저치환율 SCP와 GCP로 개량된 복합지반의 거동에 관한 실험적 연구

김병일¹, 유완규^{2*}, 김영욱¹, 문인종¹ ¹명지대학교 토목환경공학과, ²한국건설기술연구원

An Experimental Study on the Behavior of Composite Ground Improved by SCP and GCP with Low Replacement Ratio

Byoung-Il Kim¹, Wan-Kyu Yoo^{2*}, Young-Uk Kim¹ and In-Jong Moon¹ ¹Department of Civil and Environmental Engineering, Myongji University ²Korea Institute of Construction Technology

요 약 이 연구에서는 그동안 많은 연구가 이루어지지 않은 저치환율 SCP(sand compaction pile) 및 GCP(gravel compaction pile) 공법의 거동특성을 비교하기 위해 1g 모형시험을 수행하였다. 모형시험은 단위셀(unit cell) 개념을 적용하기 위해 단일말뚝 복합지반을 저치환율(a_s =10%, 20%, 30%) 조건으로 조성하여 수행하였다. 모형시험결과 연약 지반 개량을 위해서 SCP의 대체공법으로 GCP공법을 적용할 경우에 지반개량으로 인해서 발생하는 지지력 증가효과 와 침하저감효과 및 압밀촉진효과는 SCP공법을 적용한 경우에 비해서 다소 우수한 것으로 나타났다.

Abstract This paper presents the results of laboratory tests conducted to investigate the effectiveness of applying methodology of a sand compaction(SCP) and a gravel compaction pile(GCP) on soft ground. The test conditions involved relatively low replacement ratios (=10, 20, and 30%) of a pile to unit cell at 1g (gravity acceleration) level. Results revealed that GCP significantly enhanced bearing capacity, settlement reduction, and consolidation rate compared with SCP.

Key Words : SCP, GCP, Low replacement ratio, Bearing capacity, Settlement

1. 서론

해상 또는 해안의 연약지반에 구조물을 축조할 때 지 반개량을 목적으로 모래다짐말뚝(sand compaction pile, 이하 SCP), 자갈다짐말뚝(gravel compaction pile, 이하 GCP) 또는 쇄석기둥(stone column) 등의 공법을 적용할 수 있다. 이들 공법은 연약지반에 골재를 다짐하면서 압 입하여 말뚝을 조성하는 공법으로 점토지반에 적용할 때 에는 주로 지반의 전단강도 및 지지력 증대, 측방변위 억 제, 압밀침하 저감 등의 효과를 목적으로 한다[1, 2]. 이러 한 공법들 가운데 국내에서 가장 많은 시공실적을 보이 며 널리 사용된 SCP공법의 경우에는 모래 자원의 고갈, 가격상승 및 다짐말뚝 품질유지에 어려움이 있는 등 문 제점이 있다[3]. 이에 따라 대체 공법으로 쇄석 또는 자갈 을 말뚝의 재료로 사용하는 GCP공법에 대한 관심과 시 공실적이 증가하였다.

SCP와 GCP 등 골재 말뚝으로 보강된 지반은 복합지 반으로 고려할 수 있으며 이러한 복합지반의 거동특성은 골재의 종류, 치환율(a_s), 골재말뚝의 강성 및 상대밀도 등에 영향을 받으며, 많은 연구자들에 의해 복합지반의 거동에 관한 연구결과가 발표되었다. 유승경[4]은 저치환 율 SCP공법에 의해 개량된 복합지반의 압밀거동에 관한 모형실험을 통해서 모래말뚝과 점토 각각의 역학거동과 복합지반 내부에 대한 응력분담거동에 대하여 고찰하였

*Corresponding Author : Wan-Kyu Yoo (Korea Institute of Construction Technology) Tel: +82-31-336-8837 email: lyu5553@hanafos.com Received October 24, 2012 Revised February 1, 2013 Accepted February 6, 2013 다. 또한 저치환율 SCP에 의한 복합지반의 응력분담 메 커니즘에 대한 수치해석적 연구도 실시하여 복합지반 내 부의 응력분담 매커니즘을 고찰·규명하였다[5]. 신현영 등[6]은 저치환율 SCP공법이 적용된 복합지반의 거동특 성을 파악하기 위해 단위셀 시험과 무리말뚝 모형토조시 험을 실시하여 그 결과를 비교하고 응력분담비 산정식을 제안한 바 있다. SCP와 GCP공법이 적용된 복합지반에 대한 지지력, 침하, 응력분담 및 압밀 특성 등에 대한 비 교 연구도 여러 연구자에 의해 진행된 바 있다[7, 8, 9, 10]. 하지만 앞에서 살펴본 바와 같이 비교적 활발한 연구 가 진행된 저치환율 SCP공법과 달리 저치환율 GCP공법에 대한 연구는 많지 않다. 이 연구에서는 저치환율(a,=10%, 20%, 30%)을 적용한 단위셀(단일말뚝) 형태의 SCP 및 GCP 공법에 대한 1g 모형토조시험을 실시하였으며 연구결과로 저치환율(a,) 조건으로 두 공법이 적용된 복합지반의 침하, 지지력 및 응력분담비 등을 비교하였다.

