루드-후르비쯔 (Routh-Hurwitz) 안정성 판별법을 이용한 인간의 임피던스가 포함된 햅틱 시스템의 안정성 분석

이경노^{1*} ¹한국교통대학교 에너지시스템공학과

Stability Analysis of a Haptic System with a Human Impedance model using the Routh-Hurwitz Criterion

Kyungno Lee^{1*}

¹Department of Energy System Engineering, Korea National University of Transportation

요 약 햅틱 시스템에는 사용자인 인간이 항상 포함되므로, 인간 임피던스에 의한 시스템 안정성 분석이 필요하다. 특히, 일차 홀드 방식의 햅틱 시스템에 대한 인간 임피던스의 안정성 영향 분석이 미진하다. 본 논문에서는 선형 2차 시스템으로 모델화된 인간의 임피던스 모델을 포함하는, 일차 홀드 방식의 햅틱 시스템에 대한 안정성을 루드-후르비쯔 (Routh-Hurwitz) 안정성 판별법을 이용하여 해석했다. 가상 벽 모델인 가상 스프링 상수 (K_w) 의 안정성 영역과 인간 임피던 스의 질량 (M_h) , 댐핑 (B_h) , 그리고 스프링 상수 (K_h) 와의 관계를 루드-후르비쯔 안정성 판별법을 이용하여 분석한 결과, 스프링 상수 (K_h) 가 일정할 때 가상 스프링 상수 (K_w) 는 인간 임피던스의 질량 (M_h) 과 댐핑 (B_h) 의 제곱근에 비례했다. 또한 인간 임피던스의 질량 (M_h) 과 댐핑 (B_h) 의 제곱근에 비례했다. 또한 인간 임피던스의 질량 (M_h) 또는 댐핑 (B_h) 가 일정할 때 가상 스프링 상수 (K_w) 는 스프링 상수 (K_h) 의 0.48배만큼 감소했다. 이를 종합하여 $K_w \leq 54413 \sqrt{(M_h + M_d)(B_h + B_d)} - 0.486 K_h$ 의 모델을 제안했고, 이론 값들과 제시된 모델로부 터 계산된 값을 비교한 결과 평균적인 상대오차가 0.5%로 작게 나타났다. 제시된 모델이 인간 임피던스 모델과 가상 스프링 상수와의 관계를 비교적 잘 표현하고 있다.

Abstract This paper presents the stability analysis of the haptic system including a human impedance using the Routh-Hurwitz criterion. The reflective force is computed from a virtual spring model and is transferred to a human operator using the first-order-hold method. The stability boundary conditions are induced and the relation among a virtual spring (K_w) , the mass (M_h) , the damping (B_h) and the stiffness (K_h) of a human impedance is analyzed. Hence the stability boundary of the virtual spring (K_w) is proposed as $K_w \leq 54413 \sqrt{(M_h + M_d)(B_h + B_d)} - 0.486 K_h$ when the sampling time is 1 ms. The average relative error is about 0.5% when the mathematical analysis results are compared with the results of the stability boundary model.

Key Words : First-Order-Hold, Haptic System, Human Impedance, Stability Analysis, Virtual Wall

1. 서론

핵틱 시스템은 양방향 상호작용하는 시스템으로서 인 간의 인지능력 향상을 위한 도구[1], 또는 가상현실의 현 실감 및 몰입감을 증강시키기 위한 도구로써 활용된다. 핵틱 시스템의 구성요소에는 항상 사용자인 인간이 포함 되므로 핵틱 시스템의 안정성을 해석할 때에는 인간 모 델의 영향을 고려해야 한다.

