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Abstract  We present a quantitative analysis of a dipole antenna and its characteristics from the viewpoint of quantum
mechanics. The method makes use of a Maxwell equation used in an existing antenna propagation formula. This 
includes radiation resistance, input reactance, and antenna efficiency as functions of frequency and antenna length.
Particular attention is paid to the Schröodinger equation. We accomplish E-field and H-field analyses of a dipole 
antenna by combining the Maxwell and Schröodinger wave equations. When comparing the existing Maxwell wave
equation with the Schröodinger wave equation, quantum-electric movement is more accurate than using the Maxwell
wave equation alone. 

요  약  본 논문은 양자역학 관점으로 본 다이폴 안테나의 정량적 분석과 그것의 특성에 관한 논문이다. 분석 방법으로 현존

하는 안테나 전파 방정식에 이용되는 맥스웰 방정식을 사용한다. 이는 안테나의 길이와 주파수에 관한 함수로, 방사저항, 

입력 리액턴스, 안테나 효율을 포함한다. 본 논문의 주요 관심사는 슈뢰딩거 방정식이다. 또한 본 논문은 맥스웰과 슈뢰딩거 

방정식을 결합하여 다이폴 안테나의 전계와 자계를 해석한다. 현존하는 맥스웰 방정식과 슈뢰딩거 방정식을 비교함으로써, 

단일 맥스웰 방정식을 썼을 때 보다 양자-전기 이동의 정확성이 향상됨을 보인다.
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1. Introduction

Recently, various studies have conducted  numerical 

analysis and experiments for a more accurate analysis 

of communication devices at microwave (gigahertz) 

frequencies. There has been a renewed interest in 

analyzing antenna propagation characteristics using 

quantum mechanics in order to take complex antenna 

environments into account. For instance, 

unconventional materials with non-linear or 

homogeneous conductivity and permittivity properties 

are often combined with novel antennas [1-3]. Also, for 

an antenna placed in a complex electromagnetic 

environment, its radiation performance is significantly 

affected by the surrounding materials or an undesirable 

radiation source [4,5]. The classical wave equations 

(e.g., Maxwell equation, acoustic equation) are not 

sufficient to accurately analyze antenna fields in the 
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aforementioned environments. In order to overcome 

this limitation, numerical tools based on the method of 

moment (MoM), finite difference time domain (FDTD), 

and finite element method (FEM) are frequently 

used[6-9]. However, there is still demand for 

closed-form expressions for quick and physically 

intuitive analysis. For this reason, quantum mechanics 

has been attempted for antenna analysis [10]. The 

Schrödinger equation is the key equation in quantum 

mechanics. It can be effectively relevant to construct a 

wave function that can satisfactorily describe the 

probability of finding a freely traveling particle within 

a given space at a given time. We were introduced by 

Schrödinger equation for wave equation, unlikely the 

existing analysis methods. 

2. Dipole antenna analysis by maxwell 

equation 

2.1 Electric Field and Magnetic Field 

Intensity of Dipole Antenna

Based on the known current distribution, it is 

straightforward to calculate the radiated electric and 

magnetic fields. We follow Balanis [11]. For the current 

distribution of the along the z-axis, the electric field in 

the far field region must be in the   direction, and is 

given by
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Here,   is the characteristic impedance of free 

space. For a traditional wire antenna, the current 

distribution is periodic with a wave vector. Therefore, 

the distribution of the total field is a product of element 

factor and space factor.  We can express the electric 

field as
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After evaluating Equation (2), the result is
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The magnetic field component has been obtained in 

a similar way, as follows.
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2.2 Vector Potential Energy of Dipole Antenna

To find the fields radiated by the current element, it 

is important to extract vector potential energy [11]. The 

vector potential ( ) is useful in solving for the EM 

field generated by given harmonic electric current (). 

By Maxwell’s law, the magnetic flux ( ) doesn’t 

always radiate. Therefore, it can be represented as the 

curl of another vector. (i.e. vector potential ( )) 

0A∇⋅∇× = (5)

Where,   is arbitrary vector form. Thus, 

a aB H Aμ= = ∇× (6)

Therefore,   can be represented.

1
aH A

μ
= ∇×

(7)

Here, subscript a indicates the field due to the 

A  potential. Substituting (7) into Maxwell’s curl 

equation

a aE j H j Aωμ ω∇× = − = − ∇× (8)

which can be written as 

[ ] 0aE j Aω∇× + = (9)

It can be represented that 

a eE j Aω φ+ = −∇ (10)

The scalar function  represents an arbitrary 

electric scalar potential which is a function of position.

( ) ( ) 2
aH A Aμ∇× = ∇ ∇⋅ −∇ (11)

Equating Maxwell’s equation leads to 
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( ) 2
aJ j E A Aμ ωμε+ = ∇ ∇⋅ −∇ (12)

Eventually, we obtain wave equation. 

( ) ( )2 2
eA k A J A jμ ωμεφ∇ + = − +∇ ∇⋅ +∇ (13)

Where,     .

Following Lorentz equation, we represent magnitude 

of potential energy.
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Therefore, we obtain potential energy of linear dipole 

antenna.
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[Fig. 1] Proposed conventional dipole antenna

[Table 1] Dimension of the proposed Dipole Antenna

Symbol Unit(mm)

L 70

D 3.6

h1 40.6

h2 180

h3 4

s1 0.5

s2 3

3. Introduction of The Schr　dinger 

Equation

3.1 The one dimensional time-dependent 

Schr　dinger equation

The Schrödinger equation is the main equation in 

the analysis using the quantum mechanical model. The 

one-dimensional Schrödinger equation is used when 

the particle interest is confined to one spatial 

dimension. The particles traveling along the x-axis are 

assumed. To derive the one-dimensional Schrödinger 

equation, we start with the total energy equation (i.e., 

the sum of kinetic and potential energy [12-14].