2.1g 모형시험

1g 모형시험에 사용된 모형토조는 Fig. 1과 같이 지름 40cm, 높이 100cm의 원통형 모형토조를 사용하였다. 이 토조는 복합지반 조성 후 공기압을 이용하여 압밀압력을 재하할 수 있도록 제작하였다. 압밀이 종료된 복합지반의 지지력 측정을 위하여 재하시험을 실시하였다(Fig. 2 참 조).

또한 이 연구에서 연약지반을 모사하는 점토는 군산 ○지역에서 채취한 시료를 사용하였고 이 점토는 통일 분류법에 따라 CL로 판정되었다. SCP와 GCP의 말뚝 재 료로 사용된 모래와 쇄석은 시험에 적당하도록 모래는 2mm이하, 쇄석은 10mm이하의 시료를 사용하였다. 시험 에 사용한 재료들의 특성 값과 입도분포곡선은 각각 Table 1 및 Fig. 3과 같다.

	Specific		berg nits	$\gamma_{d\mathrm{max}}$	$\gamma_{d\mathrm{min}}$	φ	110.00
	G_s	LL (%)	PI (%)	(kN/m ³)	(kN/m ³)	(°)	USCS
clay	2.67	28.3	10.4	-	-	-	CL
sand	2.68	-	-	17.1	14.2	37	SP
crushed stone	2.65	-	-	16.6	13.1	45	GP

[Table 1] Soil properties of used soils

* friction angle(ϕ) were obtained by direct shear tests

[Fig. 3] Grain size distribution curves of used soils

2.2 시험조건 및 시험방법

이 연구에서 모형시험은 Fig. 1과 같은 단위셀(unit cell) 개념을 적용하여 모형토조에 단일말뚝 형태로 SCP, GCP 복합지반을 조성하고 압밀시키면서 응력분담, 압밀 및 침하 특성을 파악하였다. 또한 압밀이 종료된 복합지 반에서 Fig. 2와 같은 재하장비를 이용한 재하시험을 실 시하여 복합지반의 지지력-침하 특성을 파악하였다. 각 공법 및 치환율에 따른 모형시험 조건은 Table 2와 같다.

[Table 2] Test conditions

Applied method	Area replacement ratio, $a_s(\%)$	Diameter of pile(cm)	Applied load for consolidation, $p_c(kPa)$
SCP, GCP	10, 20, 30	$\begin{array}{l} 12.6(a_{s}\texttt{=}10\%),\\ 17.9(a_{s}\texttt{=}20\%),\\ 22.0(a_{s}\texttt{=}30\%) \end{array}$	50, 100, 150

시험에 사용된 모래다짐말뚝과 쇄석말뚝은 모형지반 조성이 용이하도록 미리 물과 함께 다짐하여 제작한 후 얼린 말뚝을 사용하였다. 또한 점토층 상부에 높이 40cm 의 모래층이 존재하는 조건을 모사하기 위해서 강사장치 를 이용하여 상대밀도 40%의 모래층을 조성하였다. 모형 시험의 시험 방법은 다음과 같다.

- 모형토조 바닥에 배수층인 샌드매트를 포설하고, 토 조 벽면에 비닐을 부착하여 벽마찰을 최소화한다.
- 2) 치환율(a_s)에 맞게 준비된 케이싱을 토조 중앙에 설치하고, 포화된 슬러리 상태의 점토시료(평균 함 수비 65±2%)를 모형토조에 45cm 높이로 충진한 후 간극수압계를 설치한다(Fig. 4 참조).

