
Journal of the Korea Academia-Industrial
cooperation Society
Vol. 15, No. 9 pp. 5652-5659, 2014

http://dx.doi.org/10.5762/KAIS.2014.15.9.5652
ISSN 1975-4701 / eISSN 2288-4688

5652

Performance Evaluation of Multi-Module Software System
with Imperfect Debugging and Module Dependency

U-Jung Kim1, Chong Hyung Lee2*

1College of General Education, Hallym University
2Department of Hospital Management, Konyang University

모듈의존성을 갖는 불완전수리 다항모듈 소프트웨어의

성능평가에 관한 연구

김유정1, 이종형2*

1한림대학교 기초교육대학, 2건양대학교 병원경영학과

Abstract The purpose of this study was to introduce a software task processing evaluation model that considers the
following situations: i) a software system is integratedly composed of several number of modules, ii) each modules
has its corresponding module task, iii) all module tasks are tested simultaneously, and iv) the processing times of
the module tasks are mutually dependent. The software task completion probability with the module dependency was
derived using the joint distribution function of Farlie [11]. The results showed that the task completion probability
of software increases with increasing module dependency parameter.

요 약 소프트웨어를 구성하는 모듈들은 각 모듈에 주어지는 업무들이 동시에 처리될 수 있도록 멀티태스킹이 가능하도록

개발되며, 또한 처리중인 업무들은 완전처리된 업무들과 처리중 모듈고장으로 완전처리 되지 않는 불완전 처리업무로 세분

화한다. 이러한 경우 여러 모듈에 동시에 업무가 주어졌을 때, Farlie [11]의 결합확률분포를 기반으로 모듈간의 의존성을

고려하여 업무의 완전처리확률을 평가할 수 있는 모형을 제안하며, 이를 통하여 모듈의존성 모수 값이 커질수록 소프트웨어

에 주어진 업무의 완전처리확률은 점점 커짐을 보이고자 한다.

Key Words : Module dependency, Module task, Multi-module software, Software task, Task completion probability

*Corresponding Author : Chong Hyung Lee(Konyang Univ.)
Tel: +82-42-600-6525 email: chlee@konyang.ac.kr
Received June 5, 2014 Revised (1st July 28, 2014, 2nd August 6, 2014) Accepted September 11, 2014

1. Introduction

Many researches for software performance

evaluation have proposed software availability models

based on the Markov process which can represent

software debugging times as software failures occur.

Shooman and Trivedi [1] propose a software

availability model assuming that software failures are

perfectly debugged. Tokuno and Yamada [2] derive an

availability model with two kinds of restoration actions:

When a software failure occurs, the restoration action

with the debugging activity is performed with

probability , and the restoration action without the

debugging activity is performed with probability .

Lee and Park [3] have proposed a Markovian

imperfect debugging model for which the software

failure is caused by two types of faults, one which is

easily detected and the other which is difficult to

detect. Tokuno and Yamada [4] consider a model for

the multi-task processing system and provides a task

Performance Evaluation of Multi-Module Software System with Imperfect Debugging and Module Dependency

5653

completion probability, which is the probability that the

process of a task arrived up to a time period is

completed. But, these researches have considered the

one-module software whereas the software used in real

fields consist of several modules to execute complex

demands.

The structure-based software evaluation considers a

software as a collection of several modules, and module

coupling and module dependency represent the degree

of interaction among multiple modules. Gokhale and

Lyu [5] develope the simulation procedures to assess

the impact of individual module on the reliability of a

structure-based software. Recently, Yu et al [6]

analyze the difference between module coupling and

module dependency and introduces the metrics to

quantify both notions regarding the module. Melo et al

[7] present a dependability model based on stochastic

Petri nets for probabilistic evaluation of risks regarding

the turnover of team members and requirement

implementation in software development projects. Also,

Pitakrat et al [8] propose an architectural model which

captures relevant properties of hardware and software

components as well as dependencies among them and

analyze impacts of architectural system changes for

proactive failure management.

Lee et al [9] suggest the concept of module

dependency that the processing times of module tasks

in a software task are mutually dependent and extends

the task processing model of Tokuno and Yamada [4]

to the model of a structure-based software with perfect

debugging. The result shows that the task completion

probability with positive(negative) module dependency

is larger(smaller) than the task completion probability

without module dependency when the number of

modules within software is even. But, the result is

reversed when the number of modules within the

software is odd. Therefore, it is difficult to use the

result of Lee et al [9] when software developers newly

upgrade the software by adding a new module with the

module dependency that is the same as that of the

existing software.