햅틱 시스템의 안정성에 대한 해석 방법 중 수동성 (passivity)를 이용하는 경우에는 인간 모델이 수동적이 라고 가정하여 햅틱 시스템에서 안정성에 영향을 주지 않을 것으로 고려한다. 그래서 샘플링 주기, 쿨롱 마찰력, 양자화 요소를 고려하여 햅틱 시스템의 수동성 조건을

^{*}Corresponding Author : Kyungno Lee (Korea National Univ. of Transportation) Tel: +82-43-841-5285 email: klee@ut.ac.kr Received December 4, 2013 Revised February 6, 2014 Accepted April 10, 2014

유도한 연구[2]와 가상 커플링 개념으로 햅틱 시스템의 수동성 조건을 유도한 연구[3]에서는 인간 모델이 고려 되지 않았다. 인간의 힘 반응 특성을 고려하여 비선형 가 상 커플링 방법을 제안한 연구[4]에서도 인간 모델의 임 피던스가 햅틱 시스템의 안정성에 미치는 영향을 분석하 지는 않았다. 루드-후르비쯔 (Routh-Hurwitz) 안정성 판 별법을 이용하여 인간 모델을 포함한 햅틱 시스템의 안 정성을 해석한 연구[5]에서는 선형 2차 시스템으로 모델 화된 인간 모델의 임피던스가 안정적인 가상 스프링 상 수의 범위를 더 증가 시켜줌을 보였다. 그렇지만 이러한 연구들에서는 샘플-홀드 방식이 영차홀드 (Zero-Order -Hold; ZOH)로 가정한 경우의 결과들이다. 최근에는 가 상 벽에 대한 몰입감과 현실감을 증강시키기 위해서 가 상 스프링 상수를 안정적으로 증가시키기 위한 방법으로 일차홀드 (First-Order-Hold; FOH)의 샘플-홀드 방식을 이용하는 방법이 제시된다.[6][7] 샘플링 주기, 햅틱 장치 의 질량과 댐핑이 햅틱 시스템의 안정성에 미치는 영향 이 분석되고 시뮬레이션을 통해 인간 모델의 질량, 댐핑 상수, 스프링상수와 가상 벽의 가상 스프링 상수와의 관 계가 각각 유추되었다. 그러나 시스템의 안정성을 판별 하는 과정이 수작업에 의존하는 관계로 충분한 데이터를 얻는 데에는 어려움이 있었다.

본 논문에서는 샘플-홀드 방식이 일차홀드일 때 인간 모델의 임피던스가 햅틱 시스템의 안정성에 미치는 영향 을 루드-후르비쯔 (Routh-Hurwitz) 안정성 판별법을 이 용하여 해석한다. 유도된 조건식과 프로그램을 이용하여 안정적인 가상 스프링 상수의 최대값을 보다 쉽고, 정확 하게 구한다. 그리하여 인간 모델 임피던스와 가상 벽의 가상 스프링 상수와의 관계를 보다 정확하게 종합적으로 유도한다.

2. 인간 임피던스 모델

인간의 임피던스 모델은 햅틱 장치를 조작하는 신체 부위, 자세 및 조작하는 힘의 크기에 따라 변하기 때문에 특정 모델로 규정하기가 어렵지만, 일반적으로 선형 질 량, 댐퍼, 스프링으로 구성된 선형 2차 시스템으로 모델 화한다. Tsuji[8]은 질량, 댐퍼, 스프링으로 모델화된 선 형 2차 모델을 이용하여 다관절 팔의 운동 환경에서 일정 자세를 유지하고 있을 때 인간 손의 임피던스 특성을 연 구하였다. Kuchenbecker [9]은 선형 2차 모델을 활용하 여 3개 손가락으로 스타일러스를 쥐고 있는 상태에서 쥐 는 힘의 크기에 따른 인간 손목의 임피던스 변화를 연구 하였다. 기존 연구 결과들 중 일부는 Table 1과 같다.