[Fig. 4] Preparation of clay layer

- 3) 점성토층 상부에 강사장치를 이용하여 모래층을 조 성한다. 모래층 조성 후 케이싱 내에 얼린 모래/쇄 석 말뚝을 삽입한 후 원지반의 교란을 최소화하며 케이싱을 제거한 후 상부 샌드매트를 포설하여 복 합지반 조성을 완료한 후 토압계를 말뚝 중앙과 원 지반에 매설한다(Fig. 5 참조).
- 4) 변위계를 모형지반 중앙과 가장자리에 설치한 후 공기압력으로 압밀압력(50kPa, 100kPa, 150kPa)을 재하하여 복합지반을 압밀시키고, 압밀이 종료된 복합지반에서 하중 제어 방식으로 재하시험을 실 시한다.

(a) (b) [Fig. 5] Preparation of composite ground (a)SCP($a_s = 10\%$) (b)GCP($a_s = 10\%$)

3. 시험결과

3.1 복합지반의 압밀 침하량

모형시험결과 얻어진 압밀압력에 따른 복합지반의 침 하량을 정리하여 나타내면 Table 3 및 Fig. 6과 같다. Table 3 및 Fig. 6에서 보는 바와 같이 복합지반의 침하량 은 압밀압력의 증가에 따라 증가하며 변화폭은 둔화되는 경향을 나타내었다. SCP 복합지반의 경우에는 치환율 10%의 침하량이 치환율 30%의 침하량에 비해서 약 1.8 배 정도 큰 값을 나타내었다. GCP 복합지반의 경우에는 치환율 10%의 침하량이 치환율 30%의 침하량에 비해서 약 2.3배 정도 큰 값을 나타내었다.

복합지반의 압밀 중 계측된 시간-침하관계를 이용하여 압밀압력 150kPa에 대한 최종 압밀침하량을 쌍곡선법 [11], Asaoka의 도해법[12], Monden(門田)법[13]으로 구 한 후 정리하여 Table 4에 나타내었다. Table 4에서 보는 바와 같이 Moden(門田)[13]과 쌍곡선법[11]은 측정 침하 량과 유사한 결과를 보인 반면에 Asaoka[12]의 도해법에 의한 침하량은 상대적으로 큰 값을 나타내었다. 예측된 침하량의 평균값을 공법에 대해서 비교해 볼 때 SCP공법 을 적용한 경우가 GCP공법을 적용한 경우에 비해서 침 하량이 작게는 1.1배(a_s=30%)에서 많게는 1.43배(a_s=20%) 까지 차이를 보이는 것으로 나타났다. 이러한 결과는 천 병식 등[8]의 GCP와 SCP 복합지반에 대한 장기침하 예 측결과와 유사한 결과를 나타내었다. 시험에 의한 측정값 과 예측된 침하량을 종합적으로 판단해 볼 때 동일한 치 환율에서 GCP공법이 적용된 복합지반이 SCP공법이 적 용된 복합지반에 비해서 침하저감 효과가 더 뛰어난 것 으로 판단된다.

		(um	ι. <u></u>			
	SCP		SCP			
Com	posite G	round	Composite Ground			
10%	20%	30%	10%	20%	30%	
58.2	44.5	23.7	40.8	41.4	15.1	
76.8	56.0	44.0	69.1	59.3	32.2	
85.9	65.3	47.8	77.2	62.3	37.1	
	Comj 10% 58.2 76.8 85.9	SCP Composite Gi 10% 20% 58.2 44.5 76.8 56.0 85.9 65.3	SCP Composite Ground 10% 20% 30% 58.2 44.5 23.7 76.8 56.0 44.0 85.9 65.3 47.8	SCP Composite Group 10% 20% 30% 10% 58.2 44.5 23.7 40.8 76.8 56.0 44.0 69.1 85.9 65.3 47.8 77.2	Composite Grund Composite Grund 10% 20% 30% 10% 20% 58.2 44.5 23.7 40.8 41.4 76.8 56.0 44.0 69.1 59.3 85.9 65.3 47.8 77.2 62.3	

[Table 3] Consolidation settlements of composite ground (unit : mm)

 [Fig. 6] Consolidation settlements of composite ground (a)Applied load(p_c)-Settlement
 (b)Area replacement ratio(a_x)-Settlement

[Table 4] Predicted consolidation settlements

	a_s	Measured	Predic	ted settl		
	(%)	(mm)	1	2	3	Average
SCP	10	85.9	87.3	108.1	90.4	95.3
	20	65.3	68.4	129.8	68.7	88.9
	30	47.8	60.1	51.8	53.1	55.0
GCP	10	77.2	78.4	79.3	77.5	78.4
	20	62.3	62.2	61.3	62.6	62.0
	30	37.1	52.3	57.2	41.2	50.2

