거푸집 설치 방법에 따른 철도 전철주기초의 모멘트 저항 거동

이수형¹, 이승현^{2*} ¹한국철도기술연구원 광역도시교통연구본부, ²선문대학교 토목공학과

Moment Resisting Behaviors of Railway Electric Pole Foundation According to Form Work Methods

Su-Hyung Lee¹ and Seung-Hyun Lee^{2*}

¹Korea Railroad Research Institute, Metropolitan Transportation Research Center ²Dept. of Civil Engineering, Sunmoon University

요 약 철도선로에 설치되는 전철주기초의 모멘트에 대한 거동을 파악하기 위한 실물 재하시험을 수행하였다. 현 장타설방식으로 설치된 폭 1.1m, 깊이 2.2m의 정사각형 전철주기초 2본에 대하여 실제 조건과 동일한 모멘트 위주 의 하중을 가하여 기초의 항복모멘트를 확인하였다. 거푸집 설치 여부가 기초의 저항모멘트에 미치는 영향을 평가하 기 위하여 동일한 조건에서 거푸집을 설치한 경우와 그렇지 않은 경우에 대하여 시험하였다. 거푸집 설치 효과로 흙과 지반의 접촉면이 매끈해지면서 발생하는 마찰력 감소보다는, 거푸집 미설치 시 굴착지반의 이완에 의한 기초 주변지반의 강도 감소 효과가 더 크게 나타나는 것으로 나타났다. 비례계수를 사용하여 포괄적으로 전철주기초의 저 항모멘트를 산정하는 현행 설계방법으로는 거푸집의 설치효과를 적절히 고려할 수 없었으며, 연직응력과 마찰력을 분리하여 저항모멘트를 산정하는 경우에는 기초와 지반의 마찰각을 20% 감소시킴으로써 거푸집 설치효과에 대한 합리적인 고려가 가능하였다.

Abstract The moment responses of electric pole foundations for a railroad were investigated using real-scale load tests. Large overturning moments were applied to two square rigid piles with a 1.1 m width and a 2.2 m embedded depth. Two different installation methods-with and without a form-were applied to evaluate the influence of the form work on the moment capacities of the foundations. The reduction of ground strength caused by the excavation without a form is more pronounce than the decrease of frictional strength due to the smooth concrete surface with a form. From the test results, it is found that the current design method which applies a proportional coefficient to consider the effect of a form work is not appropriate. When the normal and frictional stressed is considered separately, the effect of a form work can be estimated reasonably by reducing the friction angle between soil and foundation by 20%.

Key Words : Pole foundation, Railroad, Overturning moment, Real-scale, Moment capacity, Form work

1. 서론

우리나라 철도는 1970년대 초반부터 전기에 의하여 열차가 구동되는 전철화가 시작되었으며, 2012년 현재 전체 철도선로 거리 3,637.2km의 67%인 2,436.0km의 노 선이 전철화 되어 있다. 또한 한국교통연구원과 한국철도 기술공사[6]에 의하면 2019년까지 1,596.3km 구간을 전 철화하는 계획을 국가적으로 수립 중에 있다. 따라서 철 도의 전력시설물에 대한 합리적인 설계 및 시공을 통하 여 국가적인 예산의 절감이 필요한 실정이다. 철도 선로 의 전철화를 위해서는 전력공급을 위하여 선로를 따라 전철선을 설치해야 하며, 이를 지지할 수 있는 기초가 설

Tel: +82-10-7278-1080 email: shlee02@sunmoon.ac.kr

Accepted January 10, 2013

^{*}Corresponding Author : Seung-Hyun Lee (Sunmoon University)

Received September 25, 2012 Revised November 9, 2012

치되어야 한다. 국내에서는 기초의 단면형상에 따라 사각 형과 원형의 두 종류의 현장타설 콘크리트 기초가 적용 되고 있다. 사각형 기초의 경우는 주로 굴착 후 현장 콘 크리트 타설에 의하여 설치되며 이 경우 기초 형성을 위 해 거푸집을 사용하게 된다. 그러나 굴착부의 공벽이 유 지 되어 기초 형상을 유지할 수 있다면 거푸집을 설치하 지 않은 방안이 공정이 많이 단축되어 더 바람직하다고 할 수 있다. 본 논문에서는 거푸집을 이용한 경우와 그렇 지 않은 경우의 두 가지 방법을 적용한 2본의 실물 크기 의 기초에 대하여 재하시험을 실시함으로써, 거푸집 설치 여부가 사각형 전철주기초의 모멘트 저항거동에 미치는 영향을 평가하였다.

