열매체보일러의 구조해석

이종선^{1*} ¹대진대학교 컴퓨터응용기계설계공학과

Structural Analysis of Synthetic Heat Transfer Fluid Boiler

Jong-sun Lee^{1*}

¹Computer Aided Mechanical Design Engineering, DaeJin University

요 약 본 논문은 열매체(Synthetic Heat Transfer Fluid) 보일러의 화재원인을 분석하기 위하여 3차원 자동설계 프로 그램인 CATIA를 활용하여 설계하였다. 또한 3차원 유한요소 코드인 ANSYS를 활용하여 설계된 열매체보일러에 대 하여 구조해석을 실시하였다. 구조해석을 통하여 열매체보일러의 정상상태와 화재 후의 최대온도(maximum temperature), 최대응력(maximum stress), 최대변형율(maximum strain) 등을 구하였다.

Abstract In this paper, 3-dimensional designing program CATIA was used to design in order to investigate causes of a fire in a boiler using synthetic heat transfer fluid. And also structural analysis was conducted to the boiler by using 3-dimensional finite element code, ANSYS. Maximum temperature, maximum stress, and maximum strain were obtained at the normal condition and after fire.

Key Words : Synthetic Heat Transfer Fluid Boiler, Structural Analysis, Maximum Temperature, Maximum Stress, Maximum Strain

1. 서론

지방의 공장에서 MDF(Medium Density Fiberboard)를 제조하는 공정에 필요한 열매체(Synthetic Heat Transfer Fluid) 보일러에서 화재가 발생하였다. 화재가 발생한 1 차 패스 연소대 위쪽 14단 부근에서 열매유가 방출되었다. 열매체보일러의 정확하고 확실한 화재원인을 분석하기 위하여 회사가 보유한 2차원 도면을 기반으로 3차원 자동설계 프로그램인 CATIA[1]를 활용하여 설계하였으며 또한 3차원 유한요소 코드인 ANSYS[2-3]를 활용하여 설계된 열매체보일러에 대하여 구조해석[4-6]을 수행하여 열매체보일러의 정상상태와 화재 후의 최대온도 (maximum temperature), 최대응력(maximum stress), 최대 변형율(maximum strain) 등을 구하였다.

이를 토대로 화재가 발생한 열매체보일러의 정상상태 와 화재 후 변화에 대하여 검토하였다.

모델링은 열매체보일러의 1차 패스, 2차 패스, 3차 패

이 논문은 2012학년도 대진대학교 학술연구비 지원에 의한 것임. *Corresponding Author : Jong-sun Lee Tel: +82-11-794-1978 email: jongsun@daejin.ac.kr 접수일 12년 05월 08일 수정일 12년 05월 23일 개

스 각각에 대하여 수행하였으며, 그림 1은 열매체보일러 의 형상, 그림 2는 1차 패스, 그림 3은 2차 패스, 그림 4는 3차 패스이다.

게재확정일 12년 08월 09일

[그림 2] 1차 패스의 형상 [Fig. 2] Geometry of first pass

[그림 3] 2차 패스의 형상 [Fig. 3] Geometry of second pass

[그림 4] 3차 패스의 형상 [Fig. 4] Geometry of third pass

2. 구조해석

1) 1차 패스의 정상상태와 화재 후 비교

열매체보일러의 재질인 STBH 340(탄소강)의 물성치 [7]는 표 1과 같으며 열매유의 온도는 260℃, 정상상태와 화재 후의 연소가스 온도를 각각 1200℃, 1680℃로 설정 하여 구조해석을 실시하였다. 여기서 1200℃는 정상상태 의 최고온도이며 1680℃는 화재 후 최고온도로서 CFD(Computational Fluid Dynamics)해석의 결과를 본 해 석의 입력데이터로 활용하였다.

[표 1] STBH 340의 물성치

[Table 1] Material properties of STBH 340

Structural		
Young's Modulus	2.05000e11 Pa	
Poisson's Ratio	0.27	
Density	7600 kg/m ³	
Bulk Modulus	1.667E+11 Pa	
Tensile Yield Strength	175000000 Pa	
Shear Modulus	8.0709E+10 Pa	
Tensile Ultimate Strength	34000000 Pa	

표 2는 본 해석의 입력데이터로 사용된 조건이다.