1 : Hyperbolic method, 2 : Asaoka method,

3 : Moden method

3.2 복합지반의 응력분담비

이 연구에서는 복합지반의 말뚝과 원지반에 토압계를 설치하여 압밀 중 토압변화를 측정하였고 그 결과를 이 용하여 응력분담비(m)를 산정하였다. 압밀 종료 후 측정 된 토압으로부터 안정화된 복합지반의 응력분담비(m)를 압밀압력에 따라 정리하여 Table 5와 Fig. 7에 나타내었 다. Table 5와 Fig. 7에서 보는 바와 같이 같은 치환율 조 건에서 대체로 SCP 복합지반이 GCP 복합지반의 응력분 담비에 비해서 약간 큰 것으로 나타났다. 또한 두 종류의 복합지반 모두 치환율과 압밀압력의 증가에 따라서 응력 분담비가 감소하는 경향을 나타내었다. 이러한 경향은 저 치환율 SCP 복합지반의 응력분담비에 대한 기존 연구결 과와 비교해 볼 때 신형영 등[6]의 연구결과와는 유사한 경향을 보였으며, 치환율 감소에 따라서 응력분담비가 감 소하는 유승경[4]의 연구결과는 반대의 경향을 나타내었 다. 응력분담비 측정결과 응력분담비의 분포 범위는 SCP 복합지반의 경우 1.4~3.8, GCP 복합지반의 경우 1.2~ 3.3의 값을 갖는 것으로 나타났다.

[Table 5]	Stress	concentration	ratios	of	composite	ground
-----------	--------	---------------	--------	----	-----------	--------

		SCP		GCP			
	Comp	osite Gr	ound	Composite Ground			
	10%	20%	30%	10%	20%	30%	
50kPa	3.8	2.3	1.9	1.6	3.1	3.3	
100kPa	2.7	3.6	2.6	1.6	3.0	1.2	
150kPa	2.3	1.4	1.9	1.6	3.1	1.2	

[Fig. 7] m- a_s relationships

(a) Applied load(p_c)-Stress concentration ratio(m)
(b) Area replacement ratio(a_s)-Stress concentration ratio(m)

3.3 복합지반의 평균압밀도

각 압밀하중 단계에서 점토지반에 매설한 간극수압계 를 이용하여 압밀 중 간극수압을 측정하였고 측정된 과 잉간극수압과 식 (1)을 이용하여 복합지반의 평균압밀도 를 산정하여 Table 6에 정리하여 나타내었다.

$$U=1-\frac{u_e}{u_i} \tag{1}$$

여기서, U: 평균압밀도 u_e : 측정된 과잉간극수압 u_i : 초기 과잉간극수압

[Fig. 8] Replacement ratio-bearing capacity relationships by loading tests

극한지지력이 발생할 때의 침하량을 비교해 보면 GCP 복합지반의 침하량이 SCP에 비해서 상대적으로 크게 산 정된 치환율 10%의 경우를 제외한 모든 조건에서 GCP 복합지반의 침하량이 SCP 복합지반에 비해서 상대적으 로 작게 산정되었다. 이러한 결과는 모래에 비해서 강성 이 큰 쇄석말뚝에 의해 복합지반의 지지력 특성이 개선 된 결과로 판단되며 SCP 복합지반의 지지력 특성이 개선 된 결과로 판단되며 SCP 복합지반의 지리 특성이 개선 지력 및 침하특성을 비교한 천병식 등[8]의 연구결과와도 유사한 경향을 나타내었다. 이러한 결과로 볼 때 SCP복 합지반에 비해서 GCP복합지반의 지반개량에 의한 지지 력 증가효과가 더 우수한 것으로 판단된다.

4. 결론

이 연구에서는 저치환율(a_s =10%, 20%, 30%)을 적용 한 SCP, GCP 복합지반의 거동특성을 파악하기위해서 단 위셀(unit cell) 개념의 단일말뚝이 시공된 복합지반에 대 한 1g 모형시험을 실시하였고, 그 결과로 다음과 같은 결 론을 얻었다.