따라서 본 논문에서도 식 (1)과 같이 인간 임피던스 모 델을 질량 (M_h) , 댐핑 (B_h) , 스프링상수 (K_h) 로 구성된 1-자유도 선형 2차 시스템으로 모델화하고, 이를 토대로 루드-후르비쯔 판별법을 이용하여 햅틱 시스템의 안정 성에 미치는 영향을 해석한다. 여기서 x(t)는 변위이고, F(t)는 힘이다.

$$F(t) = M_h \ddot{x}(t) + B_h \dot{x}(t) + K_h x(t)$$
(1)[7]

[Table 1] Human impedance values

	Mass	Damping	Stiffness
	(Kg)	(Ns/m)	(N/m)
Hand [8]	1.54	7.17	105.72
	1.45	6.36	81.21
	1.48	8.37	98.82
	1.48	8.54	96.75
wrist [9]	0.135	4.5	440
	0.150	6.0	520
	0.130	4.3	560
	0.160	6.0	500

3. 시스템 블록선도와 안정성 해석

인간 모델, 햅틱 장치, 가상 벽으로 구성된 햅틱 시스 템의 제어 블록선도는 Fig. 1과 같다.

[Fig. 1] Block diagram of haptic system with a virtual wall and a human model.

인간 모델 H(s), 햅틱 장치 D(s), 가상 벽 E(z), 데 이터 홀드인 $G_{h1}(s)$ 는 각각 (2) ~ (5)와 같다. 그리고 샘플링 주기는 T이다.

$$H(s) = M_h s + B_h + \frac{K_h}{s} \tag{2}$$

$$D(s) = \frac{1}{M_d s + B_d} \tag{3}$$

$$E(z) = K_w \tag{4}$$

$$G_{h1}(s) = \left(\frac{1 - e^{-T_s}}{s}\right)^2 \frac{T_s + 1}{T}$$
(5)[7]

인간 임피던스 모델의 라플라스 전달함수 H(s)에서 M_h , B_h , K_h 는 각각 질량, 댐핑, 스프링 상수이다. 햅틱 장치 모델의 라플라스 전달함수 D(s)에서 M_d 와 B_d 는 각각 햅틱 장치의 질량과 댐핑 상수이다.

가상 벽 모델의 z-전달함수 E(z)는 가상 벽의 스프 링 상수 K_w 이다. 데이터 홀드 방식 중 일차 홀드의 라플 라스 전달함수는 $G_{h1}(s)$ 와 같다. 따라서 제어 블록선도 전달함수의 특성 방정식을 유도하면 (7)과 같다.

$$C(s) = \frac{D(s)}{1 + H(s)D(s)} \frac{1}{s}$$
(6)

$$1 + (1 - z^{-1})^2 \bullet Z\left[\frac{Ts + 1}{Ts^2}C(s)\right]E(z) = 0 \quad (7)$$

식 (7)에서 루드-후르비쯔 (Routh-Hurwitz) 안정성 판별법을 적용하려면 우선 s-영역의 전달함수를 z-영역 의 전달함수로 변환해야한다. 따라서 Z[]안의 전달함 수는 (8)과 같이 정리된다.

$$Z\left[\frac{Ts+1}{Ts^{2}} \frac{1}{(M_{d}+M_{h}) s^{2} + (B_{d}+B_{h}) s + K_{h}}\right]$$

= $A_{1}\frac{1}{1-z^{-1}} + A_{2}\frac{Tz^{-1}}{(1-z^{-1})^{2}}$
+ $A_{3}\frac{1-e^{-aT}z^{-1}\cos(xT)}{1-2e^{-aT}z^{-1}\cos(xT) + e^{-2aT}z^{-2}}$
+ $A_{4}\frac{e^{-aT}z^{-1}\sin(xT)}{1-2e^{-aT}z^{-1}\cos(xT) + e^{-2aT}z^{-2}}$ (8)

where
$$a = \frac{B}{2M}$$
, $M = M_h + M_d$, $B = B_h + B_d$
 $x^2 = \frac{K_h}{M} - \frac{B^2}{4M^2}$, $A_1 = \frac{TK_h - B}{TK_h^2}$,
 $A_2 = \frac{1}{TK_h}$, $A_3 = -A_1$,