[표 2] 해석조건 [Table 2] Analysis conditions

coil inner temperature(°C)	260
gravity (m/s^2)	9.8
time(s)	700
contact condition	fixed & bonded
modeling	solid

그림 5는 열매체보일러의 1차 패스 메쉬 형상을 나타 내고 있으며 148,736개의 절점과 21,238개의 요소로 구 성되어 있다.

[그림 5] 1차 패스의 메쉬형상 [Fig. 5] Mesh generation of first pass

그림 6은 1차 패스의 정상상태 온도분포, 그림 7은 정 상상태 응력, 그림 8은 정상상태 변형율, 그림 9는 화재 후 1차 패스의 온도분포, 그림 10은 화재 후 응력, 그림 11은 화재 후 변형율을 나타낸다.

[그림 6] 정상상태 온도분포

[Fig. 6] Temperature distribution of steady state

[그림 7] 정상상태 응력 [Fig. 7] Stress of steady state

[그림 8] 정상상태 변형율 [Fig. 8] Strain of steady state

[그림 9] 화재 후 온도분포

[Fig. 9] Temperature distribution of fire condition

[그림 10] 화재 후 응력 [Fig. 10] Stress of fire condition

- [그림 11] 화재 후 변형율
- [Fig. 11] Strain of fire condition

표 3은 1차 패스의 정상상태와 화재 후에 대한 최대온 도, 최대응력, 최대변형율을 나타낸다.

[표 3] 1차 패스의 정상상태와 화재 후 비교 [Table 3] Comparison of steady state and fire condition

1차 패스	정상상태 (1200℃)	화재 후 (1680℃)
최대 온도	261.57℃	1501 ℃
최대 응력	6.1263e7	6.0486e9
최대 변형율	0.00029884	0.024588

정상상태와 화재 후의 내부 온도는 약 1240℃ 증가, 최대응력은 약 100배 증가, 최대변형율은 약 82배 증가하 는 결과를 알 수 있다. 이러한 해석 결과로부터 1차 패스 의 손상이 매우 크며 안전범위를 벗어나 있음을 알 수 있 다.

2) 2차 패스

정상상태와 화재후의 연소가스 온도를 각각 650℃, 1059℃로 설정하여 구조해석을 실시하였다.

그림 12는 열매체보일러의 2차 패스 메쉬 형상을 나타 내고 있으며 323,079개의 절점과 57,354개의 요소로 구 성되어 있다.

[그림 12] 2차 패스의 메쉬형상 [Fig. 12] Mesh generation of second pass

그림 13는 화재 후 2차 패스의 온도분포, 그림 14는 화 재 후 응력, 그림 15는 화재 후 변형율을 나타낸다.

[그림 13] 화재 후 온도분포

[그림 14] 화재 후 응력 [Fig. 14] Stress of fire condition

[그림 15] 화재 후 변형율

[Fig. 15] Strain of fire condition

표 4는 2차 패스의 정상상태와 화재 후에 대한 최대온 도, 최대응력, 최대변형율을 나타낸다.

2차 패스	정상상태 (650℃)	화재 후 (1032°C)
최대 온도	260 ℃	996.94 °C
최대 응력	4.9346e8	1.8834e9
최대 변형율	0.0024673	0.0093142

[표 4] 2차 패스의 정상상태와 화재 후 비교 [Table 4] Comparison of steady state and fire condition

정상상태와 화재 후의 내부 온도는 736℃증가, 최대응 력은 약 3.8배 증가, 최대변형율은 3.8배 증가함을 알 수 있다.

이러한 해석 결과로부터 2차 패스의 손상이 있음을 알 수 있다.

3) 3차 패스

정상상태와 화재 후 온도를 각각 650℃, 1007℃로 설 정하여 구조해석을 실시하였다.

그림 16은 열매체보일러의 3차 패스 메쉬 형상을 나타 내고 있으며 443,07개의 절점과 63,266개의 요소로 구성 되어 있다.