- 복합지반의 압밀 중 발생하는 압밀침하량은 SCP와 GCP 복합지반 모두에서 치환율 증가와 압밀압력 증가에 따라서 침하량이 감소하는 경향을 나타내었 으며, 동일한 치환율에서는 GCP 복합지반이 SCP 복합지반에 비해서 침하량이 작게 발생되었다.
- 2) SCP와 GCP 복합지반에 발생하는 응력분담비를 측 정한 결과 SCP, GCP 복합지반 모두 치환율 및 압 밀압력의 증가에 따라 감소하는 경향을 나타냈으 며, SCP 복합지반의 경우 1.4~3.8, GCP 복합지반의 경우 1.2~3.3의 범위를 갖는 것으로 나타났다.

3) SCP와 GCP 복합지반의 압밀도를 산정한 결과 치

[Table 6] Degree of consolidation of composite ground (unit : %)

		SCP		GCP		
	Comp	osite Gr	ound	Composite Ground		
	10% 20% 30%			10%	20%	30%
50kPa	82.2	78.3	98.6	81.1	78.1	99.3
100kPa	78.6	83.7	94.3	85.3	92.1	97.0
150kPa	77.4	82.0	61.1	75.0	79.0	78.8
Average	79.4	81.3	84.6	80.5	83.1	91.7

Table 6에서 보는 바와 같이 SCP, GCP 복합지반 모두 치환율이 증가함에 따라 대체로 평균압밀도가 증가하는 경향을 나타냈으며 이는 치환율의 증가(말뚝 직경의 증가) 에 따라서 수평투수거리가 짧아진 때문인 것으로 판단된다. 한편 동일한 치환율에 따라 SCP와 GCP 복합지반의 압밀도 를 비교해 볼 때 GCP 복합지반의 압밀도가 SCP 복합지반 에 비해서 다소 큰 결과를 나타내었다. 이러한 결과는 SCP 와 GCP의 압밀촉진효과를 비교한 유승경의 연구결과[9]와 유사한 경향을 보이는 것으로 나타났다.

3.4 복합지반의 극한지지력

각 공법 및 치환율에 따른 재하시험 결과를 Table 7과 Fig. 8에 정리하여 나타내었다. 극한지지력은 재하시험으 로 얻어진 하중-침하 관계 곡선을 이용하여 Mansur & Kaufmann방법[14]으로 결정하였다. 이와 같은 방법으로 결정된 극한지지력은 Table 7와 Fig. 8에서 보는 바와 같 이 치환율(*a*_s) 증가에 따라서 거의 선형적으로 증가하는 것으로 나타났다. 또한 치환율이 증가할수록 GCP 복합 지반이 SCP 복합지반에 비해서 증가율이 큰 것으로 나타 났다. 동일한 치환율에 대해서도 GCP의 극한지지력이 SCP에 비해 큰 것으로 나타났으며 GCP 복합지반의 극한 지지력이 SCP 복합지반의 극한지지력에 비해서 평균적 으로 약 1.3배 크게 산정되었다.

	a _s (%)	Ultimate bearing capacities, q_u (kPa)	S (mm)	$\frac{q_u(\text{GCP})}{q_u(\text{SCP})}$
SCP	10	43	11.5	-
Composite	20	96	13.2	-
Ground	30	138	27.0	-
GCP	10	61	25.2	1.42
Composite	20	113	15.5	1.18
Ground	30	181	19.0	1.31

[Table 7] Comparisons of ultimate bearing capacities

환율이 증가할수록 GCP 복합지반이 SCP 복합지반 에 비해서 압밀도가 증가하였고 이러한 결과를 볼 때 GCP 복합지반의 압밀촉진 현상이 SCP 복합지 반에 비해서 약간 우수한 것으로 판단된다.

- 4) SCP와 GCP 복합지반에 대한 지지력 시험결과 GCP 복합지반의 극한지지력이 SCP 복합지반의 극한지지력에 비해서 평균적으로 약 1.3배 큰 것으 로 나타났으며, 극한지지력 발생시 침하량도 GCP 복합지반이 SCP 복합지반에 비해서 대부분 작은 값을 나타내었다.
- 5) 연구결과를 종합해 볼 때 연약지반 개량을 위해서 GCP공법을 적용할 경우에 지반개량으로 인해서 발생하는 지지력 증가효과와 침하저감효과 및 압밀 촉진효과는 SCP공법을 적용한 경우에 비해서 다소 우수할 것으로 판단된다.

