
Journal of the Korea Academia-Industrial

cooperation Society

Vol. 15, No. 3 pp. 1691-1699, 2014

http://dx.doi.org/10.5762/KAIS.2014.15.3.1691

ISSN 1975-4701 / eISSN 2288-4688

1691

Software Implementation of WAVE Security Algorithms

Jung-Ha Kang1, Sung-Jin Ok1, Jae Young Kim2 and Eun-Gi Kim1*

1Dept. of Information and Communication Engineering, Hanbat National University
2IT Convergence Technology Research Lab., Electronics and Telecommunications Research Institute

WAVE 보안 알고리즘의 소프트웨어 구현

강정하1, 옥성진1, 김재영2, 김은기1*
1한밭대학교 정보통신학과, 2한국전자통신원구원 융합기술연구부문

Abstract IEEE developing WAVE specifications are able to support V2V and V2I wireless communications,
and these functionalities can be used to enhance vehicle operational safety. To overcome any security
weaknesses that are inherent in wireless communications, WAVE specification should support message encryption
and authentication functions. In this study, we have implemented WAVE security algorithms in IEEE P1609.2
with openssl library and C language. We have verified the normal operation of implemented software, using the
test vectors of related specifications, and measured their performance. Our software is platform independent, and
can be used for the full implementation of WAVE specification.

요 약 IEEE에서는 V2I, V2V 등의 무선 통신 기능을 제공하여 차량 운행의 안전을 증대 시킬 수 있는 WAVE 규
격을 정의하고 있다. WAVE 규격에서는 무선 통신이 갖는 보안 취약성을 극복할 수 있도록 메시지의 암호화 및 인
증 기능을 지원하고 있다. 본 논문에서는 WAVE 규격에서 지원하고 있는 보안 알고리즘들을 openssl 라이브러리와 C

언어로 구현하였으며, 구현된 알고리즘들은 관련 규격들에서 제시하고 있는 테스트 벡터를 이용하여 정상 동작을 확
인하고 성능을 측정하였다. 본 논문에서 구현된 보안 알고리즘들은 플랫폼에 독립적으로 구현되어, WAVE 보안 규격
의 구현에 활용될 수 있을 것으로 생각된다.

Key Words : AES-CCM, ECDSA, ECIES, ITS Security, WAVE

This research was financially supported by the Ministry of Education (MOE) and National Research Foundation of Korea(NRF)
through the Human Resource Training Project for Regional Innovation (No. 201301590001) and a grant (12-TI-C01) from
Advanced Water Management Research Program funded by Ministry of Land, Infrastructure and Transport of Korean
government.
*Corresponding Author : Eun-Gi Kim(Hanbat National Univ.)
Tel: +82-42-821-1215 email: egkim@hanbat.ac.kr
Received December 27, 2013 Revised January 8, 2014 Accepted March 6, 2014

1. Introduction

These days, the integration of IT and vehicle
technologies is rapidly progressing.

Various applications have already been applied to
vehicle communication systems. However, the problem of
attacks - such as eavesdropping, spoofing and alterations
on networking - must be resolved in order to safely
activate these vehicle communication services. Users and

designers of ITS also expect a continuity of confidence,
integrity, and privacy protection for networking data and
services.

IEEE has defined WAVE (Wireless Access in
Vehicular Environments) standard, with regard to ITS
technology. The purpose of WAVE standard is to improve
vehicle safety, to reduce traffic congestion, to enable
services for vehicle maintenance, and to provide the
potential for new commercial services[1-4].

한국산학기술학회논문지 제15권 제3호, 2014

1692

The WAVE system, proposed by IEEE standard as
automotive networking technologies, supports V2V(Vehicle
to Vehicle) and V2I(Vehicle to Infra-structure)
communications. This WAVE system is intended for ITS
services and applications for automotive safety at a high
level within these network environments.

WAVE technology uses IEEE P 1609.2 with security
which defines both a secure message format and secure
processing procedures, for the use of WAVE devices.

1.1 WAVE system technologies

The WAVE system uses wireless communication
technologies in high mobility environments in order to
rapidly exchange frames for vehicle to vehicle or vehicle
to infra-structure communication. The MAC (Media
Access Control) and PHY(Physical) layers of the WAVE
system are an amended version of the IEEE 802.11
standard, which supports wireless access in vehicular
environments.

