H₂S 제거를 위한 Zeolite와 DETOX의 흡착 특성 비교 연구

박대석', 임지영', 조영근', 송승준', 김진한^{2*} ¹인천대학교 건설환경공학과, ²인천대학교 도시환경공학부

A Study on the comparison on Adsorption characteristics of Zeolite and DETOX for the removal of H₂S

Dae-Seok Park¹, Ji-Young Lim¹, Young-Gun Cho¹, Seung-Jun Song¹, Jin-Han Kim^{2*} ¹Dept. of Civil & Environmental Engineering, Incheon National University ²School of Urban and Environmental Engineering, Incheon National University

요 약 본 연구는 흡착제 Zeolite 3A와 DETOX에 대하여 H₂S의 유입농도와 흡착온도를 공정변수로 하여 포화시간, 흡착량, 흡착속도 등의 H₂S 흡착 제거특성을 평가하기 위하여 수행되었다. H₂S의 유입질량유속이 증가함에 따라 Zeolite 3A의 흡착 용량은 증가되었으나 포화시간은 감소되었다. 한편 DETOX의 흡착용량과 포화시간은 H&S의 유입질량유속의 증가에 따라 감소되었다. 흡착온도가 상승함에 따라 Zeolite 3A의 흡착용량과 포화시간은 감소한 반면에, DETOX에 대한 이들 값은 증가 하였다. DETOX의 H₂S흡착용량은 Zeolite 3A의 2.5~16.4배 정도 높게 나타났다. 이는 흡착에서 활성화에너지장벽을 넘어설 충돌빈도는 흡착온도가 증가함에 따라 증가한 것에 기인한 것으로 해석된다. Zeolite 3A와 DETOX에 대하여 H₂S의 흡착속 도는 H-S의 유입질량유속과 흡착온도가 증가함에 따라 증가하였다. H-S의 흡착속도는 Zeolite 3A가 DETOX의 4배로 나타났 다. DETOX는 Zeolite 3A에 비하여 온도 308~318K에서 포화시간은 더욱 길어지고 흡착용량은 더욱 커진다. 바이오가스 중의 H-S제거에 있어서 DETOX는 Zeolite 3A에 비하여 유리한 것으로 나타났다.

Abstract This study examined the H₂S removal characteristics, such as breakthrough time, adsorption capacity, and adsorption rate of adsorbents between Zeolite 3A and DETOX in terms of the H₂S inflow concentration and adsorption temperature. The adsorption capacity of Zeolite 3A increased with increasing mass flow rate of hydrogen sulfide(H₂S) inflow, but the breakthrough time decreased. On the other hand, both the adsorption capacity and breakthrough time of DETOX decreased with increasing mass flow rate of H₂S inflow. The adsorption capacity and breakthrough time of Zeolite 3A decreased with increasing adsorption temperature but those of DETOX increased. The adsorption capacity of DETOX was higher than that of Zeolite 3A by a factor of 2.5 - 16.4 because the collision frequency that overcomes the activation energy barrier increased with increasing adsorption temperature. For Zeolite 3A and DETOX, the adsorption rate of H₂S increased with increasing mass flow rate of H₂S inflow and adsorption temperature. The adsorption rate of H₂S for Zeolite 3A was 4 times as much as that for DETOX. For the removal of H₂S in biogas, DETOX had an advantage over Zeolite 3A because DETOX had a much longer breakthrough time and greater adsorption capacity in the temperature range of 308~318K than Zeolite 3A.

Key Words : zeolite, DETOX, hydrogen sulfide, adsorption characteristics, adsorption kinetic

1. 서론

가축분뇨 등의 유기성 폐기물로 대표되는 바이오매스 자 원의 혐기소화 과정에서 발생하는 가스이다[1]. 바이오가 바이오가스는 음식물 쓰레기, 음폐수, 하수슬러지 및 스 중의 메탄은 대기 중으로 방출 시 온실효과를 나타내

이 논문은 2013년도 SL공사의 환경에너지대학원 인재양성 프로그램에서 지원받아 수행된 연구임.

*Corresponding Author : Jin-Han Kim(Incheon Univ.)

Tel: +82-32-835-8745 email: jinhan@incheon.ac.kr

Revised (1st March 26, 2014, 2nd April 4, 2014, 3rd April 8, 2014) Received March 11, 2014 Accepted July 10, 2014 는 대표적 가스인 반면, 포집하여 에너지자원으로 사용 할 경우 화석연료를 대체할 수 있는 재생에너지로써의 사용이 가능하며 온실가스 방출을 줄일 수 있다[2].

