강접골조 기둥의 부재력 산정을 위한 근사해석법

김영찬, 윤태호^{2*} ¹부경대학교 건축공학과, ²창원대학교 건축공학과

Approximate Method to Estimate Member Forces in the Column of a Rigid Frame

Young-Chan Kim¹, Tae-Ho Yoon^{2*}

¹Department of Architectural Engineering, Pukyong National University ²Department of Architectural Engineering, Changwon National University

요 약 본 논문은 강접골조의 예비구조설계에서 부재력을 근사적으로 예측하기 위한 연구이다. 기둥간의 축력 분포를 선형 으로 가정하는 캔틸레버법에서 기둥의 변곡점 위치를 부재의 중간으로 가정하는데 이것은 몇 개의 사례를 통해 행렬해석법 과 비교한 바 오차가 매우 심하다는 것을 알 수 있다. 다양한 골조를 해석한 결과를 분석해보면, 부재력은 기둥과 보의 경간 비, 단면2차모멘트비에 따라 달라짐을 알 수 있다. 본 연구에서는 기존의 방법과는 다른 방법으로 기둥의 부재력을 예측하는 방법을 제시하였다. 예제를 통하여 기존의 방법보다 향상된 해를 얻을 수 있었다.

Abstract This paper proposes an approximate method to estimate member forces of columns in a rigid frame. One of the conventional methods, Cantilever Method assumes the midpoint of a column as a hinge and linear distribution of axial stresses regarding the centroid of the column areas. As a result, it shows erroneous results compared to those of matrix analysis of two frames. In this study, a new method is proposed to estimate the member forces in columns and location of hinges in columns, which can be adopted easily by a practicing engineer, and numerical examples showed improved results compared to conventional methods.

Key Words : Approximate method, cantilever method, axial force, column, rigid frame

1. 서론

컴퓨터를 이용한 구조해석과 설계가 보편화되었고 편 리성 또한 많이 증가하였다. 그러나, 구조해석소프트웨어 를 이용하여 주어진 문제를 정확하고 효율적으로 운용하 기 위해서는 전문적인 지식을 필요로 한다. 구조물의 모 델링을 비롯하여 해석결과의 이해가 정확하지 못하면 잘 못된 결과를 가지고 구조체를 설계하는 일이 생길 수도 있다.

구조설계는 부재단면을 가정하여 시작하기에 적절한 단면을 선정하는 것이 중요하다고 할 수 있다[1]. 골조의 부재력을 구하는 근사적 방법은 부재력의 분포를 가정하 여 골조를 정정의 구조로 만들어 간단하게 부재력을 구 하는 것인데, 골조를 캔틸레버 보의 거동과 유사하다고 가정하고 해석과정을 단순화 시킨 캔틸레버법[2-4]은 간 단하지만 실제 부재력과는 차이가 많이 있다[4]. Selvam 과 Bindu[5]는 층에 작용하는 횡력을 보의 경간에 등분포 (저층 골조) 또는 포물선분포(고층골조)의 축력으로 가 정하고, 적분과정을 거쳐 분배된 축력을 보에 연결된 기 등의 전단력으로 가정하였으나 기둥의 변곡점은 기둥의 중간으로 가정하였다. 본 연구에서는 캔틸레버법의 문제 점을 지적하고 이를 개선하여 정확성을 향상시키는 방안

```
이 논문은 부경대학교 자율창의학술연구비(2013년)에 의하여 연구되었음
*Corresponding Author : Tae-Ho Yoon(Changwon National Univ.)
Tel: +82-55-213-3802 e-mail: thyoon@changwon.ac.kr
Received March 24, 2014 Revised June 9, 2014 Accepted
```

Accepted July 10, 2014

을 제시하고자 한다.

2. 캔틸레버법

골조의 근사해법의 일종인 캔틸레버법은 골조에 횡력 이 작용하면 골조가 캔틸레버보와 같은 구조적 거동을 한다는 가정으로 해석법이 제안되었다. 여러개의 기둥이 보의 경간에 따라 배치된 골조에서 기둥단면적에 대한 중심위치(보의 중립축에 해당)를 구하여 비례적으로 각 기둥의 응력의 크기를 구할 수 있고, 이 응력에 기둥의 단면적을 곱하여 축력을 구하는 것이 캔틸레버법의 기본 원리이다. 또한, 기둥 및 보의 변곡점은 부재의 중간에 있 다고 가정한다. 캔틸레버법에서는 다음과 같은 과정으로 부재력을 구하게 된다.