Vehicles need to be equipped with an end device
platform, a networking module, and an antenna for
WAVE communications. Also, devices must be installed
on the road, with road side communication modules and
antennas. The WAVE standard consists of IEEE 802.11p
and IEEE 1609.4 as lower layers, IEEE 1609.3 for
networking services, and IEEE 1609.2 for security
services as an upper layer. The protocol layers of the
WAVE system are illustrated in [Fig. 1].

Applications (P1609.1)Applications (P1609.1)

UDP/TCP

IPv6

LLC

WAVE MAC
(802.11p MAC)

WAVE PHY
(802.11p PHY)

WSMP
(P1609.3)

Multi-Channel
Operation
(P1609.4)

WME
(P1609.3)

MLME

PLME

Applications (P1609.1)Applications (P1609.1)

Security
(P1609.2)

Management Plane Data Plane

WAVE Standard
IEEE 802.11p Standard

To Airlink

[Fig. 1] WAVE protocol stack

WAVE systems with this protocol architecture provide
wireless communication technologies such as integrated

type V2V and V2I. The WAVE system, using these
functions, provides services for vehicle safety in
emergency situations, as well as a wide range of other
applications within the transportation environment. IEEE
802.11p, as a lower layer of the WAVE system, is based
on IEEE 802.11 WLAN (Wireless Local Area Network).
Thus, in a wireless communication environment, the
WAVE system has security vulnerabilities. The IEEE
1609.2 standard has been defined to overcome these
security weaknesses.

IEEE P1609.2 standard specifies a presentation
language in order to define message formats, contents,
and so on. This standard also defines message encryption,
decryption and message authentication methods[5,6].

1.2 IEEE P1609.2 in WAVE system

IEEE P1609.2 specifies security services for
applications and management messages in WAVE
systems. The WAVE security services support
confidentiality, authentication, authorization and integrity.

UDP/TCP

IPv6

LLC

WAVE MAC
(including channel

coordination)

WAVE PHY

WSMP

W
A

V
E

M
an

ag
em

en
t

En
tit

y(
W

M
E)

Lo
w

er
 L

ay
er

M

an
ag

em
en

t

Se
cu

ri
ty

 P
ro

ce
ss

in
g

Se
rv

ic
es

Provider Service
Security Mgt .

Entity
(PSSME)

Certificate
Mgt.
Entity
(CME)

Management Plane Data PlaneWAVE Security Services

Security Management Services

PSSME
-SAP

Sec-
SAP

CME
-SAP

C
M

E-
Se

c-
SA

P

W
M

E
-

Se
c-

SA
P

PS
SM

E-
Se

c-
SA

P

[Fig. 2] The structure of WAVE security services

The services and entities within WAVE security are
illustrated in [Fig. 2][6]. The WAVE security services
consist of Security Processing Services and Security
Management Services. The Security Processing Services
provide secure communications for data and
WSAs(WAVE Services Advertisements). The Security
Management Services provide Certificate Management
Services and Provider Service Security Management
Services. The Certificate Management Service manages
information related to the validity of all certificates by
CME (Certificate Management Entity). The Provider
Service Security Management service manages

Software Implementation of WAVE Security Algorithms

1693

information related to certificates and private keys by
PSSME (Provider Service Security Management Entity).

In order to provide WAVE Security Services, the
cryptographic mechanisms (supported by P1609.2) include
ECDSA (Elliptic Curve Digital Signature Algorithm),
ECIES (Elliptic Curve Integrated Encryption Scheme) and
AES-CCM (Advanced Encryption Standard - Counter with
CBC-MAC) [6].

In WAVE security system, these security algorithms
provide the following functions:

Signature algorithms: ECDSA
Public key encryption algorithms: ECIES
Symmetric algorithms: AES-CCM

In this study, we have implemented security
algorithms, as specified in IEEE P1609.2, using Openssl
library and C language for application to automotive
networking security. Our implemented security algorithms
have been verified using the values of test vectors, as
defined by the related specifications. We have also
successfully accomplished performance testing with the
implemented software.

This paper is organized as follows: Section 2 describes
the implementation of ECDSA and the performance of the
implemented ECDSA software. ECIES implementations
and performance results are described in section 3, and
AES-CCM implementations and performance results are
described in section 4. Finally, section 5 concludes this
paper.

2. Implementation of ECDSA in IEEE

P1609.2

ECDSA is the most widely standardized elliptic
curve-based signature scheme, and appears in international
standards such ANSI X9.62, FIPS 186-2, IEEE
1363-2000, ISO/IEC 15946-2 and SECG.

