software development
through measurement results obtained using the previous
metrics. Furthermore, we measure the component’s quality
when we register developed components in component

repository.

4.1 Measurement Results of Complexity

In order to measure the complexity of each component
in component design time, we should first develop
component diagram. We apply proposed metrics into
component diagram for banking domain. An example of
component diagram is shown in [Figure 2]. The Figure 2
shows a part of banking component diagram such as
customer management, employee management, and
deposit management of banking domain.

As shown in Figure 2, there are three components:
‘Customer Management’, ‘Employment Management’, and
‘Deposit Management’. Also, there are one or more
classes in the each component. We measure the
complexity of each component by using proposed CPC
and CSC. Also, CDC is measured by using sequence

diagram for each component.

3720

Component Metrics to Measure Component Quality

Employee Management

Employee

Customer Management

Corporation

Deposit Management

Ordinary }< ————————— 1
Ordinary_TX

— Deposit_Journal

[Fig. 2] Component Diagram

the CPC and CSC of ‘Customer

Management’ and ‘Deposit Management’ are measured

For example,

with:
CPC(Customer Management) = 47 + 66 + 13 = 126,
where,
CmpC= 10 + 1+36 = 47,

Y.cc

&7 =30 + 9%4=66, and
>,
J=1

CSC(Customer Management)=
(0%2) +(1*4)+(4*6)+(0*8) +(0*10) = 28.

=5+2%4=13.

We give weight values for each relationship based on

weight value table for relationships shown in Table 1.

[Table 1] Weight Value Table for Relationship
Weight Values

Relationships
Dependency 2
Association 4
Generalization 6

8
1

Aggregation
Composition

0

In order to measure the CDC of each component, we
use sequence diagrams per a use case. An example of
sequence diagrams is shown in Figure 3. Figure 3 shows
the interactions among classes existent in a use case. The
‘OpenAccount()’ is the interface method declared in the
interface of ‘Deposit Management’.

As depicted in Figure 3, there are several message

flows among classes contained in a component such as

deposit component. It is difficult to measure the
complexity of ‘Deposit Management’ component with

only class diagrams or component diagrams.

Kim: Teller

Ordinan_TX ‘ ‘ Deposit_Joumsl

Ordinary H Cuanmeng“

| CustomerManagement 1
| Component

|

4 mquw&Cuanmer(:uanme‘v\D)

—_—

|
[eusto merlD = valid]
5: asignAccountiD()

| 1: openccount
A —

0l |
} 2: witelnitJoumal() I }
—_—
| 3: Opendcoount() |
|
|
|
|
|
|
|
|

|

|

|

famaunt >0] | ‘
6: depositfaccountD, amount) }
|

|

|

l—
| |
I

(:
|
7 witePosoumaltoD. e poseTime, biSiatug]
|

[Fig. 3] ‘Open Account’ Sequence Diagram of Deposit
Management

Therefore, it is enable to measure the dynamic
complexity of each component with interaction diagrams.
Applied CDC into this example diagram, the measurement
result is given by:

DC(OpenAccount())=1+1+1+2+1+3+4=13.

[Table 2] Measurements of Interface Methods

Interface Methods Deposit Management
OpenAccount 13
CloseAccount 20
InquireAccount 9
InquireTransactionHistory 13
InquireCustomerAccount
Deposit 22
WithDraw 24
Transfer 17
InquireBookKeeping 11
AssignAccountId 2
Calllnterest 5

Also we calculate the value of CCC for each
component by using lines of code. We developed each
component in forms of EJB Beans. Therefore, we measure
the CCC of each component by combining CPC and
cyclomatic complexity. The results are as following:

CCC(Customer Management) = 47 + 66 + 13 + 98

224.
CCC(Deposit Management) = 114 + 69 + 68 + 70
321.
Here we calculate the CCM by applying cyclomatic

3721

o

1=Aksl7| 28} 8] e 2] #1107 A123, 2009

complexity of each method. After the CCM of each
method in each class contained in a component is
calculated, the summation of values of each CCM
becomes CCM of ‘Customer Management’ component.
The resulting value is 98. The values of CmpC, the sum
of class complexity, and the sum of method complexity
are equal to the values of CPC.