[그림 16] 3차 패스의 메쉬형상 [Fig. 16] Mesh generation of third pass

그림 17은 화재 후 3차 패스의 온도분포, 그림 18은 화 재 후 응력, 그림 19는 화재 후 변형율을 나타낸다.

[그림 17] 화재 후 온도분포

[Fig. 17] Temperature distribution of fire condition

[그림 18] 화재 후 응력 [Fig. 18] Stress of fire condition

[그림 19] 화재 후 변형율

[Fig. 19] Strain of fire condition

표 5는 3차 패스의 정상상태와 화재 후에 대한 최대온 도, 최대응력, 최대변형율을 나타낸다. [표 5] 3차패스의 정상상태와 화재 후 비교 [Table 5] Comparison of steady state and fire condition

3차 패스	정상상태 (650℃)	화재 후 (1007℃)
최대 온도	260.69 ℃	904.8 ℃
최대 응력	7.6274e8	2.703e9
최대 변형율	0.0037207	0.013185

정상상태와 화재 후의 내부 온도는 약 644℃증가, 최 대응력은 약 3.5배 증가, 최대변형율은 약 3.3배 증가함을 알 수 있다. 이러한 해석결과로부터 3차 패스의 손상이 있음을 알 수 있었다.

3. 결론

화재가 발생한 열매체보일러의 화재 원인을 규명하기 위하여 화재 전 정상상태와 화재 후의 변화를 해석하였 다. 해석에는 3차원 자동설계 프로그램인 CATIA를 활용 하여 설계하고 이를 바탕으로 유한요소해석 프로그램인 ANSYS를 활용하여 해석한 결과 다음과 같은 결론을 얻 었다.

- 화재 전 정상상태의 1차 패스, 2차 패스, 3차 패스 에 대한 최대온도, 최대응력, 최대변형율은 안전범 위에 있어 구조적인 결함이 없음을 알 수 있었다.
- 화재 후 1차 패스의 최대온도는 1240℃ 증가, 최대 응력은 100배 증가, 최대변형율은 82배 증가함으로 서 1차 패스의 손상이 매우 크며 안전범위를 벗어 나 있음을 알 수 있다.
- 3) 화재 후 2차 패스의 최대온도는 736℃ 증가, 최대응 력과 최대변형율은 각각 3.8배씩 증가함으로서 2차 패스의 손상이 있음을 알 수 있다.
- 4) 화재 후 3차 패스의 최대온도는 644℃ 증가, 최대응 력은 3.5배, 최대변형율은 3.3배 증가함으로서 3차 패스의 손상이 있음을 알 수 있다.
- 5) 해석결과로부터 1차 패스, 2차 패스, 3차 패스의 재 사용은 불가능한 것으로 판단된다.

References

- Che heechang, "Introduction to CATIA V5", Pearson Education Korea Ltd., 2002.
- [2] ANSYS User's Manual Ver.12.1, ANSYS Inc., 2010.
- [3] Park chulwoo, Hong chulhyun, "User Guide of ANSYS Workbench", Intervision, 2008.
- [4] Lee jongsun, "A Study on the Optimum Shape of Rope Brake", TRANSACTIONS of KSMTE, Vol.14, No.1, pp.101-107, 2005.
- [5] Lee jongsun, "Design and Structure Improvement of Ultra Low Volume Sprinkler", Journal of the Korea Academia-Industrial cooperation Society, Vol.11, No.1, pp.43-48, 2010.
- [6] Lee jongsun, "Structural Analysis and Design Change of Pipe Butt Welding Machine", Journal of the Korea Academia-Industrial cooperation Society, Vol.11, No.11, pp.4075-4079, 2010.
- [7] James shakelford and William Alexander, "Material Science and Engineering Hand Book", CRC Press, 1994.

이 종 선(Jong-Sun Lee)

[종신회원]

- 1982년 2월 : 국민대학교 기계설 계학과 (공학사)
 1984년 2월 : 국민대학교 기계공
- 학과 (공학석사)
- 1996년 2월 : 국민대학교 기계설 계학과(공학박사)
- 1996년 3월 ~ 현재 : 대진대학
 교 컴퓨터응용기계설계공학과
 교수

<관심분야> 최적설계, 생산공학