The ECDSA algorithm in WAVE standard provides
assurance that any message from the sender is unaltered
within WAVE networking.

2.1 The operation of ECDSA algorithm

Fig. 3 shows the operations of the ECDSA
algorithm[7]. As shown in Fig. 3, the sender generates a

random integer , and computes  using , private key,

, and ECDSA parameters   . The calculated  is

used to compute  with a message hash value, private

key and . The receiver computes using the  and 
received from the sender, and confirms whether the

′  , calculated by the receiver, matches up with

 from the sender. Providing that ′   is the same

as , the message is unaltered within the network.

[Fig. 3] Operations of the ECDSA algorithm

Detailed descriptions are as follows:

Suppose the Sender wants to send a message 

Sender has a private key ∈  and a

public key  

 is a point on the curve ( is a generator) :

×   (point to infinity)

To sign , Sender computes each parameter in
order

Compute  

Compute ≡ 

Compute ≡ 

The signature on  is the pair  

Receiver's verification

Compute    
Compute

 ′ →′′
If "′    ", the signature is accepted as

valid. Otherwise, it is rejected.

한국산학기술학회논문지 제15권 제3호, 2014

1694

2.2 The Implementation of ECDSA algorithm

ECDAS algorithm in IEEE P1609.2 standard follows
the FIPS 186-2 specification, stating that the signature
algorithm follows the ANSI X9.62 specification[7,8].

The public key algorithms used in the WAVE system
include ecdsa_nistp224_with_sha224, ecdsa_nistp256_
with_sha256, and so on. These algorithms' names relate to
the applied elliptic curve and hash function. For instance,
ecdsa_nistp224_with_sha224 uses the parameter specified
in "ECDSA over a 224-bit prime field" in an X9.62 and
224 SHA scheme, as a hash algorithm. Fig. 4 illustrates
the signed message structure that is exchanged in the
WAVE communication.

[Fig. 4] Message structure of a ToBeSignedMessage

As described in Fig. 4, the sender sets the "Application
data" of a ToBeSignedMessage structure to 'sending
message', and transmits the message with ECDSA
signature values, which are related to the message. The
core functions of ECDSA implemented in the paper are
the function for signature computing from sender-side,
and the function for signature verification from
receiver-side.

The functional prototypes are as follow:
The function to compute an ECDSA signature
value:
ECDSA_SIG *ECDSA_p1609_do_sign (const char

*dgst, const EC_KEY *eckey, const BN_CTX
*ctx);

Return Value: ECDSA_SIG structure including 

and  in [Fig. 3] and [Fig. 4].
The function to verify an ECDSA signature value
int ECDSA_p1609_do_verify(const unsigned char
*dgst, const int dgstLen, const ECDSA_SIG *sig,
const EC_KEY *ecKey);
Return Value: 1(Correct signature), 0(Incorrect
signature), -1(Error)

Each function was implemented by using the openssl
library according to the operation explaining in 2.1. In
this study, we have verified the implemented functions,
using parameters and test vectors from L.6.3.3 of ANSI
X9.62 specification.

2.3 The performance of ECDSA

In this study, we have measured the performance of
the ECDSA algorithms implemented. The test
environments are as follows:

CPU: Intel(R) Core2 Duo CPU L9400 1.86GHz
OS: Linux 3.4.2-1.fc16.i686.PAE
Openssl: Openssl-1.0.1

The test items for performance measurements consist
of initialization time, signature time and verification time.

Initialization time is the interval of time taken to set up
the values of init parameters. The signature time is the
time interval taken to compute the signature value. The
verification time is the time interval taken to calculate
both the signature value, using the received parameters,
and to check the signature's validation. The parameters
and test vectors in L.6.3.3 of ANSI X9.62 specification,
as mentioned in 2.2, were used for the tests. Using
ECDSA_SHA224, testing was carried out 5 times for each
item.

Fig. 5 shows the test results for performance
measurements.

(a)

Software Implementation of WAVE Security Algorithms

1695

(b)
[Fig. 5] Test results for performance measurements of

ECDSA

 (a) The performance of ECDSA_SHA224

 (b) The performance of ECDSA_SHA256

Fig. 5(a) shows the initialization time for setting up the
values used in ECDSA_SHA224. The minimum time is
10,235usec. The maximum time is 15,695usec. Therefore,
as a result of the initialization test for ECDSA_SHA224,
the average time is calculated as 13,863usec.