2. 철도 전철주기초의 특성

2.1 철도 전철주기초에 작용하는 하중

철도 선로에 설치되는 전철주는 선로의 곡선반경에 따 라 20m~60m 간격으로 배치되며 따라서 전철주 하나는 20~60m 길이의 전선 및 이를 고정하기 위하여 부착되는 구성품에 작용하는 각종 하중(자중, 풍하중, 전선의 장력 등)을 지지하여야 한다[Fig. 1]. 이들 하중 중 전철주에 가 장 큰 영향을 주는 것은 전철선에 작용하는 풍하중이다. 전철선에 작용하는 하중은 전철주기초로 부터 7m 이상 떨어져 작용하기 때문이며, 따라서 전철주기초는 매우 큰 회전 모멘트를 저항하여 전도(overturning)가 발생하지 않 도록 설계되어야 한다[Fig. 1].

[Fig. 1] Schematics of loads acting on a pole foundation of Railroad

2.2 국내 사각형 전철주기초의 시공방법

사각형기초는 전통적으로 시공 되던 기초 형태로서 기 계굴착과 인력굴착을 병행하여 설치되며 작용하중이 크 거나 지반이 연약한 개소에 주로 적용되고 있다. 기본적 으로는 소요깊이까지 완전히 굴착하고 거푸집을 제작한 후, 콘크리트 양생이 완료되면 기초 주변지반을 굴착하여 거푸집을 완전히 제거한 후 되메우는 방식으로 시공하는 것으로 되어 있다. 하지만 실제 현장에서는 공벽을 유지 할 수 있는 수준의 깊이까지만 거푸집을 설치하고 하부 는 거푸집 없이 콘크리트를 굴착지반에 직접 현장타설하 는 방법이 주로 적용되고 있다. 사각형 기초의 크기는 철 도설계편람(한국철도시설공단[2])에 제시된 폭 900mm~ 1,400mm, 근입깊이 1,800mm~3,200mm의 기초가 적용되 고 있다[Fig. 2].

[Fig. 2] Rectangular concrete foundation for railway electric pole

2.3 전철주기초의 설계방법

철도설계편람(한국철도시설공단[2])에 제시된 전철주 기초 저항모멘트 산정 방법은 일본에서 개발된 경험적인 방법을 적용하고 있다. 이 방법에서는 지지력이 양호한 지반조건에 대하여 간편식을 사용하도록 되어있으며, 지 반조건이 불명확하거나 연약지반인 경우에는 각종 지반 조사를 통해 지반특성을 파악하고 해당 조사에 적합한 경험식을 적용하여 기초의 저항모멘트를 산정한 후 소정 의 안전율을 적용한다. 지반의 지지력 측정을 필요로 하 지 않는 양호한 지반에 대해서는 아래의 식[1]을 적용하 여 허용 저항모멘트를 산정한다.

$$M_a = Kf S_0 L^2 \sqrt[3]{d^2 \left(1.45 + 0.57 \frac{d^2}{D^2} \right)^2} (\text{tf} \cdot \text{m}) \quad (1)$$

여기서, M_a : 허용 저항모멘트 K : 지형계수 f : 형상계수 S_0 : 강도계수 D : 기초 근입깊이 (m) d : 기초 직경 (m)

지형계수(K)는 성토사면 또는 측구에 의한 지형적인 영향을 고려하기 위한 계수로 지형조건에 따라 0.6~1.0의 값을 적용한다. 강도계수(S₀)는 설계하중 조건(폭풍시와 운전시)과 지반조건을 고려하기 위한 계수로 0.75~1.2의 값을 적용한다.

형상계수(f)는 기초의 형태와 흙막이 거푸집의 사용 여 부에 따른 기초재료와 흙 사이의 마찰강도 차이를 고려 하기 위한 계수로서 Table1의 값을 적용한다. 이러한 계 수 적용 조건은 거푸집에 의하여 기초 표면이 매끈해짐 에 따라 기초와 주변 흙 사이의 마찰력이 감소하여 약 10% 정도 저항모멘트 감소가 발생하는 것을 가정한 것 이다. 그러나 이들 계수는 일본에서 적용하고 있는 경험 적인 것으로 이들 값에 대한 공학적인 산출 근거는 명확 하지 않다.

