박형 병렬구조 XY0 정렬 스테이지 개발

강동배¹, 안중환¹, 손성민^{2*} ¹부산대학교 기계공학부, ²울산과학대학 기계학부

Development of Thin and Parallel XY θ Alignment Stage

Dong-Bae kang¹, Jung-Hwan Ahn¹ and Seong-Min Son^{2*}

¹School of Mechanical Engineering, Pusan National University ²School of Mechanical Engineering, Ulsan College

요 약 정렬 시스템(Alignment System)은 다축의 스테이지를 이용하여 신속하게 물체를 정렬오차 범위 내로 위치 결정시키는 역할을 한다. 본 연구에서는 병렬구조로 설계하여 두께가 얇고 높은 정밀도와 더불어 강성이 높은 XYθ 정렬 스테이지를 개발하였다. 개발된 박형 병렬구조 XYθ 정렬 스테이지는 직각도, 반복정밀도, 진직도 등의 3가지 측 정항목에 대해 초정밀급을 달성하였으며 반복정밀도는 1 μm미만이다. 비전시스템 및 정렬알고리즘을 활용한 정렬성능 평가에서는 정렬오차 ± 6.25μm를 달성하였다.

Abstract Alignment systems with multi-axis motions are applied to determine vertical arrangement of multilayer assembly such as LCD, PDP, and MLCC. This study reports the development of XY θ alignment stage which is designed as thin-type structure and parallel actuations. The thin-type parallel XY θ alignment stage is maintained below 1 μ m in repeatability error. The squareness and straightness also allow precise motion for the alignment by the developed stage. The measured error is $\pm 6.25 \mu$ m in the alignment experiment by the vision system on the parallel XY θ alignment stage.

Key Words : Alignment system, $XY\theta$ alignment stage, Parallel motion

1. 서론

정렬 시스템(Alignment System)은 LCD, OLED와 같 은 평판 디스플레이나, MLCC와 같은 적층형 전자부품, 광통신 부품 등의 생산라인에서 다축의 스테이지를 이용 하여 신속하게 물체를 정렬오차 범위 내로 위치 결정시 키는 역할을 한다. 이 시스템은 FPD의 합착공정이나 검 사장비, 웨이퍼 절단 장비 등에 적용되기 때문에 제품의 품질과 생산 단가에 큰 영향을 미치는 중요한 요소로 작 용한다[1]. 정렬 시스템의 핵심 장치로 사용되는 XYO 스 테이지는 2차원 평면상에서 3축 동시제어를 통해 테이블 의 직선운동과 회전운동을 만들어 임의 위치가 중심으로 설정되는 정렬운동을 가능하게 한다.

XYθ 스테이지의 가장 단순한 구조는 그림 1 (a)와 같

이X, Y, θ 방향에 대해 독립적으로 운동하는 세 개의 테 이블을 차례로 쌓아서 만드는 적층형인데 정렬 시스템의 특성상 위치제어영역이 넓지만 공간이용의 단점으로 미 세 조정을 통한 정렬 시스템에서는 다소 비효율적인 구 조이다. 또 다른 정렬 스테이지의 일반적인 구조인 그림 1 (b), 샌드위치형의 경우 운동부가 (Moving part)가이드 레일(Guide rail)에 의해 구속되어 있고 베어링의 지지를 받는 구조로 되어 있어 스테이지를 박형으로 제작하는 것이 적층형에 비해 유리하고 수직 인장하중을 감당할 수 있으나 대형 패널을 다루기 위한 정렬 시스템 제작에 서는 박형으로 하는 것에 한계가 있다.

^{*}교신저자 : 손성민(semson@uc.ac.kr)