Fig. 5(a) shows the signature time for computing r and
s values, using ECDSA_SHA224. The minimum time is
2,009usec. The maximum time is 2,051usec. Therefore, as
a result of the test of the signature of ECDSA_SHA224,
the average time is 2,032usec.

Fig. 5(a) shows the signature verification time. The
minimum time is 2,226usec. The maximum time is
2,299usec. Therefore, as a result of the verification of
ECDSA_SHA224, the average time is 2,256usec We also
carried out testing using ECDSA_SHA256, using the
same methods as with ECDSA_SHA224. Each item's
time graph is described in [Fig. 5](b).

Fig. 5(b) shows the initialization time of
ECDSA_SHA256 with microsecond units. The minimum
time is 6,098usec. The maximum time is 11,007usec.
Therefore, as a result of initialization test of
ECDSA_SHA256, the average time is 9,582usec. Fig.
5(b) illustrates the signature time of ECDSA_SHA256,
and Fig. 5(b) shows the verification time of
ECDSA_SHA256. In Fig. 5(b), the minimum time is
2,589usec, the maximum time is 5,035usec, and the
average time is 3,448usec.

In Fig. 5(b), the minimum time is 2,915usec, the
maximum time is 2,978usec, and as a result of
verification test , the average time is 2,946usec.

3. Implementation of ECIES in IEEE

P1609.2

The ECIES algorithm in IEEE P1609.2 specification is
used to send symmetric keys which are needed for the
AES-CCM scheme.

3.1 The operation of ECIES

[Fig. 6] Operations of the ECIES algorithm

The operation of the ECIES algorithm is shown in

[Fig. 6]. As described in [Fig. 6], the transmitter sends  ,

 and , as the result of the ECIES encryption, to the
receiver.

The detailed operations of the ECIES encryption and
decryption scheme are as follows:

The receiver's private key  and public key

  

Optional shared information:  and 

To encrypt message , the sender computes each
parameter in the following order:

Generate a random secret number ∈ 

and calculates  .

Derive a shared secret   , where

    (and ≠)

Use KDF (Key Derivation Function) to derive a

symmetric encryption key, , and MAC key

 ∥ ∥

Encrypt the message :  

Calculate the tag of the encrypted message and 

:  ∥

한국산학기술학회논문지 제15권 제3호, 2014

1696

Output : ∥∥
To decrypt the cipher text, the receiver proceeds as
follows:

Derive a shared secret:   , where

    (the value,  , on the receiver

side is the same as  derived on the sender side)

Derive keys  in the same way as the

sender : ∥ ∥
Use MAC to verify the tag and outputs: Failed if

≠∥
Use the symmetric encryption scheme to decrypt

the message 

3.2 The Implementation of the ECIES

 algorithm

The operation of ECIES, as specified in IEEE P1609.2,
follows the IEEE std 1363a-2004 standard, where
ECSVDP-DHC is used for the creation of a temporary
secret key[2,9].

Message encryption uses the KDF2 scheme (non
DHAES mode), based on a SHA-256 hash type. Message
authentication is composed of a MAC1 scheme, based on
SHA-256 hashing.

Fig. 7 shows part of an encrypted message structure.

Length of
recipient field

CertID8

v(==R)

c

T(==d)

2

8

33

16

16

CertID8

v(==R)

c

T(==d)

8

33

16

16

nonce

Length of cipertext

ccm_ciphertext

fields for
recipient[1]

fields for
recipient[2]

user＇s
certificate id

symmetric key
encrypted by
ECIES

encrypted
message
byAES-CCM

12

2

2^16 - 1

v: sender’s ephemeral public key
c: encrypted symmetric key
t: authentication tag

SymmAlgorithm=0

Content type =
app.data

Type=ecnrypted

Protocol Version =1 1

1

1

1

Encrypted
Message

ciphertext

Field size
(octet)

[Fig. 7] Message structure of Encrypted Message

As described in Fig. 7, as the message is sent, it is
encrypted by an AES-CCM scheme, using a symmetric
key. The symmetric key is encrypted, according to the
ECIES scheme, and transmitted as an encrypted message.
In this paper, we have implemented the functions to
provide the encryption and decryption of the data and key
by ECIES. The procedure is as follows:

int ecies_p1609_encrypt (EC_POINT *partnerPubKey,
EC_KEY *eckeySender, unsigned char *data, size_t
length, unsigned char *p1, size_t p1Length,
unsigned char *p2, size_t p2Length, struct vct
*out);
int ecies_p1609_decrypt (EC_KEY *eckeyReceiver,
unsigned char *p1, size_t p1Length, unsigned char
*p2, size_t p2Length, struct vct *rcvdVct, unsigned
char *out);

The ecies_p1609_encrypt function contains the input
parameters for the operations of the ECIES algorithm and

the output parameters of  ,  and   , which
are results of the ECIES algorithm.