거푸집이 설치되면 기초 표면이 매끈해 지므로 콘크리 트와와 흙 사이의 마찰력이 감소하게 된다. Kulhawy 등 [7]은 흙과 다른 재료 사이의 마찰각을 제안하였으며, 거 푸집을 설치하여 표면이 매끈한 콘크리트(smooth concrete)의 경우 흙과의 마찰각이 거친 콘크리트(rough concrete)에 비해 20%까지 감소할 수 있는 것으로 제시하 고 있다.

그러나 전철주기초는 주로 기초 측면에 작용하는 수동 토압을 통해 전도모멘트에 저항한다. 프랑스(Korea TGV Consortium[5])와 독일(Kiessling et al.[1])의 경우는 [Fig. 3]과 같이 기초에 작용하는 토압분포를 가정하여 기초의 저항모멘트를 산정한다. 전철주기초의 최대 저항모멘트 는 Fig. 2의 토압분포에서 힘과 모멘트에 대한 평형방정 식을 고려하여 산출한 작용 토압이 지반의 한계토압을 초과하는 경우의 모멘트로 결정하고 있다. 그러나 두 경 우 모두 기초와 흙 사이의 마찰력은 전혀 고려하고 있지 않기 때문에 이들 방법에서 거푸집의 설치여부를 고려하 는 것은 불가능하다고 할 수 있다. 이와 같이 흙과 기초 사이의 마찰력이 기초의 저항모 멘트에 미치는 영향이 명확히 파악되지 않고 있기 때문 에 거푸집 설치 여부에 따른 저항모멘트의 변화를 예측 하는 것은 매우 어려운 상태이며, 따라서 본 연구와 같은 실물 재하시험으로 총체적인 영향을 파악하는 것이 반드 시 필요하다.

(a) Germany, Kiessling et al.[1]

[Fig. 3] Assumptions for the distributions of soil pressures acting on a foundation

한국철도기술연구원[4]에서는 기초의 마찰저항을 고 려할 수 있는 저항모멘트 산정 기법을 개발하였으며, 이 방법에서는 Fig. 4와 같이 기초에 작용하는 연직응력과 마찰응력의 분포를 가정하여, 모멘트와 힘에 대한 평형방 정식을 풀게 되며, 기초에 작용하는 마찰력과 기초저면에 작용하는 연직응력을 함께 고려할 수 있다.

[Table 1] Values of shape factors(f) (Korea Rail Network Authority, 2004)

Shape	Crushed stones		Circular concrete		Rectangular concrete		T shape
Form conditions	Without a form	With a form	Without a form	With a form	Without a form	With a form	Pouring after excavation
Shape factor	0.6	0.75	1.0	0.9	1.1	1.0	1.4

[Fig. 4] Assumption of soil pressure distribution for moment capacity evaluation, Korea Railroad Research Institute[4]

3. 전철주기초 실물재하시험

3.1 시험 개요

본 연구에서는 실제 조건에 가까운 하중 재하를 통해 실제 크기 전철주기초의 항복을 확인하는 재하시험을 수 행하였다. 특히 Fig. 5와 같이 기초 전 깊이에 대하여 거 푸집을 설치한 경우와 기초 상부 40cm 깊이까지만 거푸 집을 설치한 경우의 2가지 설치조건에 대한 시험을 수행 함으로써 거푸집 설치여부가 기초의 모멘트 저항거동에 미치는 영향을 파악하고자 하였다.

[Fig. 5] Schematics of the foundations and form work methods

기초는 Fig. 6에 나타낸 바와 같이 굴착장비와 인력굴 착과 콘크리트 현장타설에 의하여, 폭 1.1m의 정사각형 기초를 근입 깊이가 2.2m 되도록 2본 시공하였다. 이 때 1개 기초는 Fig. 5a와 같이 기초 전면에 대하여 거푸집을 설치하였으며, 또 다른 한 개의 기초는 Fig. 5b와 같이 기 초 근입부의 상부 40cm 까지만 거푸집을 설치하였다.