접수일 10년 11월 09일 수정일 (1차 10년 12월 09일, 2차 10년 12월 13일) 계재확정일 11년 01월 13일

(a) 적측형 (b) 샌드위치형 [그림 1] 일반적인 스테이지 구조

이에 대응되는 구조가 병렬형으로 모든 운동축을 한 층으로 할 수 있어 스테이지를 박형으로 제작하는 것이 가능하기 때문에 정렬 시스템의 공간을 효율적으로 사용 할 수 있다. 또한, XYθ 스테이지가 대면적의 큰 부하 물 체도 높은 정밀도로 위치결정 할 수 있도록 하기 위해 병 렬 구조의 스테이지가 많이 적용되고 있다. 한주훈 등은 단일 평면상에 수평방향 1개, 수직방향 2개의 전동 리니 어 액츄에이터를 배치하여 고정밀 위치제어용 경박 단소 형 XY⊖ 테이블을 설계·제작하였다[2]. K.S. Chen 등은 수평방향에 2개, 수직방향에 4개의 전자석 액츄에이터를 쌍으로 배열하여 다양하게 응용 가능한 XYθ 스테이지를 설계하고 높은 위치정밀도로 제어하는 방법을 제안하였 다[3]. 그리고 최근에는 선형모터를 이용하는 XY스테이 지에 관한 연구가 활발하게 이루어지고 있다. 김정도 등 은 리니어 초음파 모터를 이용한 XY스테이지의 마이크 로 미터급 위치 구동회로를 설계하였고, 김기현 등은 선 형모터를 이용한 평면형 구조의 스테이지에 관한 연구를 보고하였다[4,5]. 또한, 조규중 등은 XY 선형모션 스테이 지의 반발력 보상에 관한 연구를 수행하였다[6]. 한편, 이 와 같은 스테이지 구조부와 더불어 정렬 시스템을 구성 하기 위해서는 정밀한 위치제어가 가능한 스테이지와 더 불어 정렬상태를 인식하기 위한 영상처리 장치가 포함되 어 있는 비전시스템(Vision System)이 추가된다.

본 연구에서는 박형의 컴팩트한 구조에 고정도와 고강 성을 갖는 XYO 정렬 스테이지 개발에 대해 보고한다. 병 렬구조로 정렬 시스템의 공간활용도를 높이고, 정렬 작업 시에 인가되는 정하중 및 편하중에 강한 구조로 정렬 스 테이지 변형을 최소화하여 고정도를 달성할 수 있도록 한다.

2. 정렬 스테이지의 구성

2.1 정렬 스테이지의 구조

정렬 스테이지는 크게 정밀도와 강성을 보장할 수 있

는 구조부와 구동 메커니즘 그리고 정렬작업을 위한 영 상처리 등으로 구성된다.

정렬 스테이지의 구조는 고강성 구조를 갖고 여러 방 향의 외부 하중에 의한 변형이 최소화 될 수 있도록 하여 작업 중에도 고정도를 유지할 수 있도록 설계하고자 하 였다. 또한, 대형 FPD의 합착이나 검사 등과 같이 정렬 전·후 공정에서 작업 대상물의 상하 도치(Turn over)가 가 능할 경우 작업 능률이 크게 향상될 수 있는데 이를 위해 서는 정렬 스테이지가 압축하중뿐만 아니라 수직 인장하 중을 감당할 수 있어야 하므로 정렬 스테이지의 구조설 계에 이에 대한 조건도 포함하였다. 정렬 스테이지는 그 림 2에 보이는 것과 같이 베이스 플레이트의 중앙에 배치 된 인장하중 지지부와 4개의 압축하중 지지부가 설치되 어 있고 각 지지부의 상부는 테이블 플레이트와 결합된 다. 베이스 플레이트에 설치된 인장 및 압축 하중의 지 지부는 강구(Steel ball)에 의한 구름운동이 가능하도록 하여 마찰이 작고, 부드러운 3자유도의 운동이 가능하도 록 하였으며 리테이너로 강구의 탈락을 막았다.

[그림 2] XY 6 정렬 스테이지 구조

[그림 4] 정렬 스테이지의 운동

한편, 구동부는 스테핑 모터와 볼스크류에 의해 직선 운동이 가능하도록 그림 3과 같이 설계되었다. 총 3개의 직선 구동장치가 베이스 플레이트에 설치되고 테이블 플 레이트에 결합되는 부분은 베어링에의해 회전이 가능하 고 또한 회전에 따른 편위(Side displacement)에 의한 미 끄러짐이 구속되지 않고 미끄럼이 발생하도록 유한궤도 방식의 크로스 롤러 웨이(Crossed roller way)가 부착되어 있다. 그림 4에 보이는 것과 같이 정렬 운동 시에 1개 이 상의 구동장치가 동작하여 X, Y, θ 운동을 만들게 된다.

2.2 정렬 스테이지의 위치결정

병렬구조 XYθ 정렬 스테이지는 하나의 평면 상에서 X, Y, θ 각 방향의 운동이 서로 연결되어 있는 연성운동 (Couple motion)을 한다. 구동 기구는 직선 가이드에 의 해 직선 운동으로 구속되어 있다. 이 때, 운동에 따른 임 의 점의 좌표 변화를 나타내기 위한 스테이지의 개략도 와 좌표계는 그림 5와 같다.