식 (8)과 같이 유도되기 위한 전제 조건이 (9)이다. 그 런데 Table 1의 인간 모델의 임피던스와 햅틱 장치 PHANToM 1.0의 임피던스[2], 질량은 0.072 kg, 댐핑 상 수는 0.005 Ns/m를 통해 (9)를 검토해보면 언제나 성립 한다. 따라서 대부분의 햅틱 시스템에서는 (8)이 성립된 다. 따라서 전달함수의 특성 방정식은 (10)과 같이 유도 된다. 식 (10)에서의 *a*, *A*₁, *A*₂, *A*₄는 각각 (8)의 *a*, *A*₁, *A*₂, *A*₄와 같다.

$$z^3 + B_2 z^2 + B_1 z + B_0 = 0 \tag{10}$$

where

$$\begin{split} B_2 &= K_w \big(A_1 + TA_2 \big) + A_4 K_w e^{-aT} \mathrm{sin} \left(x \, T \right) \\ &- \big(2 + A_1 K_w \big) e^{-aT} \mathrm{cos} \left(x \, T \right) \\ B_1 &= e^{-2aT} - 2 K_w TA_2 e^{-aT} \mathrm{cos} \left(x \, T \right) \\ &- 2 K_w A_4 e^{-aT} \mathrm{sin} \left(x \, T \right) + K_w A_1 \big(e^{-2aT} - 1 \big) \\ B_0 &= K_w \big(-A_1 + TA_2 \big) e^{-2aT} \\ &+ K_w \big(A_1 \mathrm{cos} \left(x \, T \right) + A_4 \mathrm{sin} \left(x \, T \right) \big) e^{-aT} \end{split}$$

루드-후르비쯔 (Routh-Hurwitz) 안정성 판별법을 적 용하기 위해서는 z-영역에서 다시 *w*-영역으로 변환하 여야 한다. 따라서 (10)에 $z = \frac{w+1}{w-1}$ 을 대입하여 *w*에 대한 다항식으로 정리한 결과는 (11)이다.

$$D_3w^3 + D_2w^2 + D_1w + D_0 = 0 \tag{11}$$

where

$$\begin{split} D_3 &= \left(1-2\,e^{-aT}\cos{\left(x\,T\right)}+e^{-2aT}\right)(K_w\,TA_2+1)\\ D_2 &= 3-C_0+C_1+C_2-C_3-3C_4,\\ D_1 &= 3+C_0-C_1+C_2-C_3+3C_4,\\ D_0 &= 1+C_0-C_1-C_2+C_3-C_4,\\ C_0 &= 2e^{-aT}\cos{\left(x\,T\right)},\\ C_1 &= K_w(A_1+TA_2)-K_wA_1e^{-aT}\cos{\left(x\,T\right)}\\ &+ K_wA_4e^{-aT}\sin{\left(x\,T\right)}, \end{split}$$

$$\begin{split} C_2 &= 2K_w e^{-aT} T A_2 \mathrm{cos} \left(x T \right) - e^{-2aT}, \\ C_3 &= K_w \Big(-2A_4 e^{-aT} \mathrm{sin} \left(x T \right) + A_1 e^{-2aT} - A_1 \Big), \\ C_4 &= K_w \Big((-A_1 + TA_2) e^{-2aT} \Big) \\ &+ K_w A_1 e^{-aT} \mathrm{cos} \left(x T \right) + K_w A_4 e^{-aT} \mathrm{sin} \left(x T \right) \end{split}$$

식 (11)의 D_3 에서 $(1-2e^{-aT}\cos(xT)+e^{-2aT})=$ $\{(1-e^{-aT})^2+2e^{-aT}(1-\cos(xT))\}$ 으로 변환할 수 있으며, 이 값은 언제나 0 보다 크다. (K_wTA_2+1) 도 항상 0 보다 크므로, $D_3 > 0$ 는 항상 성립한다. 따라서 루 드-후르비쯔 (Routh-Hurwitz) 안정성 판별법에 의한 햅 틱 시스템 안정성 조건은 (12) ~ (14)으로 정리된다.