(a) Case 1 : A form is installed for the entire foundation depth

(b) Case 2 : A form is installed at the upper 0.4m foundation depth

[Fig. 6] Construction of foundations according to form work methods

3.2 시험 위치 및 지반조건

재하시험은 한국철도기술연구원 부지에서 수행되었 다. 해당 지역의 흙은 고속철도 설계기준(한국철도시설공 단[3])에서 고속철도 선로의 상부노반으로 적용 가능한 재료로 분류된 GP-GM(실트 및 모래 섞인 입도 불량한 자갈)로 구성되어 있다.

지반의 강성 및 강도는 LFWD(Light Falling Weight Defletometer)와 동적콘관입시험기(Dynamic Cone Penetrometer, DCP)를 이용한 현장 시험을 통해 평가하였 다. LFWD는 자유낙하 시킨 추로 인해 발생하는 에너지, 하중, 지반 침하 사이의 관계를 이용하여 지반강성을 평 가하는 장비로서 크기가 작고 이동이 간편하기 때문에 차량이 접근하기 곤란한 철도 선로에서 많이 적용되고 있다. 본 연구에서 사용된 장비는 Dynatest의 Keros Prima100 Portable FWD이다. 동적콘관입시험은 78.4N의 해머를 575mm의 높이에서 낙하시켜 직경 20mm의 원추 를 타격하여 관입되는 길이를 측정함으로써 지반의 강성 및 강도를 평가하는 방법으로서, 본 연구에서 사용한 장 비는 미국 Kessler의 장비로 현장 시험 시 관입깊이는 500mm 이상을 기준으로 하였다.

Test	LFWD	Dynamic cone penetration test		
type	Elastic modulus (MPa)	DCP Index (cm)	Internal friction angle(degree)	
With form	44	2.3	34.3	
Without form	32	3.6	32.7	

[Table 2] Results of ground investigations

Table 2는 재하시험을 위하여 설치된 기초의 주변 지 반에 대하여 수행한 LFWD와 동적콘관입시험의 결과로 서 10회 이상의 시험결과를 평균한 값이다. Table 2에 제 시한 내부마찰각(φ)은 1회 타격당 콘관입깊이인 DCP Index(DCPI)로부터 Mohammadi 등[8]이 제시한 아래의 식[2]를 이용하여 산정하였다.

$$\phi = 52.16 (DCPI)^{0.13}$$
 (degree) (2)

Table 2에 제시된 측정결과에 의하면 거푸집을 설치하 지 않은 경우의 주변지반 강도와 강성이 약한 것으로 나 타났다. 이는 거푸집을 설치한 경우 굴착부를 되메우며 기초주변부를 다짐하는데 반해, 거푸집을 설치하지 않은 경우는 굴착으로 이완된 지반에 바로 콘크리트를 바로 타설하기 때문인 것으로 판단된다.

3.3 재하 조건

실제 하중조건을 모사하기 위하여 Fig. 7과 같이 강철 케이블을 전철주에 연결하고 크레인을 이용하여 인장하 였다. 재하 위치는 일반적인 전철선 위치(레일 상면으로 부터 약 7m)를 고려하여 기초로부터 높이가 8m인 곳으 로 결정하였다.

전철주에 전달되는 하중은 Fig. 8과 같이 케이블에 장 착된 로드셀을 이용하여 측정하였다. 로드셀은 50kN까지 측정이 가능한 제품을 사용하였다. 하중은 기본적으로 크 레인의 인장하중을 단계별로 0.5kN씩 증가시키는 방법으 로 재하하였다. 크레인을 통한 정확한 하중 조절이 어렵 기 때문에 측정된 하중을 확인하며 크레인 하중을 서서 히 증가시켰으며 0.5kN 이상 하중이 증가하면 하중 증가 를 멈추고 계측된 값이 안정될 때까지 하중을 유지하였 다. 하중 재하 시에는 모멘트-회전각 곡선을 실시간으로 작성하여 기초의 거동을 파악하였으며, 기초의 항복이 충 분히 발생할 정도까지 하중을 재하하여 기초의 항복모멘 트를 확인할 수 있도록 하였다.