그러나 바이오가스의 효율적이고 경제적인 활용을 위 해서는 연료로 사용되는 주성분인 메탄 이외의 이산화탄 소, 수분, 먼지, 황 화합물, 암모니아, 할로겐화합물, 실록 세인 등의 불순물들은 전처리를 통해 반드시 제거해야 한다. 현재 이러한 불순물에 의한 장비의 손상이나 기능 고장으로 인해 유지보수에 어려움이 발생하게 되고, 발 전효율이 저하됨으로써, 경제적인 면에서 경쟁력을 잃게 되어 바이오가스 자원화 사업의 타당성이 문제가 되고 있는 상황이다[3].

바이오가스 중 황화수소(H₂S)는 강산으로 전환되어 기계장치에 치명적인 손상을 일으키며, 자원화 설비의 효율저하와 가동중지를 유발시키는 원인이 되고 있어 이 를 제거하는 공정이 필요하다. 바이오가스 중의 H₂S를 제거하는 방법으로는 건식탈황과 습식탈황으로 나눌 수 있다.

건식탈황은 흡착제의 흡착 특성을 이용하여 황성분을 제거하는 방식이다. 흡착법은 배수나 배액을 처리할 필 요가 없으며, 설치비가 저렴하고 유지관리가 쉬우며 악 취가스 제거에도 효과적이다. 그러나 흡착제의 주기적인 교체가 필수적이라는 단점이 있다. 습식탈황에는 수 세 정흡수법(water scrubbing)과 액상 철킬레이트 방식이 있다. 수 세정흡수법(Water scrubbing)방식은 바이오가 스를 세정하는 방법으로써 다량의 세정수가 발생한다. 액상 철킬레이트 방식은 철킬레이트 용액과 바이오가스 를 접촉시켜 고체황을 만들어 제거하는 방식으로, 용액 은 순환사용이 가능하며 일부 유실분 만큼만 새로 투입 하면 된다. 흡착법은 흡수법에 비하여 재료의 부식, 흡수 액 이송을 위한 동력비의 부담이 없어 상용화 공정에 많 이 적용되고 있다[4].

본 연구는 상용 흡착제를 이용하여 수행되었으며, 바 이오가스내 H₂S 흡착제거를 위한 흡착제 선정에 기초자 료를 제공하는데 목적이 있다. 이를 위하여 Zeolite 3A 및 DETOX의 흡착제를 이용한 소규모 연속식 흡착실험장 치를 구성하였고, H₂S 제거를 위한 흡착제의 흡착특성을 비교 할 수 있는 실험을 수행하였다.

2. 실험

2.1 흡착제

Table 1은 본 연구에 사용된 Zeolite 3A와 DETOX의 특성을 나타낸 것이다. Zeolite 3A는 스위스 zeochem사 의 제품으로 평균세공직경인 0.3 nm보다 작은 분자는 모 두 흡착시키는 흡착제로써 분자크기가 0.178 nm인 H₂S 에 대한 적용성을 검토하기 위하여 사용하였다. DETOX 는 국내 태경산업(주)의 제품으로 산화철(Fe₂O₃)을 주성 분으로 포함하고 있으며, H₂S와 반응하여 불용성의 황화 철(Fe₂S₃)을 형성한다.

[Table 1] Properties of adsorbents

Properties	Zeolite 3A	DETOX
Type	Bead	Pellet
Size(mm)	2~3	12×5
Bulk density(kg/L)	0.71	0.71
Main ingredient	Me _{12/n} [(AlO ₂) ₁₂ (SiO ₂) ₁₂]27H ₂ O	Fe ₂ O ₃
Crush strength(N)	40	47

Fe₂O₃와 H₂S의 반응식은 식 (1)과 같다. 이 반응은 흡 열반응이며 필요한 에너지를 제공하기 위하여 온도는 최 소 285K가 요구되는데 298~323K에서 최적이다. DETOX는 pellet 형태로 성형되어 있어 파쇄한 후 실험 에 사용하였다.

$$Fe_2O_3 + 3H_2S \rightarrow Fe_2S_3 + 3H_2O \tag{1}$$

선정된 흡착제는 378K에서 2시간 건조하여 수분을 제 거한 후 실리카겔 데시케이터안에서 방냉 한 후 실험에 사용하였다.