In this paper, we propose a task processing

evaluation model for the software system with module

dependency and imperfect debugging. Throughout this

model, we can provide the consistent result that

regardless of whether the number of modules is even

or odd, the task completion probability with

positive(negative) module dependency is always

larger(smaller) than the completion probability without

module dependency.

2. Notations and Assumptions

2.1 Notations

 number of modules in a software

 number of initial faults

 number of removed faults

 probability of perfect debugging

 fault type,   .

 module dependency parameter, ≤≤ 

 probability that the process of a

software task is completed

2.2 Assumptions

1. Software testing period is classified as two

periods, module testing period and multi-module

software testing period.

2. During a module testing period, each of modules

is separately developed and tests given module

tasks repeatedly until a required performance

level is satisfied. The modules satisfying the level

are integrated as a multi-module software.

3. During a multi-module software testing period,

each of modules has its corresponding module

task, and all the module tasks are tested

simultaneously. A software task, a set of all the

module tasks tested simultaneously, is completed

if all module tasks are successfully executed.

4. The number of software tasks that a software

system can process are sufficiently large and

follows a homogeneous Poisson process with .

5. The processing times of module tasks in a

한국산학기술학회논문지 제15권 제9호, 2014

5654

software task are assumed to be dependent.

6. When a software failure occurs, a processed

software task is cancelled and a software system

starts to be restored. After the debugging is

complete, software system can operate and

process another software task.

3. Imperfect debugging models

We briefly describe the LP model in subsection 3.1

and extend LP model to incorporate a number of

modules in a software in subsection 3.2.

3.1 LP model

Consider a stochastic process ≥  which

represents both the total number of removed faults up

to time  and the state of software at a time , which

is classified as working or nonworking during its

testing and operation period. Nonworking state can be

further classified into two types. One type is caused by

a fault that is easily detected and the other is caused

by a fault that is difficult to detect. The former type is

referred to as fault type 1 and the latter is referred to

as fault type 2. Debugging process starts immediately

when a failure occurs and the perfect debugging with

probability  removes exactly one fault for either fault

type. When an imperfect debugging for a fault of type

1(2) is performed, the fault of type 1(2) remains the

same type. The probability that two or more software

failures occur simultaneously is negligible. Then, the

state of software is defined by     ,

where  is a total number of faults removed

during a time interval  and at time ,  has

0 if working, 1(2) if nonworking by fault type 1(2). Let

 and  be the random variables of the waiting

times elapsed for the occurrence of fault types 1 and 2,

respectively, for the software system which is just

returned to the working state after removing the th

fault. We assume that  and  follow the

exponential distributions with means,  and

, respectively, and they are mutually independent.

Let ,   , be the random variable representing

the lengths of time needed to remove a fault of type 

from the software, which had  faults removed

previously. We assume that they follow the exponential

distributions with means of . For each  ,  and

  are assumed to be the decreasing and increasing

functions of , the number of removed faults,

respectively. Let  be one step transition

probability that ≥  in state  will be in

state  after time  and  be the  that

represents a perfect debugging with . Then, the

probabilities are obtained as

  

  


    ,

   

where  represents the imperfect transition

probability with .

Let  be the distribution function of the

first passage time of the software with  faults already

removed until the number of faults removed reaches ,

where   . The distribution function can be

expressed as

 ≡ ≤ 

 






 






where    ⋯   ,   ⋯ and *

symbolizes the Stieltjes convolution. Also, the working

probability that the software is in state  at time

 on condition that the software was in state  at

time 0 can be obtained as

Performance Evaluation of Multi-Module Software System with Imperfect Debugging and Module Dependency

5655

  

where   , ≤  and

    

 






for  ⋯. As ,  .

Observe that  is simply equal to

 for all ≥  and thus, it is obvious that

→  as  →∞. More discussions for

 and  can be found in [4].