- 임의의 층에서 기둥의 단면적분포에 따라 도심을 구하고, 기둥에 작용하는 수직응력의 분포가 횡력 과 평형을 이루도록해서 기둥의 축력을 구한다.
- 기둥의 축력을 이용해서 기둥과 접합된 보의 전단 력을 구한다.
- 3. 보의 전단을 이용해서 보 모멘트를 구한다.
- 4. 보의 모멘트를 이용해서 기둥 모멘트를 구한다.
- 5. 기둥 모멘트를 이용해서 기둥 전단력을 구한다.
- 6. 기둥 전단력을 이용하여 보 축력을 구한다.

캔틸레버법을 이용한 해의 정확도를 알아보기 위해 참고문헌 2에서 해석한 3층골조(Fig. 1)를 해석하여 부재 력을 비교하였다. 캔틸레버법에서는 부재의 단면적에 대 한 정보만으로 부재력을 산정한다. 내부기둥의 단면적이 외부기둥의 2배라는 주어진 조건에 따라 Table 1 과 같 이 부재단면을 적용하여 해석하였다. Table 2에 의하면 내부기둥열에서 오차가 큰데, 이는 횡력에 대한 저항은 외부기둥에서 많은 부분을 담당하기 때문이며, 이와는 반대로 전단력은 외부기둥열에서 오차가 크게 나왔다 [Table 3].

캔틸레법에서 가장 먼저 구하는 축력에 의한 기둥의 수직응력은 도심에 따라 선형적으로 분포하나, 행렬해석 에 의한 값은 선형적으로 분포하지 않는 것을 알 수 있다 [Fig. 2]. 보의 양단모멘트로 산정한 보의변곡점은 0.48~ 0.5L(L: 보의 스펜)으로 보의 중간(0.5L)으로 가정해도 무리가 없다고 판단되나, 기둥의 변곡점 위치는 Table 4 에서도 알 수 있듯이 1층의 경우 0.78H(1열), 0.915H(2 열)(H: 기둥의 높이)로 기둥의 중간(0.5H)에 변곡점이 있 다고 가정하는 것은 심한 오차를 유발한다는 것을 알 수 있다[Table 4].

[Fig. 1] Illustrative frame for comparison

[Table 1] Dimension of beam and $column(\times 10^4)$

	Area(mm ²⁾	Moment of inertia(mm ⁴)
Column-①,④	6	45,000
Column-2,3	1,2	360,000
Beam	6	45,000

[Table 2] Comparison of Axial Force(Unit: kN)

Column-①				Column-2			
	C ¹⁾	M ¹⁾	Error(%)	С	М	Error(%)	
1F	17.8	13.0	27	11.9	1.6	663	
2F	6.1	7.7	-21	4.1	1.0	310	
3F	1.2	2.9	-59	0.8	0.6	33	

1) C: Cantilever Method, M: Matrix Method

[Table 3] Comparison of Shear Force(Unit: kN)

Column-①				Column-2			
	С	М	Error(%)	С	M	Error(%)	
1F	12.1	7.4	63	32.2	37.8	-15	
2F	7.3	6.3	17	19.4	20.2	-4	
3F	2.4	4.1	-41	6.5	4.6	40	

[Fig. 2] Normal stress in columns

[Fig. 2] Normal stress in columns

	Colu	umn-(1)	Column-2			
	С	М	Error(%)	С	М	Error(%)
$1 F \ B^*$	29.1	19.1	52	77.6	124.6	-38
$1F T^*$	29.1	7.7	280	77.6	11.6	572
2F B	13.1	10.8	21	34.9	29.4	19
2F T	13.1	11.7	12	34.9	43.4	-20
3F B	13.1	5.0	163	11.7	7.3	60
3F T	13.1	9.9	33	11.7	24.0	-49

[Table 4] Comparison of Moment(Unit: kN·m)

*B-bottom, T-top

예시로 해석한 골조에서 알 수 있듯이 캔틸레버법은 부재의 단면에 대한 가정을 하지 않고 변곡점을 부재의 중간에 있다고 단순화시키기 때문에 오차가 크다고 할 수 있다. 부재력의 분포는 접합되는 부재의 길이, 단면2 차모멘트에 영향을 받기 때문에 근사적인 해의 정확도를 높이기 위해서는 부재의 상대적 강성을 고려해야 한다.