2.2 실험장치

Fig. 1은 본 연구에서 사용된 연속식 흡착실험 장치의 모식도이다. 실험장치는 H₂S 주입부, 가스 혼합부, 흡착 부 및 가스포집부 등의 네 부분으로 구성하였다.

표준가스는 (주)RIGAS에서 제조한 H₂S 505 µ mol/mol 가스를 사용하였다. Rotameter를 통하여 H₂S와 고순도 질소가스의 유랑을 조절하여 흡착제를 통과하는 유입가스농도, 유속 및 체류시간을 조절하였다. 흡착부는 흡착질을 등온상태로 유지시키기 위하여 항온수조 내에 침지시킨 형태로 운전하였다. 주입관은 H₂S에 의한 부식 을 방지하기 위하여 스테인리스 스틸관을 사용하였고 흡 착컬럼은 직경 12 mm, 높이 120 mm의 석영컬럼으로 제 작하였다.

2.3 실험방법

2.3.1 흡착실험

유입유량은 500 mL/min, 1,000 mL/min으로, 유입농 도는 500 ppm, 100 ppm 및 50 ppm으로, 흡착온도는 303K, 313K 및 323 K로 변화시켜 Zeolite 3A및 DETOX 의 H₂S제거 흡착 특성을 비교하기 위한 흡착실험을 수행 하였다.

혼합가스는 흡착부를 거치지 않고 포접한 후 초기농 도(C_i)를 측정하였다. 이 조건에서 혼합가스를 흡착컬럼 의 하부로 유입시켜 흡착제에 통과시켰으며, 상부로 배 출되는 가스를 일정 시간 간격으로 포집하였다. 가스 포 집부에서 포집된 가스는 가스크로마토그래피를 이용하 여 H₂S의 유출농도(C₆)를 측정하였다.

[Table 2] Operating conditions for GC

Conditions						
GC	Gas Chromatograph	Varian CP-3800 GC				
	Culumn	FactorFour Capillary (VF-1ms 60Mx0.25MM ID DF=1.0)				
	Flow	1 mL/min				
	Inlet Temp.	200°C				
	Injection	$1\mu\ell$				
TD	Thermal Desorber	Unity Markes TD				
	Oven Temp.	30°C				
	Transfer Line Temp.	80°C				
	HV Temp.	80°C				

2.3.2 가스분석

가스분석에 사용한 가스크로마토그래피(Gas Chromatography)는 Varian CP-3800 GC, Detector는 PFPD(Pursed Frame Photometric Detector), 칼럼은 FactorFour Capillary(VF-1ms 60Mx 0.25MM ID DF=1.0)를 사용하였다. 저온농축장치는 Unity Markes TD를 사용하였다. 가스분석을 위한 GC의 조건은 Table 2에 나타내었다.

2.3.3 흡착량과 흡착속도식

연속 흡착실험에서 파과곡선은 시스템의 물리화학적 특성 및 평형관계와 물질이동속도에 의해 영향을 받는다 [5]. 파과곡선은 흡착시간(t)에 따른 유입농도(C_i)에 대한 유출농도(C_o)의 비(C_o/C_i)로 나타내며 흡착탑 출구에서의 유출농도를 시간에 따라 표시한다.

흡착량은 포화에 도달한 시간까지 흡착된 피흡착물질 의 양이며 식 (2)와 같다[6].

$$q = \frac{1}{W} C_i Q(t_T - \frac{1}{C_i} \int_0^{t_T} C_o dt)$$
⁽²⁾

여기서 q는 평형 흡착량(mg/g), C는 흡착층 입구에서 의 흡착질 농도(ppm), C₀는 흡착층 출구에서의 흡착질 농도(ppm), W는 흡착제 충전량(g), Q는 유입되는 흡착 질 가스의 유량(L/min), tr는 흡착제가 포화에 도달한 시 간(min)이다.

흡착속도식은 흡착속도와 흡착용량 사이의 관계식으 로 유사 1차 속도식, 식 (3)과 유사 2차 속도식, 식 (4)로 표현된다[7].

$$\frac{dq_t}{dt} = k_1(q_e - q_t) \tag{3}$$

여기서 k₁은 유사 1차 속도 상수(min⁻¹), q_t는 흡착시간 t에서의 흡착용량(mg/g), q_e는 평형흡착용량(mg/g)이다.

$$\frac{dq_t}{dt} = k_2 (q_e - q_t)^2 \tag{4}$$

여기서 k2는 유사 2차 속도 상수(g/mg/min)이다.

