
Journal of the Korea Academia-Industrial

cooperation Society

Vol. 14, No. 5 pp. 2457-2464, 2013

http://dx.doi.org/10.5762/KAIS.2013.14.5.2457

2457

A Mutual Exclusion Algorithm in Asynchronous Distributed

System with Failure Detectors

Sung-Hoon Park1*

1Dept. of Computer Engineering, Chungbuk National University

비동기적 분산시스템에서 고장 추적 장치를 이용한 상호배제

알고리즘 설계

박성훈1*
1충북대학교 컴퓨터공학과

Abstract In this paper, we design and analyze a mutual exclusion algorithm, based on the Token and Failure
detector, in asynchronous distributed systems. A Failure Detector is an independent module that detects and
reports crashes of other processes. There are some of advantages in rewriting the Token-based ME algorithm
using a Failure Detector. We show that the Token-based ME algorithm, when using Failure Detector, is more
effectively implemented than the classic Token-based ME algorithm for synchronous distributed systems.

요 약 본 논문에서는 토큰과 고장추적 장치를 이용한 상호배제 알고리즘을 비동기적인 분산시스템 환경에서 설계
하고 분석하고자 한다. 고장추적 장치란 독립된 프로그램으로 다른 프로세스의 크래시 여부를 알려주는 기능을 한다.

이러한 고장추적 장치를 이용하여 토큰기반 ME 알고리즘을 재 작성하는 경우 많은 유익함이 있다. 기존에 동기적인
분산 시스템에서 제안 되었던 토큰기반의 상호배제 (Mutual Exclusion)은 고장 추적 장치를 이용하여 재설계 되는 경
우 전통적인 토큰기반 상호배제 알고리즘 보다 훨씬 효율적으로 구현 될 수 있음을 보인다.

Key Words : Synchronous Distributed Systems, Mutual exclusion, Fault Tolerance, Failure Detector.

This work was supported by the research grant of the Chungbuk National University in 2011
*Corresponding Author : Sung-Hoon Park(Chungbuk National Univ.)
Tel: +82-10-7444-3200 email: spark@cbnu.ac.kr
Received April 15, 2013 Revised (1st May 2, 2013, 2nd May 8, 2013) Accepted May 9, 2013

1. Introduction

Mutual exclusion, simply ME, is an important problem
to construct fault-tolerant distributed systems. Depending
on a network topology, many kinds of mutual exclusion
algorithms have been presented so far. Some algorithms
are based on complete topology and others based on ring
topology [1-3] or tree topology [5-7]. Among those, as
a classic paper, there is the Token-based ME algorithm
for synchronous systems based on complete topology
specified by Suzuki and Kasami [8]. The mutual
exclusion algorithm is used usefully in those systems

where a critical section is needed, such as replicated data
management, atomic commitment, process monitoring and
recovery.

In this paper, we show the Token-based ME algorithm,
when using failure detector (FD) [4], is more effectively
implemented than the classic Token-based ME algorithm
in synchronous distributed systems with crash failures [8].
As the original classic paper, Suzuki and Kasami’s
Token-based ME algorithm detects a crashed process by
time-out intervals, but the modified our Token-based ME
algorithm presented in this paper uses a failure-detector
instead of the explicit time-out.

한국산학기술학회논문지 제14권 제5호, 2013

2458

A failure detector is an independent module that
detects and reports crashes of other processes. There are
some of advantages in rewriting the Token-based ME
algorithm in this way. First, the modularity facilitates use
of different failure detection mechanism in different
systems. Therefore, implementation of mutual exclusion
algorithm is efficient under synchronous distributed
systems composed of heterogeneous processes. Second, by
checking crashes of other processes concurrently rather
than sequentially, execution time of the modified
Token-based ME algorithm using failure detector is faster
than the classic the Token-based ME algorithm.
Especially, in the distributed system where many
processes are connected and crash failures occur at many
processes repeatedly, the execution time of the modified
Token-based ME algorithm with failure detector is much
more efficient than the classic Token-based ME algorithm.
The rest of this paper is organized as follows: in Section
2, we define a model and definition in a conventional
synchronous system. Section 3 describes a solution for the
mutual exclusion algorithm with failure detector and
analyzes the protocol in terms of the number of messages
and times. We conclude in Section 4.