The ecies_p1609_decrypt function checks the integrity
of a message, using the values of v, c and T, from the
received message and, provided it is not proved false,
then performs the decryption of the message.

IEEE P1609.2 and related specifications do not provide
any specific test vectors which would enable us to
confirm the proper operations of ECIES.

Therefore, in this study, we have carried out testing to
encrypt and decrypt the message using our own test
vector. As a result, we found that our test vectors function
normally with ECIES functions.

3.3 The performance of ECIES

We have tested the initialization time, encryption time
and decryption time, in order to measure the performance
of ECIES. The test environment is the same as described
in 2.3.

There were no specified test vectors for the ECIES
algorithms in IEEE P1609.2, so the test vectors as
described in 3.2 were used. The testing was carried out 5
times using ECIES, and each item's time graph is
described in [Fig. 8]. The initialization, encryption and
decryption times of the ECIES are shown in Fig. 8
respectively.

Software Implementation of WAVE Security Algorithms

1697

[Fig. 8] Test results for ECIES performance measurements

As a result of the initialization test of ECIES, the
minimum time is 9,270usec, the maximum time is
18,234usec, and the average time is 15,266usec.

As a result of the encryption test of ECIES, the
minimum time is 1,976usec, the maximum time is
4,165usec, and the average time is 2,430usec.

As a result of the decryption test of ECIES, the
minimum time is 5,289usec, the maximum time is
6,724usec, and the average time is 5,584usec.

4. Implementation of AES-CCM in

IEEE P1609.2

4.1 The operation of AES-CCM

The sender transmits the encrypted message to the
receiver using an AES-CCM scheme to the receiver in
IEEE P1609.2. Fig. 9 shows the operations of AES-CCM
algorithms.

[Fig. 9] Operation of AES-CCM algorithm

The AES-CCM scheme divides user data into 128 bit
units and then performs the encryption [10]. AES-CCM
provides not only the message encryption function, but
also a message authentication function. The parameters
needed for the encryption of the AES-CCM scheme

include the sending of the message P(plain text), nonce N,
associated data A, and so on.

4.2 The Implementation of AES-CCM

The AES-CCM algorithm specified in IEEE P1609.2
follows NIST SP 800-38C standard [11].

When several sent messages are encrypted by the same
symmetric key, each nonce value used for each message
encryption must be different.

In this paper, we have implemented the encryption and
decryption functions of AES-CCM scheme to be used
with IEEE P1609.2 specification. The implemented
functions are as follows.

int AES_CCM_p1609_Encrypt(char *K, char *N,
char *A, char *P, char *out, unsigned long
*outlen);
int AES_CCM_p1609_Decrypt(char *K, char *N,
char *A, char *C, unsigned long ctlen, char *out,
unsigned long *outlen);

Our testing has confirmed that the implemented
functions work properly, using the test vectors in NIST
SP 800-38C "Appendix C".

4.3 The performance of AES-CCM

We have measured the performance of AES-CCM
implementation in a test environment, as shown in 2.3.
C.3 Example 3 values in NIST SP 800-38C "Appendix C"
were used as test vectors, and the test was carried out 5
times for each item. The test results are shown in [Fig. 10].

[Fig. 10] Test results for performance of AES-CCM

As a result of the initialization test of AES-CCM, the
minimum time is 481usec, the maximum time is 507usec,
and the average time is 488usec.

As a result of the encryption test of AES-CCM, the
minimum time is 311usec, the maximum time is 387usec,
and the average time is 348usec.

한국산학기술학회논문지 제15권 제3호, 2014

1698

As a result of the decryption test of AES-CCM, the
minimum time is 131usec, the maximum time is 223usec,
and the average time is 155usec.

5. Conclusion

In this paper, we have implemented the security
algorithms of IEEE P1609.2 standard, as specified by
IEEE for the ITS system. The security algorithms
implemented in this study have been verified using test
vectors, defined in the related specifications. We have
also carried out performance testing on the implemented
software.

The security software implemented in this study
follows IEEE P1609.2, defined in the year 2006[2]. IEEE
currently defines IEEE P1609.2/D15pre as the most recent
version [6].