3. 결과 및 고찰

3.1 유입농도에 따른 흡착특성

유입가스의 유량 및 흡착온도는 1,000 mL/min, 303K 으로 일정하게 유지하였고, 유입가스의 농도는 50 ppm, 100 ppm 및 500 ppm으로 변화시켰다. Fig. 2는 Zeolite 3A 및 DETOX에 의한 H₂S의 파과곡선이다.

H₂S의 유입농도가 50 ppm, 100 ppm 및 500 ppm으로 증가함에 따라 Zeolite 3A의 포화시간은 960 min, 540 min 및 60 min으로, DETOX의 포화시간은 3,420 min, 2,700 min 및 250 min으로 감소하였다. 이는 흡착질의 유 입농도가 증가할수록 흡착할 수 있는 분자들이 증가할 뿐만 아니라 흡착제에 대한 흡착속도가 증가하게 되므로 흡착이 그만큼 빠르게 진행되어 평형에 도달하는 시간이 단축되기 때문이다[8, 9].

[Fig. 2] Effects of H2S inlet concentration on breakthrough curve (a) Zeolite 3A (b) DETOX

[Fig. 3] Adsorbed H2S amount by adsorbents against influx mass velocity

H₂S의 유입 질량유속 변화에 따른 Zeolite 3A 및 DETOX의 흡착량은 식 (2)에 의해 구할 수 있으며, 그 결 과를 Fig. 3에 나타내었다. 유입 질량유속이 0.038 mg/min에서 0.076, 0.152, 0.379 및 0.759 mg/min으로 증 가될수록 Zeolite 3A의 흡착량은 1.589 mg/g에서 각각 3.162, 4.723, 5.412 및 5.678 mg/g으로 증가하였으며, DETOX는 26.111 mg/g에서 각각 21.672, 18.621, 15.631 및 14.047 mg/g으로 감소하였다.

3.2 흡착온도에 따른 흡착특성

유입가스 유량은 1,000 mL/min으로 일정하게 유지하 였고, H₂S의 유입농도는 Zeolite 3A에 50 ppm, DETOX 에 500 ppm으로 주입하였다. 흡착온도는 303K, 313K 및 323K으로 변화시켰을 때 나타난 Zeolite 3A와 DETOX 의 흡착특성을 Fig. 4에 나타내었다. 흡착온도 변화에 따 른 Zeolite 3A 및 DETOX의 흡착량은 식 (2)에 의해 구 하여 Fig. 5에 나타내었다.

[Fig. 4] Effects of adsorption temperature on breakthrough curve

[Fig. 5] Adsorbed H₂S amount by adsorbents with variation of adsorption temperature

흡착온도가 증가할수록 Zeolte 3A의 포화시간은 960 min, 720 min 및 480 min으로, 흡착량은 각각 5.678 mg/g, 2.144 mg/g 및 1.217 mg/g으로 포화시간 및 흡착 량이 감소하였다. 이는 물리흡착이 van der Waals 상호 작용에 의해 흡착이 이루어짐으로 흡착능이 온도에 반비 례하기 때문이다[10].

DETOX는 흡착온도가 증가할수록 포화시간은 250 min, 800 min 및 1,300 min으로, 흡착량은 각각 14.047 mg/g, 34.692 mg/g 및 75.531 mg/g으로 포화시간 및 흡 착량이 증가함으로써 H₂S 흡착반응이 화학흡착으로 온 도 의존성이 큼을 알 수 있다. 이는 DETOX의 주성분인 Fe₂O₃가 H₂S와 반응 시 흡열반응이 일어나므로 온도가 높을수록 Fe⁺³과 O⁻²로의 전환이 좋아지고, Fe⁺³과 반응 하는 H₂S가 활성화 장벽을 넘어 반응을 일으키는 충돌 분율이 증가하기 때문이다[11].

3.3 유입농도에 따른 흡착속도

유입가스의 유량 및 흡착온도는 1,000 mL/min, 303K 으로 일정하게 유지하였고, 유입가스의 농도는 50 ppm, 100 ppm 및 500 ppm으로 변화시켰다.

유입농도에 따른 Zeolite 3A와 DETOX의 H₂S 흡착속 도식은 식 (3)과 식 (4)를 이용하여 산정한 결과 Table 3 과 같은 결과를 나타내었다.