$$D_2 > 0$$
 (12)

 $D_2 D_1 - D_3 D_0 > 0 \tag{13}$

$$D_0 > 0$$
 (14)

식 (12) ~ (14)를 모두 만족하는, 가상 벽의 가상 스프 링 상수 K_w 의 범위에 대한 관계식을 단순화하기는 어렵 다. 따라서 수치해석 방법 중 이분법 알고리즘을 응용하 여 프로그램을 구현한 후, 주어진 조건, M, B, K_h, T 에 서의 K_w 최대값을 계산한다.

4. 시스템의 안정성 영역 해석

안정성 조건을 유도하기 위한 (9)를 만족하는 범위 내 에서 인간 임피던스 모델의 물성치 변화에 따른 가상 스 프링 상수 K_w 의 최대값을 분석한다. 햅틱 장치의 물성치 는 상용 햅틱 장치인 PHANToM 1.0에 대한 질량은 0.072 kg, 댐핑 상수는 0.005 Ns/m, 샘플링 주기는 1 ms 를 사용한다. [2]

인간 임피던스 모델에서 질량 $M(=M_h + M_d)$ 와 가 상 스프링 상수 K_w 의 관계는 Fig. 2와 같다. Fig. 2의 5개 그래프에 대한 추세선의 식은 (15)와 같이 일반화되며, 그래프별 계수는 Table 2와 같다. 다양한 B 값 모두에 대해 K_w 는 $(M_h + M_d)^{0.5}$ 에 비례한다. Figs. 2 ~ 3에서 사용된 K_h 는 Table 1의 손의 스프링 상수의 평균값인 95.63 N/m 이다.

[Fig. 2] Maximum stiffness (K_w) for guaranteeing the stability, according to the mass (M).

$$K_w = C_1 M^{0.5} = C_1 (M_h + M_d)^{0.5}$$
(15)

[Table 2] Coefficients of fitting curves in Fig. 2

Graph Number	В	C_1
(1)	1.0	54347
(2)	2.0	76676
(3)	4.0	108075
(4)	6.0	132044
(5)	8.0	152174

Fig. 3은 질량 M별로 댐핑 B 증가에 따른 가상 스프 링 상수 (K_w) 최대값을 나타낸다. 추세선 식은 (16)과 같 이 표현되고 그 계수는 Table 3과 같다. 따라서 K_w 는 $(B_b + B_d)^{0.5}$ 에 비례한다.

[Fig. 3] Maximum stiffness (K_w) for guaranteeing the stability, according to the damping (B).

$$K_w = C_2 B^{0.5} = C_2 \left(B_h + B_d \right)^{0.5} \tag{16}$$

[Table 3] Coefficients of fitting curves in Fig. 3

Graph Number	M	C_2
(1)	0.5	38374
(2)	1.0	54420
(3)	1.5	66731
(4)	2.0	77108
(5)	2.5	86252

Fig. 4는 질량 M별로 인간 임피던스 모델의 스프링 상수 K_h 증가에 따른 가상 스프링 상수 (K_w)의 최대값 을 나타낸다. 일반식은 (17)과 같고 그래프별 계수값은 Table 4와 같다. 여기서 B=1.0 Ns/m이다. Fig. 5는 댐핑 B별로 인간 임피던스 모델의 스프링 상수 K_h 와 가상 스 프링 상수 (K_w)의 관계를 나타내며, M= 1kg이다. 댐핑 B값에 따른 추세선의 일반식은 (18)이고, 그 계수는 Table 5와 같다.