2. Mutual exclusion in a Static System

Our model of asynchronous computation with failure
detection is the one described in [9,10]. In the following,
we only recall some informal definitions and results that
are needed in this paper.

2.1 Suzuki and Kasami’s Token-based

ME Algorithm

The Token-based ME algorithm, which is Suzuki and
Kasami’s mutual exclusion algorithm for synchronous
distributed system, shows that all the processes in a group
can get in a critical section in which every not crashed
process agrees to use the critical section.

The Token-based ME Algorithm works as follows.
When a process wants to get in the CS (Critical Section),
it requests the unique token. A process, P, holds a Token
as follows:

1. P sends a requesting message for token to the

process with a token.
2. If the process with the token has received the

message, then it puts the message into its own
request queue.

3. If the process does not want to get in CS, it sends
its token to the top process of its request queue.

4. The process received the token can get in CS.
At any moment, a process can get a token from one

of its colleagues. When a request message arrives, the
receiver sends an OK message back to the sender to
indicate that he has the token and will eventually transfer
it to some process who already requested it. The receiver
who is the token holder then puts the message into its
own request queue. Eventually, every process that wants
to get in CS will receive a token and use CS. The token
holder announces that it has token continuously sending
ok message to other processes.

If a process that holds a token goes down, other
process knows that by its failure detector FD. One of
process among them begins to generate new token and
puts the necessary information into the new token. The
process generated new token notifies all process about the
new token by sending the ok message.

If it happens to be the process currently waiting a
token, it will get the token from the new coordinator and
can use the CS.

Thus every process that requested the token always
goes in CS even though the lost of a token, hence the
name “token-based ME algorithm with Failure Detector”.

This algorithm does exactly the function of mutual
exclusion in the distributed systems where small number
of processes are connected as a group and the frequency
of each process’s crash failures is relatively low. But in
the system where large number of processes are connected
as a group and each process’s crash failures are frequent,
the execution speed for the algorithm will be slow. At the
worst case, the system may not generate a token for a
long time.

Repetitions of crash failures about processes with token
continue to have the system be in the state of the absence
of token since a lot of time is spent to detect whether a
process with token is crashed. The modified Token-based
ME algorithm using a failure detector, which we call
Token-based ME_FD algorithm, is faster than the Suzuki
and Kasami’s one in terms of execution speed. Because it

A Mutual Exclusion Algorithm in Asynchronous Distributed System with Failure Detectors

2459

greatly reduces the time taken for the detection of crashed
processes.

2.2 Failure Detector

The failure detector (FD) is an independent module
with a function that detects crash and recovery of a
process in a system. Whenever the client needs this
information, the FD reports this to a client. The FD has
an input Request_FD(i) which asks the monitoring the
process i. We illustrate the meaning and usefulness of this
with an example. Suppose process I crashes and a client
asks the FD on process j of monitoring process i by
sending a signal Request_FD(i). In this case, the FD on
process j accepts Request_FD(i) as an input from the
client and it refers to the down_list which is a list of
crashed processes to check whether process i is down or
not.

If the process i is in the down_list, FD informs the
client that the process i is down by raising the signal
<DownSig, i>. If it is not in the down_list, FD monitors
the process i for a few seconds. After that, if FD detects
that the process is dead, it adds it to the down_list and
informs the client that the process i is down by sending
the signal <DownSig, i >. If it knows that the process is
alive, the FD informs the client that the process i is alive
by sending the signal <UpSig, i>. Note that the FD never
sends a signal more than once whenever the FD receives
the signal Request_FD(i). More precisely, after an
invocation of Request_FD(i), if process i is down, then
the FD is required to raised <DownSig, i> only once
regardless of whether the process i recovers again after
raising <DownSig, i> before the most recent invocation of
Request_FD(i). Furthermore, to ensure that the FD reports
up-to-date information, we require that the client receives
<DownSig, i> only if process i is down after the most
recent invocation of Request_FD(i).