3. 부재의 상대적 강성과 부재력분포

골조에서 부재력의 분포는 보와 기둥의 단면2차모멘 트, 부재길이의 비로 결정되는 상대적 강성에 따라 다르 므로 이에 대한 영향이 부재력 분포에 미치는 영향을 검 토하였다. Fig. 3의 단층단일bay 골조에 대하여 처짐각법 을 이용하여 변곡점의 위치는

x_{-}	3S+K
L_c	6S+K

로 나타낼 수 있고, 기둥의 축력은

$$\frac{R}{P} = \frac{3S}{K(6S+K)}$$

로 표시 할수 있다. 여기서, x, L, P, R은 Fig. 3에 나타낸 바와 같고, $S = I_B/I_C$ 로 보와 기둥의 단면2차 모멘트 비이고, $K = L_B/L_C$ 로 보와 기둥의 길이비이다. 변곡 점의 위치를 나타낸 Fig. 4에서 보듯이 변곡점의 상한은 1.0이고 하한은 0.5이다. K값이 커질수록 보가 상대적으 로 약해지므로 변곡점은 위로 올라가는 것을 알 수 있다. 축력비(R/P)를 나타낸 Fig. 5에 의하면 S가 1.5이상이면 변화가 작은 것을 알 수 있다.

(a) Single Bay Frame (b) Inflection Point(x) & Reaction(R)

[Fig. 3] Single Bay Portal Frame

[Fig. 4] Normalized Inflection Point in Column

골조에서 부재력의 분포를 알아보기 위해 Table 5와 같은 변수의 조합으로 총 48개의 골조를 해석하여 결과 를 비교하였다. Fig. 6에는 3-bay골조의 1층에서 기둥의 변곡점위치(기둥하부 기준)를 표시하였는데, s는 보와 기 둥의 단면2차모멘트 비이고, Ext와 Int는 각각 외부기둥 과 내부기둥을 의미한다. 어느 경우이든 0.5보다 크며, 스 팬비가 클수록 변곡점이 상부로 이동하는 것을 알 수있 다. 이와 같은 현상은 4-bay에서도 유사하였다. 내부기둥 과 외부기둥의 변곡점위치가 다른 것도 기존의 방법에서 적용하는 가정과는 다른 현상이다.

[Fig. 5] Normalized Axial Force Ratio

parameter	value
$K(L_b/L_c)$	1.0, 1.5, 2.0
$S(I_b/I_c)$	0.25, 0.5, 0.75
Number of Bay	3, 4
Number of Floor	1, 2, 3, 5

[Fig. 6] Inflection point in 1st story column

2층 이상에서 변곡점은 0.4-0.5의 값을 보이고 있고 지 붕층에서는 지지하는 주변의 골조가 없는 영향으로 변곡 점이 0.01-0.4로 강성비와 스팬비에 대한 영향이 심하게 나타났다.

기둥의 축력분포를 알아보기 위해 기둥의 축응력비 (외부기둥값을 기준으로 함)를 구하여 나타낸 Fig. 7에서 보면 캔틸레버법에서 가정하는 직선분포가 아닌 것을 알 수 있다.

[Fig. 7] Stress ratio in 1st story column

[Table 5] Parameters for analyzed frames

4. 해석예

상기의 해석의 결과를 분석하여 근사적으로 골조의 부재력을 구하기 위해 다음과 같이 적용하였다.

- 기둥의 변곡점은 외곽부 기둥과 내부기둥을 다르게 적용하였다. 각 층별 변곡점은 저층부, 중간층부, 지 붕층, 3단계로 나누어 적용하였다.
 - 1층의 변곡점: 0.6(외곽), 0.65(내부), 중간층: 0.5(외 곽), 0.45(내부), 지붕층: 0.3(외곽), 0.1(내부)
- 기둥의 응력분포는 기둥 단면적의 중심을 이용하지 않고, 외곽부 기둥의 일정 비율을 내부기둥의 응력 으로 정하였다.

축응력비율: 0.01(1층), 0.1(중간층), 0.01(지붕층)

제안한 방법의 정확성을 검증하기 위하여 앞에서 해 석하였던 골조(Fig. 1)와 30층골조(Fig. 8[4])를 해석하여 기존의 방법과 비교하였다. Selvam의 방법[5]을 이용하 여 Fig. 1의 골조를 해석하는 경우, 층의 횡력이 보의 경 간에 등분포의 축력으로 작용하는 것으로 가정하여 기둥 의 전단력을 구하였다.