The security algorithm of IEEE P1609.2/D15pre is the
same as the algorithm of IEEE P1609.2/2006, so we can
expect that the algorithms implemented in this paper can
also be applied to the most recent version of IEEE P
1609.2 without any changes.

As a result of performance testing, we have shown that
the average time of the ECDSA signature is
approximately 3msec, the average time for ECIES
encryption is approximately 2msec, and the average time
for AES-CCM encryption is approximately 0.3msec.
Network equipment or embedded systems can make use
of security hardware modules because of this rapid
performance. In the performance results of this study, we
have found that the implemented security software module
works competently with the wave system, providing that
the hardware specification of the wave system
corresponds to our test system, as described in 2.3. The
security software module is more effective than the
security hardware module in terms of cost, management,
and so on. In the future, the study of adding service
primitives, implementing functions of message
encoding/decoding and building CA (Certificate Authority)
of WAVE system needs to be carried out for the full
implementation of IEEE P 1609.2.

References

[1] IEEE Std. 1609.1, IEEE Trial-Use Standard for Wireless
Access in Vehicular Environments (WAVE)— Resource
Manager, 2006

[2] IEEE Std. 1609.2, “IEEE Trial-Use Standard for Wireless
Access in Vehicular Environments - Security Services
for Applications and Management Messages”, 2006

 DOI: http://dx.doi.org/10.1109/IEEESTD.2006.6636021
[3] IEEE Std. 1609.3, “IEEE Trial-Use Standard for

Wireless Access in Vehicular Environments (WAVE)—
Networking Services”, 2007

[4] IEEE Std. 1609.4, “IEEE Trial-Use Standard for
Wireless Access in Vehicular Environments (WAVE)—
Multi-channel Operation”, 2006

[5] EUN-GI KIM, HANBYEOG CHO, “SW Implementation
of Security Algorithms in IEEE 1609.2”, 18’th ITS
World Congress, Orlando, USA, 2011

[6] IEEE P1609.2/D15pre, “Draft Standard for Wireless
Access in Vehicular Environments – Security Services
for Applications and Management Messages”, 2012

[7] NIST FIPS PUB 186-2, “DIGITAL SIGNATURE
STANDARD (DSS)”, 2000

[8] ANSI X9.62, “Public Key Cryptography For The
Financial Services Industry: The Elliptic Curve Digital
Signature Algorithm (ECDSA)”, 2005

[9] IEEE Std. 1363a, “IEEE Standard Specifications for
Public Key Cryptography: Additional Techniques”, 2004

[10] NIST FIPS 197, “Specification for the ADVANCED
ENCRYPTION STANDARD(AES)”, 2001

[11] NIST Special Publication 800-38C, “Recommendation
for Block Cipher Modes of Operation: The CCM Mode
for Authentication and Confidentiality”, 2004

Jung-Ha Kang [Regular member]

• Aug. 2001 : Hanbat National Univ.,
Information and Communication
Engineering, MS

• Jan. 2002 ~ Apr. 2012 : Fumate
Co., Ltd. Principal Research
Engineer

• May 2012 ~ current : Hanbat
National Univ., Dept. of
Information and Communication
Engineering, Ph.D. candidate

<Research Interests>
Computer Network, Cryptography, Network Security

Software Implementation of WAVE Security Algorithms

1699

Sung-Jin Ok [Associate member]

• Feb. 2014 : Hanbat National Univ.,
Information and Communication
Engineering, MS

<Research Interests>
Computer Network, Cryptography, Network Security

Jae Young Kim [Regular member]

• Feb. 1992 : Yonsei Univ.,
Electronic Engineering, MS

• Aug. 1996 : Yonsei Univ.,
Electronic Engineering, PhD

• Sep. 1996 ~ Feb. 1999 :
Daewoo Electronics Ltd., Engineer

• Mar. 1999 ~ current : Electronics
and Telecommunications Research
Institute (ETRI), Principal Member
of Research Staff

<Research Interests>
Energy IT, Security, Wireless Sensor Network

Eun-Gi Kim [Regular member]

• Feb. 1989 : Korea Univ.,
Electronic Engineering, MS

• Feb. 1994 : Korea Univ.,
Electronic Engineering, PhD

• Feb. 1995 ~ current : Hanbat
National Univ., Dept. of
Information and Communication
Engineering, Professor

<Research Interests>
Computer Network, Embedded S/W, Cryptography,
Network Security