(a) 스테이지 2차원 개략도

[그림 5] XYθ 정렬 스테이지의 좌표

정렬 스테이지의 임의 운동은 병진 운동과 회전 운동 의 조합으로 표현될 수 있는데, 병진 운동 후 회전 운동 을 수행하는 것에 대한 임의의 이송량 (x₀, y₀, -θ)에 대응 하는 각 액츄에이터의 이송량(ΔM₁, ΔM₂, ΔM₃)은 병진운 동에 의한 변위(ΔT₁, ΔT₂, ΔT₃)와 회전운동(ΔR₁, ΔR₂, Δ R₃)로 표시할 수 있다. 병진이송에 의해 A₁(x₁, y₁), B₁(x₂, y₂) C₁(x₃, y₃)로 이동할 때의 변위는 다음 식 (1)과 같으며 -θ 회전운동에 의한 각 변화는 식 (2)와 같다.

$$\Delta T_1 = x_0$$

$$\Delta T_2 = -y_0$$

$$\Delta T_3 = -x_0$$
(1)

$$\begin{split} \Delta R_1(\theta) &= (x_1 - x_0)(\cos\theta + \sin\theta \ \cdot \ \tan\theta - 1) \\ &- (y_1 - y_0) \tan\theta \end{split}$$

$$\begin{split} \Delta R_2(\theta) &= -(x_2 - x_0) \tan \theta + \\ & (y_1 - y_0)(1 - \cos \theta - \sin \theta \cdot \tan \theta) \\ \Delta R_3(\theta) &= (x_3 - x_0)(1 - \cos \theta - \sin \theta \cdot \tan \theta) \\ & + (y_3 - y_0) \tan \theta \end{split}$$

따라서 각 축의 구동량은 다음과 같이 표현될 수 있다.

$$\begin{split} \Delta M &= \Delta T + \Delta R \\ \Delta M_1 &= x_0 + (x_1 - x_0)(\cos\theta + \sin\theta \cdot \tan\theta - 1) \\ &- (y_1 - y_0)\tan\theta \\ \Delta M_2 &= -y_0 - (x_2 - x_0)\tan\theta \\ &+ (y_1 - y_0)(1 - \cos\theta - \sin\theta \cdot \tan\theta) \\ \Delta M_3 &= -x_0 + (x_3 - x_0)(1 - \cos\theta - \sin\theta \cdot \tan\theta) \\ &+ (y_3 - y_0)\tan\theta \end{split}$$
(3)

한편, 그림 6과 같이 회전된 스테이지의 X축 또는 Y 축 방향 병진운동은 이송축 직교 성분의 구속이 발생하 므로 직교방향의 축도 동시 구동되어야 한다. 정렬 스테 이지가 임의의 각 $-\theta$ 만큼 기울어져 있을 경우, X축 및 Y축 병진 이송 Δx , Δy 에 대한 각 직교 성분의 구동량 인 ΔM_1 , ΔM_2 , ΔM_3 을 계산하면 다음의 식(4), (5)와 같다.

(i) X축 병진 이송

$$\Delta M_1 = \Delta x, \ \Delta M_3 = -\Delta M_1 = -\Delta x$$

 $\Delta M_2 = \Delta M_1 \cdot \tan(-\theta) = -\Delta x \cdot \tan\theta$ (4)

(ii) Y축 병진 이송

$$\Delta M_2 = -\Delta y,$$

 $\Delta M_1 = -\Delta M_2 \cdot \tan(-\theta) = -\Delta y \cdot \tan\theta$
 $\Delta M_3 = -\Delta M_1 = \Delta y \cdot \tan\theta$ (5)

2.3 비전 시스템 (Vision System)

비전 시스템은 대상물의 정렬을 위해 2개의 인식 마크 (Fiducial mark)를 획득하기 위하여 그림 7과 같이 2개의 CCD 카메라와 Lens(WD : 13 mm, Max. FOV : 60 × 40 mm), 획득한 아날로그 영상을 디지털 영상 데이터로 변환하여 처리하는 프레임 그래버(Frame grabber), 그리고 조명 장 치와 라이트 가이드(Straight light guide)로 구성되어 있 다. 정렬 대상물의 절대 위치는 화상정보를 통한 픽셀 값 에 대응시켜 획득하는데 제품 개발의 초기 실험이고 향 후, 마이크로 프로세서를 이용한 고속 정렬 실현을 감안 하여 FOV(Field of View)를 크게 하고 CCD해상도를 작 게 하였다.