We have learned that the measurement results of CCC
are larger than of CPC. It means that the larger the
complexity of CPC, the larger the complexity of CCC.

4.3 Measurement Results of Customizability

In order to measure the customizability of each
component, we use the component specification for each
component specification. During the component analysis,
we identified commonality and variability of components
will be developed in a domain. Then, identified variability
methods are described as customization methods in

component specifications at design phase. Customization

methods of ‘Customer Management’ and ‘Deposit
Management’ are described in Table 3.
We measure the customizability of ‘Customer

Management” component and ‘Deposit Management’
component by using CV metric. The results obtained are
given by:

CV(Customer Management) = 2/11~0.18.

CV(Deposit Management) = 2/11=0.18.

For example, there are two customization methods in
the ‘Deposit Management’ Component. Therefore, the
CV(Deposit Management) may be calculated by dividing

customization methods into total interface methods.

[Table 3] Customization Methods

IcustomerManagement IdepositManagement
SetCorporationID SetAccountFlag
corporatio ag):Boolean | (accountFlag):Boolean

rporationIDFlag): Bool Flag)Bool
SetCustomerIDFlag (iriii:ﬁ?lea sutflag

. s,
(customerIDFlag):Boolean interestFlag2):Boolean

4.4 Measurement Results of Reusability

We measure the reusability by using CRLFunc and
CRLLOCs. CRLFunc is
components, while CRLLOC:s is applied into implemented

applied into designed

applications because CRLLOCs measures the percentage

how many parts of a component is reused in an

application. For example, CRLFunc of ‘Deposit
Management’ component and ‘Customer Management’

component is obtained with:

CRLFunc (Customer Management)= 9/9=1
CRLFunc (Deposit Management)= 9/11=0.819

We developed component-based banking systems by
using ‘Customer Management’, ‘Deposit Management’,
and ‘Employee Management’. Then we measure the reuse
level of each component in banking system development
through lines of code.

The measurement results of each component are given
by:

0

CRLLOCs (Customer Management)= 34/576%*100%
5.9%

CRLLOCs (Deposit Management)= 28/576%¥100%
4.9%

Q

4.5 Assessment

In this section, we discuss different metrics proposed
in this paper to measure component’s quality and their
pros and cons. Table 4 lists approaches and factors to

measure component’s quality.

[Table 4] Comparisons of Different Metrics

CPC | C8C | CDC | CCC | CV | CR | CRLzar

Class o] o] o]
Interface o] o] o]
Class Method o] o] o]
Interface Method o] o] o] o] o]
Attributes o o o]
Parameters o 0 o 0
Relationship 0]
Messages 0 0
Cyclomatic
complexity ©
Customization

(0] (0] (o]
Methods
Commeon Method o o] o] o]
Lines of Code o] o]

As shown in Table 4, the number of factors of metrics

applied in design time is fewer than the number of factors

3722

Component Metrics to Measure Component Quality

of metrics applied in implementation time. Therefore,
measurement results of complexity or reusability by using
CCC and CRLLOCs are more accurate than of by using
CPC, CSC, CDC, and CR.

However, we estimate the size of component, costs, or
efforts required in component development or
component-based software development because CPC,

CSC, CDC, and CR may be measured early in CBD.

[Table 5] Component-Oriented Metrics Effects

Metrics | Objective | C.TE | Und | Main | CD.E | CBSD.E | Cust
CPC 1 1 1 T 1 1

csc 1 | 1 T 1

CDC 1 1 1 T 1

cce) | 1 T !

cv 1 1 1 T T 1 T
CRLfu: 1 1 T 1 1
CRLpoc T T T 1 T

*C.T.E: Component Testing Efforts, Und: Understandability,

Main: Maintainability, CD.E: Component
Development Effort, CBSD.E: CBSD Effort, Cust:
Customizability

Proposed component-oriented metrics help evaluate the
development and testing efforts needed, understandability,
maintainability, and reusability. This information is
summarized in Table 5.