By managing the information about crashed processes
as a form of the down process list, the FD can send the
information about crashed processes to the client more
promptly than the Suzuki and Kasami’s one can. When
the crashed process recovers again, it sends to the FD on
each process immediately the message informing that it
has recovered. After receiving the message, if the name of
the recovered process exists in the down_list, the FD
removes the process’s name from the down_list. There are

many other methods to implement failure detector. For
example, the simplest implementation of failure detector
is to send the "Are You Alive?" message to each process
being monitored periodically. If a reply is not received in
the expected time, FD raises <DownSig, i> for the
process. A more slightly complicated approach is for each
process i, when it starts monitoring process j, to tell
process j to periodically send "I’m alive" message to
process i. This uses fewer messages and reduces the
latency of the FD. A more complicate approach, based on
an attendance list [11,12], is to a construct logical ring
and periodically circulates a token around it. If a process
does not see the token within the expected time, then one
or more processes are failed, and "Are you alive?"
messages can be used to pinpoint the failed processes.
With this approach, fewer messages will be used if
multiple processes are being monitored by multiple
processes, though at the expense of increased detection
latency.

3. Token-based ME Algorithm Using FD

Token-based ME algorithm is designed for the system
with a few of following properties. As a system
environment the synchronous system is assumed, where
transmission and processing time of the messages
occurring between processes is predicted and information
exchanges between processes is done within the given
time. A system is based on the fully connected
communication networks in which fixed number of
processes is inter-connected through them. Processes crash
and recover. We do not assume any other kinds of
failures such as Byzantine failures. Each process has
access to a small amount of stable storage for relevant
information that is used for recovering right after the
failures. Communications between processes are done as
sending messages. Communication is executed as FIFO.
We assume also that communications under the
synchronous system is reliable.

3.1 Description and algorithm of Token-

based ME_FD

We use integers to identify the processes connected on
the system and specify the set of processes as formula

한국산학기술학회논문지 제14권 제5호, 2013

2460

(3.1).

ID = { 1,2,........,n } (3.1)

where n means total number of processes connected on
the system and integers identifying processes means
parameter which decides priority of them. For simplicity,
we use process identifiers as priorities: lower numbers
correspond to higher priorities, as in UNIX. That is, the
priority of process 1 has the highest and the priority of
process 2 is second high and so on. Basic idea of
Token-based ME algorithm is that only the process with
a unique Token has a right to use the critical section (CS)
among all of processes. Each process i has a status
variable, initially having Norm value.

Following is the scenario of the mutual exclusion using
FD. [Line 7-9 of Figure 3.1]: The process trying CS
periodically ask its failure detector FD about the crash of
the token holder process by the module of
Request_FD(token-holder). [Line 9-12 of Figure 3.1]:
When process i wants to get in CS, the process sets its
status variable to Try and indicates that it is in the stage
1 of organizing a trying for CS. In stage 1, process i
sends request message <Req, i> to the token holder
process. [Line 13-20 of Fig. 3]: When a process received
a request message such as <Req, j> from the process j,if
it is in the state of using CS then it put the message
<Req, j> into its queue Rqueus and sends ok message to
the process j. If it is not in the state of using CS but only
in HaveToken states, then it sends its token to the process
j. [Line 21-22 of Figure 3.1]: When received a message,
<Ok, j> from process j, the process i set its status with
try and denote the token holder as process j. [Line23-25
of Figure 3.1]: When process i received a Token and
Rqueue from process j, it can gets in CS with setting its
status with Have-Token.

[Line 26-33 of Figure 3.1]:When process i exits from
CS, if its request queue is not empty, it sends his token
to the first process in request queue and delete the process
from the Rqueue setting its status with Norm. If there is
no element in the Rqueue, it just sets its status with
HaveToken and wait a process to request token. [Line
34-42 of Figure 3.1]:When process i received a signal
such as <downSig,j> from its failure detector FD, if
process j is the token holder and its status is in Try, then

it sends a message <Ltoken,i> to all process to notify the
crash of the token holder process j. After that it generates
new token and sets its status with Wait to receive the
request information of other processes. If process i itself
is a token holder and process j is the token waiting
process, it deletes the element of process j from the
request queue Rqueue.