정렬오차의 계산은 인식 마크인 원의 중심을 찾는 것 으로 일반적으로 많이 사용되는 알고리즘은 모멘트법과 최소자승법이 있다. 두 방법 모두 카메라로부터 입력된 영상을 임계값(Threshold)을 통해 이진화하여 원을 배경 으로부터 분리해 낸다. 본 연구에서는 할로겐 조명을 사 용하는데 이로 인한 난반사로 영상에 노이즈가 발생하여 노이즈에 강한 모멘트법을 적용하였다. 이진화를 통해 얻 어진 영상의 좌표값만 선택적으로 취하는 과정으로 원의 중심을 구할 수 있다. 식 (6)은 X, Y축의 중심좌표를 구 하는 것으로 x,는 X의 픽셀좌표, y,는 Y의 픽셀좌표, N은 총 픽셀수이다.

$$\overline{x} = \frac{\sum_{i=1}^{N} x_i}{N}, \ \overline{y} = \frac{\sum_{i=1}^{N} y_i}{N} \tag{6}$$

[그림 7] 비전 시스템의 구성

[그림 8] 인식 마크의 획득

그림 8은 모멘트법에 의해 인식 마크를 이진화 하고 원의 중심을 구한 결과이다.

3. 실험 결과

3.1 정렬 스테이지의 정밀도

박형 병렬구조로 설계되어 그림 9와 같이 제작된 XY ↔ 스테이지의 정밀도를 한국 산업 규격(KS B 7068)의 '위치 결정 X-Y 테이블의 정밀도 시험 방법'에 따라 레 이저 간섭계(Laser interferometer : 5592A, Agilent)를 이 용하여 조사하였다. 정밀도 측정항목은 직각도, 평행도, 반복정밀도, 백래시, 진직도 등의 5가지이며 한국 산업 규격의 허용치 수준에 의해 P6(일반), P5(정밀), P4(초정 및) 등으로 분류된다. 위치결정에 있어 가장 중요한 항목 인 반복정밀도의 경우 그림 10에 보이는 것과 같이 X, Y 축 모두 1 μ៣미만으로 초정밀(P4) 등급에 속한다. 표 1은 5개 항목에 대한 정렬 스테이지의 정밀도 측정결과로 대 부분이 초정밀(P4) 등급에 만족하고 있으나 Y축 평행도 와 백래시는 초정밀 급에 다소 미치지 못하고 있다. 이는 축 간의 비대칭성에 의한 것으로 추정되나 이 값은 Y축 전체 스트로크인 14 ㎜에 대한 누적 오차로 정렬이 이루 어지는 수 ㎜ 이내의 구간에서는 백래시에 의한 오차는 크게 줄어든다. 한편, XYO 스테이지의 수직방향 강성은 위치에 따라 3.03~4.04 N/μm로 측정되었다.

[그림 9] 박형 병렬구조 XY 6 정렬 스테이지

[표 1] 성덜 스테이시의 성법

<u>축</u>	X 축		Y 축	
항목	측정값	KS	측정값	KS
직각도	0.0026	0.003(P4)	0.0008	0.003(P4)
평행도	0.0005	0.006(P4)	0.0110	0.012(P5)
반복정밀도	0.0004	0.001(P4)	0.0006	0.001(P4)
백래시	0.0011	0.002(P4)	0.0086	0.005(P6)
진직도	0.0029	0.003(P4)	0.0013	0.003(P4)

3.2 정렬 스테이지의 정렬성능 평가

위치결정 알고리즘이 반영된 비전 시스템으로 박형 병 렬구조 XYθ 스테이지의 정렬성능 평가실험을 수행하였 다. 정렬 구간을 ± 3 mm로 가정하였으며 비전시스템을 통해 획득된 영상은 필터링 작업을 거쳐 정렬의 중심 좌 표값이 계산되고 초기 위치 좌표값과의 비교를 통해 x, y, θ 각 구동량을 산출하여 구동기 출력값으로 변환된다.

비전 시스템에 의해 획득된 정렬 마크의 중심은 그림 11과 같이 측정되었고, 이 때의 위치정렬 오차는 ± 6.25 μm로 측정되었는데 Y축 방향에 비해 X축 방향의 오차가 상대적으로 크게 나타났다. 이는 병렬 구조 XYθ 스테이 지의 X축과 Y축의 움직임이 상호 완전하게 독립되지 않 아 발생하는 것으로 추측된다. Y축 방향으로 직선이동시 는 X축 방향의 2 개 구동기구에 배치된 LM가이드의 지 지를 받지만 X축 방향으로 이동할 때는 Y축 방향 1 개의 구동기구가 지지하고 있어 스테이지 운동의 비대칭성이 나타나기 때문이다.