2

( )
2 total
p U x E
m
+ =

(16)

Here,   is the momentum of the particle,  is the 

mass of the particle,   is the potential energy in 

the combined particle, and    is the total energy 

of the system achieved by combining particles.

The substitution of the dynamical variables with 

their quantum mechanical operator, which acts on the 

wave function , yields the one-dimensional 

time-dependent Schrödinger equation:
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The left side of this equation can be rewritten using 

the Hamiltonian operator (or total energy operator).
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Using the Hamiltonian operator ( H ), formula 

(15) can be expressed as follows. 

( , ) ( , )H x t x t
i t
∂

Ψ = − Ψ
∂

h
(19)

Since the Schrödinger equation is a partial 

differential equation, the product method can be used to 

separate the equation into spatial and temporal parts.

The wave function ( , )x tΨ that describes the 

quantum state in time for the wave equation for the 

change is to make the particles are described as 

follows.

2
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3.2 SchrŐdinger equation in the 
    spherical coordinate system

If the potential of the physical system to be 

examined is spherically symmetric, then the 

Schrődinger equation in spherical polar coordinates can 

be used to advantage. For a three dimensional problem, 

Laplacian in spherical polar coordinates is used to 

express the Schrődinger equation in the condensed 

form 

( )
2

2
2 2 2 2 2 2

1 1 1 2sin ( ) 0
sin sin

mr V r E
r r r r r

θ
θ θ θ θ ϕ

∂ ∂ ∂ ∂ ∂ Ψ⎛ ⎞ ⎛ ⎞Ψ + Ψ + − − Ψ =⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ h  
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4. Hamiltonian based in The 

Classical Electromagnetic Wave

In this section, we accomplish to substitute the 

quantum mechanical momentum for the classical. Here, 

we can think Lorentz gauge and Coulomb gauge about 

the electromagnetic wave. 

In classical physics, gauge transformation is the in 

variance of the fields[15-16]. When the charged particle 

(electron ; e) moves in an electric field, the particle is 

taken to the Lorentz force. 

vF e E B
c

⎛ ⎞
= + ×⎜ ⎟

⎝ ⎠

r
ur ur ur

(22)  

In case of the absence of electromagnetic fields, the 

Hamiltonian that describes the movement of the 

charged particles of mass m is

(23) 

The   and   are expressed within electromagnetic 

field,

(24)

Therefore, Hamiltonian is

(25)

From the Hamiltonian, Schrödinger Equation is
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If the Schrődinger equation were invariant by gauge 

transformation, wave equation   is phase 

transformation. Therefore, we were supposed to be able 

to phase transformation.
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r
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If charged particles were moved in the 

electromagnetic field, we have to accomplish gauge 

transformation in order to have the same physical 

meaning Schrődinger equation. Therefore, Schrődinger 

equation is

2
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5. Hamiltonian based on The 

Poynting Vector and Analysis of 

Dipole Antenna by The 

Maxwell-Schr　dinger Equation

Antenna radiation characteristics are converted into 

spherical coordinates. So, it is important that antenna 

propagation analysis represents using the spherical 

system of the Schrödinger equation [11-14]. Quantized 

Hamiltonian of electromagnetic waves is 

electromagnetic waves with an average pointing vector 

[12-14]. 

( )2 2
0 0

1
2 V

H E H dVε μ= +∫
(29)

Therefore, when the propagation produces total 

system energy, the dipole antenna with radiation can be 

expressed as follows. 
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Finally the dipole antenna using the Schrödinger 

equation can be expressed as follows.
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Where,   is need to revise ,  to accomplish 

E-filed and H-field.
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and   is mass of electron. 

[Fig. 2] Fabricated Conventional Dipole Antenna
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0
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[Fig. 3] Measured and Simulated S-parameter of the 
Dipole Antenna.

(a)

(b)

(a) E-Field Pattern (@1.85GHz_Horizenal) 

(b) H-Field Pattern (@1.85GHz_Vertical)

[Fig. 4] E-H field pattern pattern of the Dipole Antenna 
(@1.85GHz) parameter of the Dipole Antenna.

6. Demonstration of Maxwell-Schr

dinger Equation

The equation (32) is existing and other expression 

on the propagation of the dipole antenna. This is 

combination type of Maxwell’s equation and 

Schrödinger equation. So as to prove equation (32), we 

proposed dipole antenna, as shown in Fig.1 and each of 

the length information is summarized in table.1.  Also, 
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Fig. 2 is fabricated conventional dipole antenna. The 

simulated and measured return losses (S11) of 

conventional dipole antenna are shown in Fig.3.  In 

order to derive equation (32), we accomplish E-plane 

and H-plane plot in the center frequency (@ 1.85). If 

you plot the equation (32) at the resonance frequency 

(@1.85GHz), you will be expressed as Fig.4. As shown, 

the E-plane and H-plane patterns which are very 

similar to simulation, measurement, and induced 

combining the Maxwell equation and the Schrödinger 

equation that is Maxwell-Schrödinger equation.

7. Conclusion

The Maxwell equation is fundamental in interpreting 

the movement of electromagnetic waves. The 

Schrödinger equation is based on treating wave 

movements that generate particles during exercise. In 

this paper, to analyze the dipole antenna, its 

propagation is derived using a formula that combines 

the Maxwell and Schrödinger equations. To verify the 

equation, the E/H-fields were plotted in the far field. 

As a result, the derived E/H-field patterns of the 

Maxwell-Schrödinger equation formula and the 

E/H-field patterns of measurement are similar. In the 

future, it will be possible to fabricate antennas using 

non-linear material.
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