Table 6에 축력이 비교되어 있는데 오차는 행렬해석 법을 기준으로 3개층의 값을 평균하여 나타낸 것이다. 본 연구의 결과가 기존 방법에 비해 향상되었고 부재력이 적은 3층의 column-②에서 오차가 큰 것을 알 수 있다. Table 9의 모멘트를 보면 오차가 다른 부재력에 비해 큰 데, 이는 기존의 방법에서 기둥의 변곡점 위치를 부재 중 간으로 가정하기 때문이다.

[Table 6] Comparison of Axial Force(Unit: kN)

Column-①				Column-2				
floor	$M^{*)}$	C*)	S*)	T *)	М	С	S	Т
1F**	13.0	17.8	19.3	16.7	1.6	11.9	0	1.7
2F	7.7	6.1	7.4	7.2	1.0	4.1	0	1.5
3F	2.9	1.2	1.5	2.5	0.6	0.8	0	0.05
error	-	38.8	33.5	16.8	-	329	100	47.0

*) M: Matrix Method, C: Cantilever Method, S: Selvam's Study, T: This study

**) 1F: 1st Floor

[Table 7] Comparison of Shear Force(Unit: kN)

Column-①				Column-2				
floor	М	С	S	Т	М	С	S	Т
1F	7.4	12.1	14.8	14.5	37.8	32.2	29.6	30
2F	6.3	7.3	8.9	7.4	20.2	19.4	17.8	19.2
3F	4.1	2.4	3.0	3.5	4.6	6.5	5.9	5.4
error	-	40.3	56.0	42.7	-	20.0	20.6	14.2

[Table 8]	Comparison	of Mo	oment()	Unit:	kN·m))
-----------	------------	-------	---------	-------	-------	---

Column-①				Column-2				
floor	Μ	С	S	Т	М	С	S	Т
$1F B^*$	19.1	29.1	26.7	31.2	124.6	77.6	53.4	70.0
$1FT^*$	7.7	29.1	26.7	20.8	11.6	77.6	53.4	20.8
2F B	10.8	13.1	16.0	13.4	29.4	34.9	32.0	31.1
2F T	11.7	13.1	16.0	13.4	43.4	34.9	32.0	38.1
3F B	5.0	13.1	5.3	3.8	7.3	11.7	10.7	1.9
3FT	9.9	13.1	5.3	8.8	24.0	11.7	10.7	17.5
error		93.0	70.7	51.3	-	126.1	92.4	64.7

*B-bottom, T-top

30층의 골조[4]를 해석하여 해당층의 아래에 위치한 기둥의 축력(Table 10), 전단력(Table 11), 상부모멘트 (Table 12)를 비교하였다. 캔틸레버법은 고층골조에 적 합한 방법으로 오차가 저층골조(Fig. 1, Table 6, 7, 8)에 비해 적은 것을 알 수 있다. Table 10에 의하면 축력이 내측 기둥에서 최대 오차를 보이고 있는데, 축력이 큰 저 층부보다는 축력이 작은 고층부에서 오차가 큰 것을 알 수 있다.

[Fig. 8] Configuration of 30-Story Building

floor	Load(P,kN)	Column-①	Column-2	Beam
2-6	35.58			
7-11	44.48	$4 = 3.716 \times 10^5 mm^2$	$A = 5.574 \times 10^5 \text{mm}^2$	I=4.315×10 ⁹
12-22	53.38	I=2.848×10 ⁹	I=4.315×10 ⁹	mm ⁴
23-25	62.27	mm^4	mm^4	
26-29	71.17			
30	88.96			

[Table 9] Load and member properties

[Table 10] Comparison of Axial Force(Un	t: kN)
---	--------

Column-①				Column-2				
floor	$M^{*)}$	C*)	S*)	T*)	Μ	С	S	Т
2F	2528	2821	2919	3110	2446	1382	984	1401
15F	886	937	970	1017	676	459	327	458
29F	26.7	18.5	19.1	20.6	15.8	9	6.5	9.3
30F	10.1	4.8	5.0	8.3	10.9	2.4	1.7	3.8
error	-	25.1	26.0	19.5	-	49.2	63.7	45.4

*)M: Matrix Method, C: Cantilever Method, S: Selvam's Study, T: This study

[Table 11] Comparison of Shear Force(Unit: kN)

Column-①					Column-2			
floor	М	С	S	Т	Μ	С	S	Т
2F	283	261	270	254	491	513	504	520
15F	153	166	172	177	340	327	322	317
29F	30.2	27	28	27	50	53.1	52.2	53
30F	21.8	15	15.5	18.3	22.6	29.5	29.0	26.2
error	-	14.5	13.3	13.3	-	11.2	10.2	8.8