References

- K. Kanda and Terashi, Practical Design Method of SCP on Soft Clay Deposit (Sensitivity Analysis and Fact Finding Survey), Report of Japanese Port Research Institute, No. 669, 1990[in Japanese].
- [2] R. D. Barksdale, Site Improvement in Japan Using Sand Compaction Piles, Georgia Institute of Technology, Atlanta, pp.48-75, 1981.
- [3] M. M. Kim, B. I. Kim, S. W. Lee and S. M. Cho, *Design of Soil Improvement Method*, Saeron Publication, 2004[in Korean].
- [4] S. K. You, "Experimental Study on Stress Sharing Behavior of Composition Ground Improved by Sand Compaction Piles with Low Replacement Area Ratio", *Journal of KGS*, Vol.19, No.5, pp.253-261, 2003[in Korean].
- [5] S. K. You, T. Matsui, W. P. Hong and G. L. Yoon, "Study on Stress Sharing Mechanism Composition Ground Improved by SCP with Low Replacement Area Ratio", *KGS Spring Conference 2004*, pp.197-202, March, 2004[in Korean].
- [6] H. Y. Shin, S. J. Han, S. S. Kim and J. K. Kim, "Behavior of Composite Ground Improved by SCP with Low replacement Ratio", *Journal of Korean Society of Civil Engineers*, Vol.25, No.6C, pp.369-378, 2005[in Korean].
- [7] B. I. Kim, S. W. Lee, B. S. Kim and W. K. Yoo, "Comparison of Bearing Capacity between SCP and

GCP by Unit Cell Model Tests", *Journal of KGS*, Vol.20, No.8, pp.41-48, 2004[in Korean].

- [8] B. S. Chun and Y. H. Yeoh, "Characteristics of Settlement and Bearing Capacity of Soft Ground Improved by Granular Pile", *Journal of the Korean Geoenvironmental Society*, Vol,2, No.4, pp.289-294, 2001[in Korean].
- [9] S. K. You, "A Comparative Study on the Effect of Promoting Consolidation between SCP and GCP", *Journal of Korean Geosynthetics Society*, Vol.8, No.2, pp.41-46, 2009[in Korean].
- [10] Y. Heo, Z. Zheng, C. K. Lee and K. K. Ahn, "Centrifuge Modeling on Displacement Shapes of Composite Ground Improved by SCP and GCP", *Journal of the Korean Geoenvironmental Society*, Vol,7, No.5, pp.57-66, 2006[in Korean].
- [11] Miyakawa, Design Method of Soft Ground Embankment, Soil and Foundation(part 3), Japanese Geotechnical Society, pp. 178-181, 1961[in Japanese].
- [12] A. Asaoka, "Observational Procedure of Settlement Prediction", *Soils and Foundation*, Vol.18, No.4, pp.87-101, 1978.

DOI: http://dx.doi.org/10.3208/sandf1972.18.4_87

- [13] H. Moden, A New Time-Fitting Method for the Settlement Analysis of Foundation on Soft Calys, Memorial Faculty of Eng., Hiroshima Univ., 2-1, pp.21-25, 1963.
- [14] S. D. Lee, Soil Laboratory Testing, Saeron Publication, 1996[in Korean].

김 병 일(Byoung-Il Kim)

[정회원]

- 1989년 2월 : 서울대학교 토목공 학과 (공학석사)
 1004년 2월 : 서우대학교 토목공
- 1994년 2월 : 서울대학교 토목공 학과 (공학박사)
- 1995년 3월 ~ 현재 : 명지대학교 토목환경공학과 교수

<관심분야> 토질역학, 기초공학

유 완 규(Wan-Kyu Yoo)

[정회원]

- 2006년 2월 : 명지대학교 토목환 경공학과 (공학석사)
- 2011년 8월 : 명지대학교 토목환 경공학과 (공학박사)
- 2013년 2월 ~ 현재 : 한국건설 기술연구원 SOC성능연구소 Geo-인프라연구실 수석연구원

<관심분야> 토질역학, 기초공학, 지하구조물

김 영 욱(Young-Uk Kim)

[정회원]

- 1991년 2월 : 고려대학교 토목환 경공학과 (공학석사)
- 2000년 5월 : The Pennsylvania State University 토목환경공학과 (공학박사)
- 2001년 3월 ~ 현재 : 명지대학교 토목환경공학과 교수

<관심분야> 토양오염 복원, 음향방출, 토질역학, 기초공학

문 인 종(In-Jong Moon)

[준회원]

• 2012년 2월 : 명지대학교 토목환 경공학과 (공학사)

• 2012년 3월 ~ 현재 : 명지대학교 토목환경공학과 석사과정

<관심분야> 토질역학, 기초공학