Proposed component-oriented metrics provide valuable
information to component

developers, component

assemblers, application developers and project managers.

5. Concluding Remarks

In this paper, we have measured the complexity,
customizability, and reusability of components produced
during component development process for banking
domain. Several different metrics have been for this
purpose, CPC, CSC, CDC, CCC, CV, CR, and CRL.
Especially we applied CRL to measure the reuse level of
developed components into component-based banking
systems.

We have found that the complexity of a component
Also,

reusability and customizability of components effect on

may help to estimate the component’s size.

the reusability of components during component based

software development.

Finally, we have found that lines of code of
components are suitable for measurements of reusability
in CBSD. However, we do not consider the complexity of
technical complexity of each component. We will expect
that the complexity and reusability of components may be
calculated by using function points. Traditional function
points are not suitable in component based software
development. We will research the component-oriented

function points and complexity metrics

References
[1] Szyperski C., Component Software: Beyound
Object-Oriented ~ Programming, Addison = Wesley
Longman, Reading, Mass., 1998.
[2] Linda H. Rosenberg, “Applying and Interpreting

Object-Oriented Metrics”, at URL:
http://satc.gsfc.nasa.gov/support/STC_APR98/apply_oo/a
pply_oo.html.

[3] Sun
Specifications”, at URL: http://www javasoft.com

[4] Rational Corp., Unified Modeling
Language(UML) Summary, 1997.

[5] Object Management Group, “CORBA Components”,
at UR: http://www.omg.org, March 1999.

Microsystems Inc., “Enterprise JavaBeans

Software

[6] Norman E. Fenton and Shari Lawrence Pfleeger,

Software Metrics: A Rigorous and Practical
Approach, PWS Publishing Company, 1997.

[7] Chidamber, Shyam and Kemerer, Chris, “A metrics
Suite for Object Oriented Design”, IEEE Transactions
on Software Engineering, June, 1994, pp. 476-492.

[8] Lorenz, Mark and Kidd, Jeff, Object Oriented
Software Metrics, Prentice Hall Publishing, 1994.

[9] McCabe & Associates, McCabe Object Oriented Tool
User’s Instructions, 1994.

[10] Rosenberg, Ian, “Metrics for Object Oriented
Environments”, EFAITP/AIE Third Annual Software
Metrics conference, December, 1997.

[11] Hudli, R., Hoskins, C., Hudli, A., “Software Metrics
for Object Oriented Designs”, IEEE, 1994.

[12] §44 “AZUE AALGS 93t BRA AEA
A8 wEule] P A, Sl steleg),
Vol.7, No. 3, pp.379-384, 2006 3<.

[13] B4, “EA44e Tefst szego] ofsey
shele] o, AEAFEl/14et8) R A, Volg, No.l,

3723

SrArsh | &atsl=iA) 4107 A123, 2009

pp.82~95, 2007 2.

Chul-Jin Kim [Regular member]

® Feb. 1996 : Kyonggi Univ., B.E.

® Feb. 1998 : Soongsil Univ., M.S

® Feb. 2004 : Soongsil Univ.,
Ph.D

® Sept.2004 : Catholic Univ.
Visiting Professor
® Dec. 2004 ~ Dec. 2009

\ Samsung Electronics Co.
® Mar.2009 ~ current : Inha Technical College, Dept of
Computer System, Assistant Professor

<Research Interests>
CBD, Component Customization, Embedded Software

Eun-Sook Cho [Regular member]

Feb. 1993 : Dongeui Univ. B.E
Feb. 1996 : Soongsil Univ., M.S
Feb. 2000 : Soongsil Univ.,
Ph.D

Jan. 2002 ~ Oct. 2003 : Invited
Researcher in ETR

® Sep. 2000 ~ Feb. 2005 : Dongduk Women's Univ.,
Dept of Data Information, Full-time Instructor

® Mar. 2005 ~ current : Seoil Univ., Dept of Software,
Assistant Professor

<Research Interests>

CBSE, Embedded Software, Service- Oriented
Computing, SOA

3724

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