[Table 12] Comparison of Moment(Unit: kN·m)

Column-①					Column-2				
floor	М	С	S	Т	Μ	С	S	Т	
2F	628	795	809	609	1204	1299	1513	1092	
15F	315	329	336	346	688	641	627	679	
29F	74	53	54	52	119	83	102	114	
30F	59	30	30	50	61	30	57	82	
error	-	27.1	27.9	14.3	-	23.9	13.8	12.1	

5. 결론

근사적 해법은 변곡점이나 부재력의 분포를 가정하여 부정정의 골조를 정정골조로 변환하여 간단하게 부재력 을 구하는 방법인데, 골조의 기하학적 자료만으로는 해 석결과의 오차가 커서 신뢰하기 어렵다. 본 연구는 방법 의 단순함을 최대한 유지하면서 해의 정확성을 향상시키 기 위해 다양한 조건의 골조를 해석하고 결과를 분석하 여 기존의 방법과 다른 접근법을 이용하여 근사적 해법 을 제시하였다. 해석에는 다음과 같은 기준을 적용하였 다.

- 기둥의 변곡점은 외곽부 기둥과 내부기둥을 다르게 적용하였다. 각 층별 변곡점은 저층부, 중간층부, 지 봉층, 3단계로 나누어 적용하였다.
 1층의 변곡점: 0.6(외곽), 0.65(내부), 중간층: 0.5(외 곽), 0.45(내부), 지봉층: 0.3(외곽), 0.1(내부)
- 기둥의 응력분포는 기둥 단면적의 중심을 이용하지 않고, 외곽부 기둥의 일정 비율을 내부기둥의 응력 으로 정하였다.

축응력비율: 0.01(1층), 0.1(중간층), 0.01(지붕층)

본 연구에서 제안한 방안을 적용하여 해석한 결과, 정 확도가 기존의 방법에 비해 향상되었지만, 해석방법의 단순도를 유지하다 보니 크게 향상 되지는 못했다. 특히, 부재력이 작아 부재의 거동이 일반 층과 많이 다른 지붕 층에서의 부재력 예측은 정확성이 떨어진다. 기존의 방 법들의 결과를 통해 알 수 있듯이 부재간의 상대적 강성 이 반영되지 않고는 근사해의 정확도는 크게 향상 될 수 없다. 본 연구에서 도출한 골조의 거동에 대한 이해는 기 존의 해법의 문제점을 인식하고, 보다 정확한 근사해법 을 연구하는데 도움이 되는 자료로 이용될 수 있다고 본다.

References

- S. Badie, P. Silva, "Optimum Beam-To-Column Stiffness Ratio for Portal Frames", STRUCTURE Magazine, pp.17–19, March, 2008.
- [2] K. M. Leet, C. M. Uang, A. M. Gilbert Fundamentals of Structural Analysis, 4th Edition, McGraw Hill, 2011.
- [3] N. F. Fares, Practical Approximate Analysis of Beams and Frames, ASCE, 2012.

DOI: <u>http://dx.doi.org/10.1061/9780784412220</u>

- [4] B. S. Taranath, Steel, Concrete, & Composite Design of Tall Buildings, 2nd Edition, McGraw Hill, 1998.
- [5] V. K. Selvam, K. R. Bindhu, "A Novel General Approximate Method for Lateral Load Analysis of Multistorey Building Frames", International Journal of Earth Sciences and Engineering, Vol.40, No.1, pp.104–111, February 2011.

김 영 찬(Young-Chan Kim) [정회원]

- •1983년 2월 : 서울대학교 건축학과 (공학사)
- •1985년 2월 : 서울대학교 대학원 건축학과 (공학석사)
- •1995년 5월 : West Virginia University 토목공학과 (공학박사)
- •1998년 3월 ~ 현재 : 부경대학교 건축공학과 교수

<관심분야> 합성구조, 철골구조

윤 태 호(Tae-Ho Yoon)

[정회원]

- •1991년 2월 : 서울대학교 대학원 건축학과 (공학석사)
- •1996년 2월 : 서울대학교 대학원 건축학과 (공학박사)
- •1996년 5월 ~ 1998년 2월 : 삼성 물산건설부문 기술연구소
- •1998년 3월 ~ 현재 : 창원대학교 건축공학과 교수

<관심분야> 내진설계, 철근콘크리트구조