[Line 43-47 of Figure 3.1]: When process i received
the token lost message <Ltoken, j> from process j, if
process i is in state of trying CS, it sends <Req2,i> to
jand sets its token holder process with j. [Line 48-50 of
Figure 3.1]: When process ireceived a message <Req2,j>
from j announcing that j is in state of trying CS, it puts
the message into its request queue Rqueue. [Line 51-58 of
Figure 3.1]: On time out with time interval , process i
checks its request queue and if it is not empty then it
sends his token to the first process in request queue and
delete the process from the Rqueue setting its status with
Norm. If there is no element in the Rqueue, it just sets
its status with HaveToken and waits a process to request
token.

If the process with token holder is operational, process
i stays on the wait state in order to give those processes
to go in CS a chance to get a token from the token
holder. If a process is recovered from the dead state, it
waits for the message <Norm?, t> asking the state of
recovered process from the token holder. If none of
processes waiting a token are operational (i.e., if process
i receives the message <downSig, j> for those processes
from FD), then it stays in wait state of waiting a token
and sets it s status variable to Try.

On wait state, process i prepares the token for the
processes waiting token and generates a new token by
sending them <Ltoken, j> message. When a waiting
process receives a OK message from the token holder
process, it sends an Ack message and switches its status
variable from Norm to Try state indicating that it is
waiting for the token for the mutual exclusion. If a
process on wait state detects the failure of the process
which waiting a token by receiving <DownSig, i> from
FD, it deletes the process from the Rqueue. When the
process i on wait state which organized the mutual
exclusion has received an acknowledgement signal from a
process, then it saves the acknowledge into its Rqueue
andnotifies the fact that it has saved the request message

A Mutual Exclusion Algorithm in Asynchronous Distributed System with Failure Detectors

2461

by sending OK message. The process received OK
message from process i accepts process i as their a new
token holder, switching their status from Wait to Try.

Periodically, the token holder sends the message
<Norm?,t> checking status of process to the processes
waiting the token in order to find out whether recovered
processes exist. The process which has received the
message <Norm?,t> sends the message <NotNorm,t> if it
is not on Norm state. The token holder which has
received message <NotNorm,t> switches its state to Try,
and then it does reset the mutual exclusion process again.

The messages described above have a mutual exclusion
identifier. We can identify which mutual exclusion the
message is part of. An identification tag is a tuple which
contains the identifier of the process which starts the
mutual exclusion, the process’s incarnation number which
is kept on stable storage and incremented on each
recovery after failure, and a sequence number of mutual
exclusion which is incremented for each mutual exclusion.
If the Ack or Ok which doesn’t contain the expected
identifier arrives, the message is ignored. Figure 3.1
depicts re-written Token-based ME Algorithm using FD.
It is designed in forms of reactive style, using Upon
statement to specify the codes to execute when message
or signal is received.

It is specified as the codes executed at intervals using
Periodically() statement. Each process is initiated by
executing Upon Recovery statement. The variable
declaration statement means a variable is stored on the
stable storage. The statement send m to j means message
m is sent to j. Send m to s, where s is set of processes,
means message mis sent to each process which belongs to
the set s repeatedly. In the same way, Request_FD(s)
denotes repeated execution of Request_FD.