[Table 3] Adsorption kinetics parameter of H₂S concentration on Zeolite 3A and DETOX

Adsorbents	1 st order		2 nd order	
	$\begin{array}{c} K_1 \\ (\text{min}^{-1}) \end{array}$	r ²	k ₂ (g/mg/min)	r ²
Zeolite 3A	0.0045	0.9782	1.56×10-5	0.9479
DETOX	0.0143	0.9650	1.35×10-5	0.9820

Zeolite 3A 반응속도상수는 0.0045 min⁻¹으로 유사 1차 속도식에 더 잘 부합하였으며, DETOX는 반응속도상수 가 1.35×10⁻⁵ g/mg/min으로 유사 2차 속도식에 더 잘 부 합하였다.

H₂S의 유입질량유속에 따른 흡착속도는 Fig. 6에 나 타내었다. Zeolite 3A는 최소흡착속도 7.41×10⁻⁴ mg/min 에서 최대흡착속도 0.02614 mg/min으로, DETOX는 1.05×10⁻⁴ mg/min에서 최대흡착속도 7.24×10⁻³ mg/min 으로 증가하여 H₂S의 유입농도가 증가할수록 빠르게 흡 착이 진행되었다. 이는 흡착질의 농도가 증가 할수록 흡 착제 세공으로의 확산속도가 증가하며 충돌속도 또한 반 응물 농도에 비례하여 증가하기 때문이다[5].

[Fig. 6] Adsorption kinetics by adsorbents with influx mass velocity

Zeolite 3A가 DETOX보다 약 4배 빨리 흡착이 진행되 었다. 이는 활성화에너지 및 물질전달저항의 차이에 기 인한 것으로 판단된다.

3.4 흡착온도에 따른 흡착속도

흡착온도에 따른 흡착제별 흡착속도를 파악하기 위하 여 Zeolite 3A는 H₂S 50 ppm, 1,000 mL/min의 유량으로, DETOX는 H₂S 500 ppm, 1,000 mL/min의 유량으로 유 지하였다. 흡착온도는 303K, 313K 및 323K로 변화시켰 다. 흡착온도에 따른 Zeolite 3A와 DETOX의 H₂S 흡착 속도식은 식 (3)과 식 (4)를 이용하여 산정하였으며, 그 결과를 각각 Fig. 7과 Fig. 8에 나타내었다.

흡착온도가 증가함에 따라 Zeolite 3A의 반응속도상수 는 0.0045 min⁻¹에서 0.008 min⁻¹로 DETOX의 반응속도 상수는 1.35×10⁻⁵ g/mg/min에서 1.53×10⁻⁵ g/mg/min으 로 증가하였다.

Fig. 9에서 보듯이 흡착온도가 증가할수록 Zeolite 3A 의 흡착속도는 1.12×10⁻³ mg/min에서 2.72×10⁻³ mg/min 으로 DETOX의 흡착속도는 7.24×10⁻³ mg/min에서 9.11×10⁻³ mg/min으로 증가하였다. 흡착온도가 증가함에 따라 H₂S의 확산속도가 빨라져 Zeolite 3A 세공으로의 이동속도가 증가하였고, DETOX의 주성분인 Fe₂O₃와 H₂S와의 충돌횟수가 증가하였기 때문이다.

(b) Pseudo-second-order kinetics

[Fig. 8] Adsorption kinetics of temperature on DETOX(a) Pseudo-first-order kinetics

[Fig. 9] Adsorption kinetics by adsorbents against variation of adsorption temperature

4. 결론

Zeolite 3A 및 DETOX의 HS 흡착특성을 비교하기 위하여 H₂S의 유입농도, 유입유량 및 흡착온도 등의 변 수에 따른 포화시간, 흡착량 및 흡착속도 등의 흡착특성 을 알아보았다.

H₂S의 유입농도 및 흡착온도가 증가할수록 DETOX 의 흡착량이 Zeolite 3A의 흡착량 보다 최대 16.4배 많아 우수함을 알 수 있었다.

Zeolite 3A 및 DETOX에 의한 H₂S의 흡착속도는 각 각 유사 1차 속도식 및 유사 2차속도식에 잘 부합하였으 며 Zeolite 3A가 DETOX보다 4배 빨리 흡착이 진행되었 다. 또한 유입 질량유속 및 흡착온도가 증가할수록 Zeolite 3A 및 DETOX에 의한 H₂S의 흡착속도는 증가하 였다.