(a) Schematic of loading method

(b) On site view [Fig. 7] Loading method using a crane

[Fig. 8] Locations of LVDT

3.4 변위 계측 방법

작용 모멘트에 따른 기초의 변위를 측정하기 위하여 6 개의 전자식변위계(LVDT, Linear Variable Differential Transformer)를 설치하였다. 사용된 LVDT는 일본 KYOWA사의 스트레인게이지형 제품(DTH-A-50)으로 최 대 50mm까지 측정 가능한 센서이다. [Fig. 8]은 전자식변 위계의 설치 위치를 나타낸 것으로 하중 작용방향에 대 하여 전면부는 기초 상면에 2개, 기초 측면에 2개 씩 4개 를 설치하였고, 후면부에는 기초 상면과 측면에 각각 1개 씩 설치하였다. 기초 상면부의 전자식변위계는 기초의 수 직변위 측정을 통한 회전각을 산정을 위하여 설치하였으 며, 기초 측면부의 전자식변위계는 기초의 수평변위를 측 정하기 위하여 설치하였다.

4. 재하시험 결과 및 분석

4.1 기초의 모멘트-회전 거동

Fig. 9는 재하시험 결과로 나타난 모멘트-회전각 곡선 이다. 거푸집 설치 방법과 상관없이 두 곡선은 유사한 유형으로 나타났으며, 모두 전철주기초가 항복한 이후에 도 모멘트가 지속적으로 증가하는 회전각경화현상이 발 생하였다.

[Fig. 9] Moment-rotation angle curves

4.2 설치 방법별 저항모멘트의 비교

기초의 저항모멘트는 모멘트 증가에 따라 회전각이 급 격이 변화하는 구간의 평균 모멘트로 결정하였다. 저항모 멘트는 각각 거푸집을 설치한 경우 95kN·m, 거푸집을 설치하지 않은 경우 83kN·m으로 산정되었다. 일반적으 로 거푸집을 설치하지 않은 경우 기초표면의 거칠기 증 가로 인한 마찰강도의 증가로 기초의 저항모멘트가 증가 할 것으로 예측되지만, 재하시험의 결과는 반대로 나타났 다. 이는 거푸집 없이 기초를 설치하는 경우 굴착부 주변 지반이 이완되어 지반의 강도가 감소하는 데 비해서, 거 푸집이 설치되는 경우는 거푸집을 제거 한 후, 굴착부를 되메우며 다짐 작업을 수행하므로 주변지반의 강도가 오 히려 더 커지기 때문이 것으로 판단된다. 특히 전철주기 초의 경우 기초와 흙사이의 마찰력 보다는 수동토압(연 직응력)에 의하여 저항모멘트가 발휘 되므로 마찰력 증 가 효과는 예상보다 미비하게 발휘된 것으로 판단된다.

4.3 설계 방법별 저항모멘트의 평가

Table3은 설계방법별로 계산된 저항모멘트를 시험 결 과와 비교한 것이다. 한국철도기술연구원(2010)의 방법 에서는 마찰력을 고려하기 위하여 Kulhawy 등[7]의 제안 에 따라 거푸집 설치 시 흙과 기초사이의 마찰각을 20% 감소시키는 방법을 적용하였다. 프랑스와 독일의 방법은 마찰력을 고려할 수 없으므로 평가 대상에서 제외하였다.

[Table 3] Moment capacities obtained from two different design methods

	Failure moments from	Design moment capacities (kN · m)			
	field load tests (kN · m)	Korea Railway Standard	KRRI method		
With Form	95	83(1.1)*	86(1.1)*		
Without form	83	91(0.9)*	75(1.1)*		

*Safety factors obtained from the failure moments

국내 철도설계기준(한국철도시설공단[2])으로 산정된 설계 저항모멘트는 재하시험 결과와 반대의 결과를 산출 하고 있으며, 이는 거푸집 설치에 따른 지반강도 증가 효 과를 고려하는 것이 불가능하고, 전체 저항모멘트를 10% 증가시키는 방법으로 거푸집 미설치로 인한 마찰력 증가 효과를 고려하고 있기 때문이다. 반면에 한국철도기술연 구원[4]의 설계방법으로는 비교적 일관성 있는 설계 저항 모멘트의 산정이 가능하였다. 따라서 기초와 흙 사이의 연직응력과 마찰력이 동시에 작용하는 사각형 전철주기 초의 경우에 거푸집 설치 효과를 고려하기 위하여 비례 계수를 사용하여 전체 저항모멘트를 일률적으로 증가시 키는 방법은 부적절한 것으로 판단된다. 거푸집 설치효과 를 합리적으로 고려하기 위해서는 흙과 기초 사이의 마 찰강도 변경을 통해, 마찰력이 전체 전철주기초의 거동에 대하여 미치는 영향을 통합적으로 평가하는 것이 바람직 하며, 본 연구에서는 거푸집 설치로 인해 내부마찰각을 20% 감소시키는 방안이 적절한 것으로 평가되었다.