[Fig. 4] Maximum stiffness (K_w) for guaranteeing the stability, according to stiffness (K_h) when B=1.0 Ns/m.

$$K_w = C_3 - C_4 K_h \tag{17}$$

[Table 4] Coefficients of fitting curves in Fig. 4

Graph Number	M	C_3	C_4
(1)	0.5	38377	0.4839
(2)	1.0	54413	0.4889
(3)	1.5	66720	0.4905
(4)	2.0	77096	0.4922
(5)	2.5	86238	0.4932

[Fig. 5] Maximum stiffness (K_w) for guaranteeing the stability, according to stiffness (K_h) when M=1.0 kg.

$$K_w = C_5 - C_6 K_h \tag{18}$$

[Table 5] Coefficients of fitting curves in Fig. 5

Graph Number	B	C_5	C_6
(1)	1.0	54413	0.4889
(2)	2.0	76756	0.4866
(3)	4.0	108176	0.4818
(4)	6.0	132156	0.4786
(5)	8.0	152291	0.475

(17)과 (18)의 시뮬레이션 결과를 보면, 시스템의 안정 성을 보장하는 범위에서 댐핑 B가 일정할 때 K_h 의 계수 는 M이 커질수록 커지고, 반대로 질량 M이 일정할 때 에는 K_h 의 계수가 B이 커질수록 작아지지만, 그 10개 데이터의 계수는 0.47 ~ 0.5 범위 안에 있으며, 평균값은 0.486이다. 그리고 C_3 와 C_5 는 K_h 에 무관하며, 질량 M이 일정한 경우인 Table 2의 C_1 과 Table 5의 C_5 가 비슷 하고, 댐핑 B가 일정한 경우인 Table 3의 C_2 와 Table 4 의 C_3 가 유사하므로 C_3 와 C_5 는 각각 질량 M, 댐핑 B와 관계있음을 유추할 수 있다. 또한 $K_w \propto B^{0.5}$, $K_w \propto M^{0.5}$ 이므로, (19)와 같이 관계식을 유추하여 모델 화 가능하다. 여기서 계수 54413는 M과 B가 모두 1인 경우로서 Table 5와 6에서 보면 같다. 이 때의 샘플링 주 기는 0.001초이다.

$$K_{w} \le 54413 \sqrt{M \cdot B} - 0.486 K_{h} \tag{19}$$

 Figs. 2 ~ 5에서 제시된, 루드-후르비쯔 (Routh-Hurwitz) 안정성 판별법에 의해 계산된 K_w의 최대값

 200개와 식 (19)를 이용하여 계산 값들 사이의 상대오차

를 계산하면, 최대 상대 오차는 약 2.5% 이며, 절대값의 평균 상대 오차는 0.5%이다. 따라서 (19)가 인간의 임피 던스 모델, *M_h*, *B_h*, *K_h*와 가상 스프링 상수 *K_w*의 관계 를 비교적 잘 표현하고 있음을 알 수 있다.

5. 결론

선형 2차 시스템으로 모델화된 인간의 임피던스를 포 함하는 햅틱 시스템에서 일차홀드 방식으로 반력을 구현 할 때 가상 스프링 상수 (K_w)의 안정성 영역을 루드-후 르비쯔 (Routh-Hurwitz) 안정성 판별법을 이용하여 분 석했다.

분석결과, 시스템의 안정성이 보장되는 가상 스프링 상수 (K_w) 의 최대값은 인간의 임피던스 질량과 햅틱 장 치 질량의 합인 질량 $M(=M_h+M_d)$ 의 제곱근에 비례 하고 인간의 임피던스 댐핑과 햅틱 장치의 댐핑의 합인 댐핑 $B = (B_h + B_d)$ 의 제곱근에 비례한다. 그리고 인 간 임피던스의 스프링 상수 (K_h) 의 0.486배만큼 일정하 게 감소하게 되는데, 그 영향은 질량 M과 댐핑 B에 비해 서는 작다. 분석 결과를 토대로 $K_w \leq 54413 \sqrt{M \cdot B}$ $-0.486 K_h$ 의 관계 모델을 제안했다. 이 때 샘플링 주기 는 0.001초이다. 이론 값들과 비교한 결과, 평균 상대오차 가 0.5%로 작게 나타났다. 따라서 제시된 모델이 가상 스 프링 상수 (K_w) 와 인간의 임피던스 (M_h, B_h, K_h) 의 관 계를 비교적 잘 나타내고 있다.