1.Var status : {Norm, Try, inCS, HaveToken, Wait}
2.Var token-holder : ID
3.Var Rqueue : Queue
4.Var Token: Boolean value
5.Var next_turn : ID
6.Periodically() do
7. if status = Try token-holder i then
8. Request_FD(token-holder) fi od
9.To request (CS) do
10. if status = Norm token-holder i then

11. send <Req, i> to token-holder
12. status := Try fi od
13. Upon receive <Req, j> from j do
14. if status = inCS then
15. put <Req, j> into Rqueue
16. send <Ok, i> to j
17. else if status = HaveToken then
18. send<Token, Rqueue> to j
19. status := Norm
20. fi od
21. Upon receive <Ok, j> from j do
22. if status = Try then token-holder := j fi od
23. Upon receive <Token, Rqueue> from j do
24. status := HaveToken
25. get in (CS) od
26.Upon exit (CS) do
27. if Rqueue = not empty then
28. status := Norm
29. next_turn:= First (Rqueue)
30. delete First_element from Rqueue
31. send <Token, Rqueue> to next_turn
32. else status = HaveToken
33. fi od
34. Upon receive <downSig,j> from FD do
35. if j = token-holder status = Try then
36. send<Ltoken,i> to all processes
37. generate New(token)
38. status := Wait
39. wait ()
40. else if i = token-holder then
41. if j Rqueue then delete j from Rqueue fi
42. od
43. Upon receive <Ltoken,j> from j do
44. if status = Try then
45. send <Req2, i> to j
46. token-holder := j
47. fi od
48. Upon receive <Req2, j> from j do
49. if status = Wait then
50. put <Req2, j> into Rqueue fi od
51. On time-out() do
52. if Rqueue = not empty status = Wait then
53. status := Norm
54. next_turn := First (Rqueue)
55. delete first_element from Rqueue

한국산학기술학회논문지 제14권 제5호, 2013

2462

56. send<Token, Rqueue> to next_turn
57. else status = HaveToken
58. fi od

[Fig. 3] Bully_FD Algorithm

The significant differences between existing
Token-based ME algorithm and Token-based ME_FD
algorithm is as follows.

Token-based ME_FD algorithm uses a failure detector
rather than explicit time-outs to track failed processes. In
the original Token-based ME algorithm, process i waits a
reply from process j to confirm a process’s failure. But in
Token-based ME_FD algorithm, process j is being
monitored by process i’s FD and process i receives either
<DownSig,i> or <UpSig, i> from the failure detector.
Note that procedure time-out in the Token-based ME
algorithm is, in effect, integrated into the codes of
handling <DownSig,i> in the Token-based ME_FD
algorithm.

In stage 1 of the mutual exclusion, each process checks
concurrently rather than sequentially whether the
processes with lower priorities is operational. This
optimization is independent of the use of a failure
detector, but we can take advantage of such techniques
using FD but would be awkward to express using Suzuki
and Kasami’s RPC-style communication primitive.

Each message has an mutual exclusion identifier that
identifies the mutual exclusions, so we can avoid
confusions incurred from the deferred messages on the
network.

We omit re-distribution round on the application level
used in existing Token-based ME algorithm. Implementing
of Re-distribution round in the Token-based ME_FD
algorithm straightforward.

3.2 Analysis of efficiency of the processing

time

Let’s compare the processing time of Token-based
ME_FD algorithm proposed on this chapter with the
Suzuki and Kasami’s Token-based ME algorithm.

In general, when there is no crash failure among
processes there is no difference about the processing time
between the original Token-base ME and the modified
Token-based ME_FD. Therefore, we consider the case

that a crash failure has occurred in the process with token
holder. We define the elements that affect the processing
time as follows.

N: Total number of process on the system
Nf: The number of failed processes
Tm: Average propagation time per message of a

process
Tp: Average message handling time of a process
To: Time-out (To> Te)
Te : Average response time from a process
The message delivery subsystem delivers all messages

within Tm seconds of the sending of message. A process
responses to all messages within Tp seconds of their
delivery. Thus, formula (3.2) describes the average
response time from a process.

Te = 2 Tm + Tp (3.2)

When the token-holder process fails, a process in Try
state, whose identification is k, recognizes it and generate
new token and the mutual exclusion would be started
again. Following formula describes the total processing
time in Token-based ME algorithm of Suzuki and
Kasami.