5. 결론

본 연구에서는 철도 연변에 설치되는 사각형 전철주기 초의 설치 방법에 따른 모멘트 저항거동을 실물재하시험 을 통해 평가하였으며 다음과 같은 결론을 얻었다.

- [1] 거푸집 설치로 인하여 표면이 매끈해짐에 따라 기 초와 흙 사이의 마찰강도가 감소하지만, 반면에 거 푸집을 설치하지 않으면 굴착지반의 이완 등으로 기초 주변 지반의 강도가 감소하는 것으로 나타났 다. 따라서 현행 설계법과 같이 지반조건의 변화에 대한 고려 없이 거푸집 설치 여부에 따라 일정비율 로 저항모멘트를 증감시키는 방법은 부적절한 것 으로 판단된다.
- [2] 전철주기초는 흙과 기초사이의 연직응력과 마찰응 력이 동시에 작용하여 전도모멘트에 저항하므로, 거푸집 설치효과를 고려하기 위해서는 기초와 흙 사이의 마찰강도를 별도로 고려할 수 있는 설계방 법의 적용이 필요하다. 기존 설계방법으로 산정된 저항모멘트를 실물재하시험 결과와 비교한 결과, 거푸집 설치 효과로 흙과 기초사이의 마찰각을 20% 정도 감소시키는 것이 적절한 것으로 평가되 었다.
- [3] 본 연구를 통해 규명된 사실로부터 철도 연변에 설 치되는 사각형 전철주기초의 모멘트 저항거동에 대한 보다 신뢰성 있는 설계가 가능할 것으로 판단 된다.

References

- [1] Kiessling, F., Puschmann, R and Schmieder, A. "Contact lines for electric railways : planning, design, implementation", Publicis publishing, Eriangen, 2009.
- [2] Korea Rail Network Authority, "Railway Design Standards(Electric Railway)", Korea Rail Network Authority, Daejeon, 2004.
- [3] Korea Rail Network Authority, "Highspeed Railway Design Standards", Korea Rail Network Authority, Daejeon, 2005.
- [4] Korea Railroad Research Institute, "The Development of Moment Capacity Equation for Railway Electric Pole Foundation", Korea Rail Network Authority, Daejeon, 2010.
- [5] Korea TGV Consortium, "Basic Environmental Data for Catenary Design". KTC, 1995.
- [6] Korea Transport Institute and KRTC, "Study on the Total Plan of Korean Railway Network Electrification", Ministry of Transport and Maritime Affairs, 2009.
- [7] Kulhawy, F. H., Trautmann, C. H., Beech, J. F., O'Rourke, T. D., McGuire, W., Wood, W. A., and Capano, C. "Transmission line structure foundations for

uplift-compression loading." Rep. No.EL-2870, Electric Power Research Institute, Palo Alto, Calif., 1983.

[8] Mohammadi S.D., Nikoudel M.R., Rahimi, H. and Khamehchiyan, M. "Application of the Dynamic Cone Penetrometer (DCP) for determination of the engineering parameters of sandy soils", Engineering Geology, 101, pp.195-203, 2008.

DOI: http://dx.doi.org/10.1016/j.enggeo.2008.05.006

이 수 형(Su-Hyung Lee)

[정회원]

- 1994년 8월 : 서울대학교 토목공 학과 (공학사)
- 1996년 2월 : 서울대학교 토목공 학과 (공학석사)
- 2002년 2월 : 서울대학교 지구환 경시스템공학부 (공학박사) • 2003년 12월 ~ 현재 : 한국철도
- 기술연구원 선임연구원

<관심분야> 지반공학, 철도공학

이 승 현(Seung-Hyun Lee)

[정회원]

- 1988년 8월 : 서울대학교 토목공 학과 (공학사)
 - 1991년 2월 : 서울대학교 토목공
 - 학과 (공학석사)
 - 1997년 2월 : 서울대학교 토목공 학과 (공학박사)
 - 2000년 3월 ~ 현재 : 선문대학 교 토목공학과 교수

<관심분야> 토질역학, 기초공학