References

- H-S. Kim, S-J. Lee, and B-W. Kim, "A study on the multi-sensory usability evaluation of haptic device in vehicle," Journal of the Korea Academic-Industrial Cooperation Society, vol. 13, no. 11, pp. 4968-4974, 2012. DOI: http://dx.doi.org/10.5762/KAIS.2012.13.11.4968
- [2] N. Diolaiti, G. Niemeyer, F. Barbagli, and J. K. Salisbury, "Stability of haptic rendering: discretization, quantization, time delay, and coulomb effects," IEEE Trans. on Robotics, vol. 22, no. 2, pp. 256 268, Apr. 2006. DOI: <u>http://dx.doi.org/10.1109/TRO.2005.862487</u>
- [3] J. E. Colgate and G. Schenkel, "Passivity of a class of sampled-data systems: Application to Haptic Interfaces," Journal of Robotic Systems, vol.14, no. 1, pp.37 - 47,

1997.

DOI: <u>http://dx.doi.org/10.1002/(SICI)1097-4563</u> (199701) 14:1<37::AID-ROB4>3.0.CO;2-V

- [4] M. H. Lee and D. Y. Lee, "Stability of haptic interface using nonlinear virtual coupling," Proc. of the 2003 IEEE Int. Conf. on Systems, Man and Cybernetics, vol. 4, Washington, D.C., Oct. 5-8, pp. 3420 - 3424, 2003. DOI: <u>http://dx.doi.org/10.1109/ICSMC.2003.1244418</u>
- [5] J. J. Gil, A. Avello, A. Rubio, and J. Florez, "Stability analysis of a 1 DOF haptic interface using the Routh-Hurwitz criterion," IEEE Trans. on control systems technology, vol. 12, no. 4, pp. 583 - 588, July 2004.
- [6] K. Lee, "Stability of Haptic System with consideration for Sample-and-Hold Methods and Properties of Haptic Device," Journal of the Korea Academic-Industrial Cooperation Society, vol.14, no. 11, pp. 5338 - 5343, 2013.

DOI: http://dx.doi.org/10.5762/KAIS.2013.14.11.5338

- [7] K. Lee, "Effects of a human impedance and a first-order-hold method on stability of a haptic system with a virtual spring model," Journal of Institute of Convergence Technology, vol.3, no. 2, pp. 23-29, 2013.
- [8] K. J. Kuchenbecker, J. G. Park, and G. Niemeyer, "Characterizing the human wrist for improved haptic interaction," Int. Mechanical Engineering Congress and Exposition, pp. 1-7, Washington D.C, USA, Nov. 16-21 2003.
- [9] T. Tsuji, K, K. Goto, M. Moritani, M. Kaneko, and P. Morasso, "Spatial characteristics of human hand impedance in multi-joint arm movement," IEEE Int. Conf. on Intelligent Robots and Systems, pp. 423-430, Munich, Germany, 12-16 Sept. 1994. DOI: http://dx.doi.org/10.1109/IROS.1994.407441

이 경 노(Kyungno Lee)

[정회원]

- 1996년 2월 : 연세대학교 기계공 학과 졸업 (학사)
- 1998년 2월 : KAIST 기계공학과 졸업 (석사)
- 2007년 2월 : KAIST 기계공학과 졸업 (박사)
- 2012년 9월 ~ 현재 : 한국교통대 학교 조교수

<관심분야> 가상현실, 햅틱 인터페이스, 원격제어