TTOKEN-BASED_ME = (k-1)To +[(Nf–k +1)To+(N–Nf)Te]
 = Nf To + (N – Nf) Te (3.3)

The term ((k-1)* To) in formula (3.3) describes the
time taken when process k detects that the process with
token-holder is crash failed. It is the time required on
transiting from the state Try to Wait. The term [(Nf–k
+1)To+(N–Nf)Te] describes the time taken on the process
k’s checking whether the processes with Try state are
crashed or not. It is the time taken on transiting from the
state Try to Norm. In the same way, total time taken from
start mutual exclusion to finish it on executing the
Token-based ME_FD algorithm is formulated in formula
(3.4).

TTOKEN-BASED ME_FD = 2NTs+(pNfTp+(1-p)
NfTo)+(N–Nf)Te (3.4)

In formula (3.4), Ts denotes the time required for a

process to send one message to a FD. Consequently, the

A Mutual Exclusion Algorithm in Asynchronous Distributed System with Failure Detectors

2463

term 2*N*Ts is the total time taken to transmit messages
between process k and the FD as one of signal forms.
Let’s assume that p is the ratio of all failed processes to
the failed processes which FD has already known as it is
written in its down process list. For instance, if 10
processes have been failed, and FD has written 7
processes in down process list, then the value of p is 0.7.
The term (pNfTp+(1-p) NfTo) means the time taken for FD
to detect the failure of each process, and the term (N–

Nf)Te signifies the time for FD to confirm the liveliness
of the normal processes.

Td=(3.3)–(3.4)=pNf(To–Tp)–2NTs

pNf(To–Tp) (3.5)

By using the formula (3.3) and (3.4), the formula (3.5)
is induced as below which describes the difference of
processing time between Suzuki and Kasami Token-based
ME algorithm and Token-based ME_FD algorithm. In the
formula (3.5), the value of 2*N*Ts is small enough to be
negligible. As I mentioned before, it is the time required
for the message exchanges to detect the failed processes
between the process and the FD. The message exchanges
between them are executed almost concurrently rather
than sequentially. Definitely (T0–Tp) > 0 is true and
p*Nf*(T0–Tp) > 0 is also true. Thus, we can make sure
that our Token-based ME_FD algorithm is faster than
Suzuki and Kasami Token-based ME algorithm in
processing time.

4. Concluding Remarks

So far, many algorithms related with mutual exclusion
on distributed system are proposed [13,14,15,16,17,18].
Many of them have concentrated on the solution to the
problem of self-stabilizing construction of system using
timeout interval. The mutual exclusion algorithms based
upon timeout interval are clear and simple in terms with
semantics in the system where the small number of
processes are connected and the frequency of each
process’s crash and failure is relatively low. But in the
distributed system where many heterogeneous processes
are connected and the frequency of each process’s
relatively high, there are some of problems such as

prolongation of executing time. The Token-based ME_FD
algorithm is same as the classic Token-based ME
algorithm in terms with using timeout interval to detect
the crashed processes. The difference between two
algorithms is that the Token-based ME_FD algorithm uses
the FD but the classic Token-based ME algorithm uses
timeout interval directly to detect the crashed processes.
By doing this, Token-based ME_FD algorithm can detects
the crashed processes concurrently rather than sequentially
and thus the speed of processing time in the Token-based
ME_FD is more enhanced than the classic one. As
another advantage, FD is a module so that modularity
facilitates use of different failure detection mechanism in
different systems.

References

[1] Carole Delporte-Gallet and Hugues Fauconnier: The
weakest Failure Detector to Solve certain Fundamental
Problems in Distributed computing. In: Proceedings of
the ACM Symposium on Principles of Distributed
Computing, New York: ACM Press 2004

 DOI: http://dx.doi.org/10.1145/1011767.1011818
[2] D. Agrawal and A. E. Abbadi. An efficient and

fault-tolerant solution for distributed mutual exclusion.
ACM Transactions on Computer Systems, 9(1):1 . 20,
February 1991.

 DOI: http://dx.doi.org/10.1145/103727.103728
[3] T. D. Chandra, V. Hadzilacos, and S. Toueg. The

weakest failure detector for solving consensus. Journal
of the ACM, 43(4):685.722, March 1996.