[그림 11] 비전 시스템의 정렬 결과

4. 결론

기존의 정렬 스테이지에 비해 모든 구동기구와 이송장 치를 한 층으로 배치하는 박형의 컴팩트한 구조를 갖는 XY 정렬 스테이지 개발에 관한 연구를 수행하여 다음 과 같이 정리한다.

 3개의 구동 장치에 의한 병렬운동으로 X, Y 두 개 의 직선운동과 θ의 회전운동이 가능한 XYθ 스테 이지를 개발하였다.

- 정렬 스테이지는 3개의 구동장치가 하나의 층 (Layer)에 배치되어 두께 65 mm의 박형구조로 되어 있으며 테이블은 압축하중 지지부와 더불어 인장 하중 지지부를 갖고 있다.
- 3) XY 스테이지의 정렬작업을 위한 위치결정 알고 리즘을 S/W적으로 구현하였으며 정렬에 필요한 영 상정보를 획득하기 위하여 비전시스템을 구성하였 다.
- 4) 박형 병렬구조의 XY⊖ 스테이지는 1/m 미만의 반복 정밀도를 달성하였으며 비전시스템 및 위치결정
 S/W에 의해 ± 6.25 /m의 정렬정밀도를 획득하였다.

향후, FOV 축소 또는 CCD 분해능 확대로 광학기구의 정밀도를 높임으로써 기구적인 정밀도에 비해 현저히 높 은 수준의 정렬 오차를 보이고 있는 현재의 XYO 스테이 지 정렬 정밀도를 크게 개선할 수 있을 것으로 기대된다.

참고문헌

- [1] 오상영, 박종운, "LCD 산업에서 품질코스트시스템의 혁신적 활용 연구", 한국산학기술학회논문지, 제9권, 제1호, pp. 195-201, 2월, 2008.
- [2] 한주훈, 오춘석, 유영기 "고정밀 위치 제어용 병렬 XYθ 테이블 설계 및 구현", 전자공학회논문지, 제36 권, 제7호, pp. 62-70, 7월, 1999.
- [3] K.S Chen, D.L. Trumper, S.T. Smith "Design and control for an electromagnetically driven X-Y-θ Stage", Precision Engineering, 26 (2002) 355-369.
- [4] 김정도, 홍철호, 김동진, 함유경 "리니어 초음파 모터 를 이용한 X-Y stage의 마이크로 미터급 위치 구동 회로 설계", 한국산학기술학회논문지, 제6권, 제2호, pp. 165-17, 4월, 2005.
- [5] 김기현, 이문구 "평면형 구조와 Halbach 자석배열 선 형모터를 이용한 리니어 XY 스테이지의 설계", 한국 공작기계학회 논문집, 제19권, 제4호, pp.553~561, 2010
- [6] 조규중, 최동수, 안형준 "XY 선형 모션 스테이지 시 스템의 반발력 보상 기구 및 그 제어 방법 ", 대한기 계학회 2010 춘계학술대회 논문집 pp. 304~311

손 성 민(Seong-Min Son) [정회원]

- 1999년 2월 : 부산대학교 지능기 계공학과 (공학석사)
- 2004년 2월 : 부산대학교 지능기 계공학과 (공학박사)
- 2004년 11월 ~ 2007년 2월 : NUS 전임연구원
- 2008년 3월 ~ 현재 : 울산과학 대학 디지털기계학부 조교수

<관심분야> 생산공학, 특수가공, 정밀가공

강 동 배(Dong-Bae Kang)

[정회원]

- 2003년 2월 : 부산대학교 지능기 계공학과 (공학석사)
- 2004년 3월 ~ 현재 : 부산대학 교 지능기계공학과

<관심분야> 정밀가공, 제어/자동화

안 중 환(Jung-Hwan Ahn)

[정회원]

- 1979년 2월 : 한국과학기술원 생 산기계공학 (공학석사)
- 1987년 2월 : 동경대학 정밀기계 공학 (공학박사)
- 1980년 3월 ~ 현재 : 부산대학
 교 기계공학부 교수

<관심분야> 미세공정 감시/진단, 생산공학, 공정자동화