Zeolite 3A는 흡착속도가 빠르며 흡착질의 압력증가율 과 더불어 흡착량이 증가하는 물리흡착의 특성을 나타내 었으며, DETOX는 활성화에너지가 필요하여 흡착속도 가 느리며 흡착질의 압력증가율과 더불어 흡착량이 감소 하는 화학흡착의 특성을 나타내었다.

결론적으로 Zeolte 3A와 DETOX의 흡착특성을 비교 한 결과로부터 온도가 높을수록 흡착량 및 흡착속도가 우수한 DETOX가 배출가스 온도가 308~318K인 바이오 가스내 H₂S의 흡착제거에 더 유리함을 알 수 있었다.

References

 F. Osorio a, J.C. Torres b, "Biogas purification from anaerobic digestion in a wastewater treatment plant for biofuel production" Renewable Energy 34, pp. 2164–2171, 2009.

DOI: http://dx.doi.org/10.1016/j.renene.2009.02.023

- [2] Ministry of Knowledge Economy, Study of Institutionalized Measures for the use of Alternative Gas LNG, 2009.
- [3] Korea Environment Corporation, Energy Technology of Biogas, 2011.
- [4] Steven, M. Z., "Removal of hydrogen sulfide from biogas using cow-manure compost", Master of Science Thesis, Cornell University, USA, 2003.
- [5] J. S. Lim and K. Lim, "Adsorption Science for Engineering and Adsorbents", Naeha, 2012.
- [6] K. H. Kang, "Characterisitics of Activated Carbon Prepared from Waste Citrus Peel and Its Adsorption for

VOCs and Sulfur-compound", Doctor of Engineering, Jeju National University, 2011.

[7] Ho, Y. S. and Mckay, G., "Pseudo-second order model for sorption processes," Process Biochem., 34(5), pp451-465, 1999.

DOI: http://dx.doi.org/10.1016/S0032-9592(98)00112-5

- [8] J. J. Lee and Y. H. Yu, "Adsorption Characteristics of BEAM by Granular Activated Carbon(II)", J. of KSEE Vol. 20. No. 4. pp. 509-518, 1998.
- [9] K. S. Hwang, D. K. Chio and S. Y. Gong, "The Thermal Regeneration Characteristics of Volatile Organic Compounds on an Activated Carbon Bed(I): Adsorption Step", J. of KICE Vol. 36, No. 2, pp. 159-168, 1998.
- [10] J. Y. Park, "A Preparetion of Adsorbent from Char and H₂S Adsorption Characteristics", Master of Engineering, Pusan National University, 2007.
- [11] K. C. Cho, S. C. Hong and H. K. Kim, "A Study of SO2 Adsorption Characteristics by Adsorbents in a Fixed Bed Reactor", J. KOSAE Vol. 15, No. 2, pp. 191-199, 1999.

박 대 석(Dae-Seok Park)

[준회원]

[준회원]

<관심분야> 환경에너지, 흡착

- 2014년 2월 : 인천대학교 일반대 학원 건설환경공학과 (공학석사)
- 2014년 4월 : 인천환경공단

조 영 근(Young-Gun Cho)

[정회원]

- 2004년 8월 : 인하대학교 공학대 학원 환경공학과 (공학석사)
- 2013년 3월 : 인천대학교 일반대 학원 건설환경공학과 (박사과정)
- 2013년 7월 ~ 현재 : 인천광역시 청 환경녹지국장 재직 중

<관심분야> 하·폐수처리, 환경에너지

송 승 준(Seung-Jun Song)

[정회원]

- 2011년 2월 : 인하대학교 공학대 학원 환경공학과 (공학석사)
- 2013년 3월 : 인천대학교 일반대 학원 건설환경공학과 (박사과정)
- 2013년 4월 ~ 현재 : 주)대일환경 부설 환경기술연구소 소장 재직 중

<관심분야> 산업폐수처리, 고도처리, 환경에너지

김 진 한(Jin-Han Kim)

[정회원]

<관심분야> 물환경, 환경에너지

- 1994년 2월 : 인하대학교 화학공 학과 (공학박사)
- 1982년 3월 ~ 1985년 5월 : 한국 화학연구원 연구원
- 1985년 9월 ~ 2010년 2월 : 인천 전문대학 조교수, 부교수, 교수
- 2010년 3월 ~ 현재 : 인천대학교 도시환경공학부 교수

<관심분야> 물환경, 환경에너지

임 지 영(Ji-Young Lim)

• 2012년 3월 : 인천대학교 일반대 학원 건설환경공학과 (석사과정)