 DOI: http://dx.doi.org/10.1145/234533.234549
[4] T. D. Chandra and S. Toueg. Unreliable failure detectors

for reliable distributed systems. Journal of the ACM,
43(2):225.267, March 1996.

 DOI: http://dx.doi.org/10.1145/226643.226647
[5] G. Chockler, D. Malkhi, and M. K. Reiter. Backo.

protocols for distributed mutual exclusion and ordering.
In Proceedings of the 21st International Conference on
Distributed Computing Systems (ICDCS-21), April
2001.

[6] E. W. Dijkstra. Solution of a problem in concurrent
programming control. Communications of the ACM,
8(9):569, September 1965.

 DOI: http://dx.doi.org/10.1145/365559.365617
[7] M. J. Fischer, N. A. Lynch, and M. S. Paterson.

한국산학기술학회논문지 제14권 제5호, 2013

2464

Impossibility of distributed consensus with one faulty
process. Journal of the ACM, 32(3):374.382, April
1985.

[8] I. Suzuki and T. Kasami. A distributed mutual exclusion
algorithm. ACM transaction on Computer Systems,
3(4):344-349, November 1985.

 DOI: http://dx.doi.org/10.1145/6110.214406
[9] E. Gafni and M. Mitzenmacher. Analysis of

timing-based mutual exclusion with random times.
SIAM Journal on Computing, 31(3):816.837, 2001.

 DOI: http://dx.doi.org/10.1137/S0097539799364912
[10] V. Hadzilacos. A note on group mutual exclusion. In

20th ACM SIGACTSIGOPS Symposium on Principles
of Distributed Computing, August 2001.

 DOI: http://dx.doi.org/10.1145/383962.383997
[11] Y.-J. Joung. Asynchronous group mutual exclusion. In

17th ACM SIGACT-SIGOPS Symposium on Principles
of Distributed Computing, pages 51.60, June 1998.

 DOI: http://dx.doi.org/10.1145/277697.277706
[12] P. Keane and M. Moir. A simple local-spin group

mutual exclusion algorithm. IEEE Transactions on
Parallel and Distributed Systems, 12(7):673. 685, July
2001.

 DOI: http://dx.doi.org/10.1109/71.940743
[13] L. Lamport. A new solution of Dijkstra’s concurrent

programming problem. Communications of the ACM,
17(8):453.455, August 1974.

 DOI: http://dx.doi.org/10.1145/361082.361093
[14] L. Lamport. The mutual exclusion problem. Parts I&II.

Journal of the ACM, 33(2):313.348, April 1986.
 DOI: http://dx.doi.org/10.1145/5383.5385
[15] S. Lodha and A. D. Kshemkalyan. A fair distributed

mutual exclusion algorithm. IEEE Transactions on
Parallel and Distributed Systems, 11(6):537. 549, June
2000. 24

 DOI: http://dx.doi.org/10.1109/71.862205
[16] N. A. Lynch. Distributed Algorithms. Morgan

Kaufmann Publishers, 1996.
[17] M. Maekawa. A√N algorithm for mutual exclusion in

decentralized systems. ACM Transactions on Computer
Systems, 3(2):145.159, May 1985.

 DOI: http://dx.doi.org/10.1145/214438.214445
[18] D. Manivannan and M. Singhal. An efficient

fault-tolerant mutual exclusion algorithm for distributed
systems. In Proceedings of the ISCA International
Conference on Parallel and Distributed Computing
Systems, pages 525.530, October 1994.

Sung-Hoon Park [Regular member]

• Feb. 1982 : B.S in economics
and statistics from Korea
university

• Dec. 1993 : M.S in Computer
science from Indiana University,
USA

• Dec. 2000 : Ph.D. in computer
science and engineering from
Korea Univ.

• Sep. 2004 ~ current : Professor in Chungbuk National
University, Korea.

<Research Interests>
Distributed System, Mobile Computing and Theory of
Computation

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