3.2 Imperfect debugging model of a

multi-module software

Let  represent th module in a multi- module

software system and  be the total number of faults

removed from the th module during the module

testing period. Also, let ,   ⋯, be the

random variable representing the waiting time to the

failure of th module after removing  faults and

follow the exponential distributions with means of

. Then, the last failure rate of th modules,

 , becomes the initial failure rate of th module in

a software when a software is integrated with the

modules. We consider that the waiting time to the first

failure of the software is equal to the the minimum of

the first failure times of all modules. Thus, the waiting

time to the first software failure with a fault type 

follows an exponential distribution with a mean of






  under the assumption that the waiting

time to the first type  failure of the th module in a

software follow the distribution of .

Let  be the decreasing amount of failure rate of

software whenever a fault is removed from software,

and we assume that the failure rate of software is

geometrically decreased by as the number of fault

removals is increased[10]. Then, if  is the number of

faults removed from the software, the type  failure

rate of the software, denoted by  , has the form of

  




  × 
 (1)

for      and   

The imperfect debugging model of multi-module

software can be obtained when the rate in equation (1)

is considered as the type  failure rate of LP model and

the same procedures for obtaining  and

 is applied.

4. Task processing evaluation model

Let ≥  be the random variable re-

presenting the number of tasks arriving at the

integrated software system up to time , and let

≥  denote the cumulative number of tasks

which can be completed out of  tasks. Then, the

distribution function of  can be written as

   


∞

  ∣  
 ×    (2)

The probability that  out of  tasks is completed by

the th module can be calculated as

   ∣  
    (3)

where  is the module dependency parameter,

≤≤ ,  is a perfect debugging probability, and

 is the probability that the process of a task is

completed by the software system with  modules.

To incorporate the concept of dependency among the

module processing times, we adopt the following type

of dependency discussed in [11]. Let  be the length

of processing time for a module task by th module

and  be the distribution function of . Also, let

 be the length of processing time for the task by the

software system. Then,  is equal to the maximum

한국산학기술학회논문지 제15권 제9호, 2014

5656

of ⋯ . The joint probability density

function(pdf) of ⋯ is assumed to be as

⋯

 









 (4)

where ≤  ∞ and   .

When   , the joint pdf indicates that the processing

times of module tasks by  modules are mutually

independent. Based on the joint pdf of (3), the pdf of

 can be expressed as

 




 
≠











 
≠






Let  denote the elapsed time of the software

system between the th and the th fault. The

probability that the process of an arbitrary task is

completed on condition that    can be

calculated as

  ∣  
 ∣  




∞











 ⋅
 (5)

where    for . Note also that the arrival

times of all tasks up to time  for the software system

are distributed uniformly over the time interval[12]. It

follows that  can be written as

 









  

 ×  ∣  


  

 









 (6)

Let  be the total number of tasks being arrived for

processing by the software. Then, similar to equation

(2), the distribution function of  can be obtained as

  




∞

  ×


 ⋅

⋅


.

This equation is equivalent to the NHPP with the

mean value function, ⋅⋅ . Therefore, the

expected number of tasks which can be completed out

of the tasks arriving up to time  can be obtained as

  











5. Numerical examples

In this section, we compare the patterns of working

probability, availability and completion probability of

software for various choice of ,  and  . When the

th perfect debugging is completed, we assume that

 is geometrically increasing in  and the debugging

time to remove the fault of type  decreases as the

number of previous fault removals gets larger. Under

this assumption, we choose , as  

  where    . Here, 

is a learning factor which affects the probability of

perfect debugging.

As a distribution of the processing time for each

software task, we consider a gamma distribution with

shape parameter of 2 and scale parameter of 0.5. That

is, the pdf of  is assumed to be as

  
 for  ⋯. Also,

we suppose that the fault of type 2 occurs less

frequently than the fault of type 1, and the mean

debugging time is shorter for the fault of type 1 than

for the fault of type 2. Thus, we set ,  

,   ,   ,   ,  , 

 ,   ,   ,   , and  .

Fig. 1 shows the working probability and the

availability of the software,  and  ,

for various 's with    and  . The working

probability of the software during the initial testing

period which needs to remove the greater number of

faults is smaller. On the other hand, the probability of

Performance Evaluation of Multi-Module Software System with Imperfect Debugging and Module Dependency

5657

[Fig. 1] Working probability and availability of
multi-module software,  and
 , for 's with  .

[Fig. 2] Completion probability of multi-module
 software,  , for various  's.

[Fig. 3] Completion probability of multi-module
 software,  , for various  's.

[Fig. 4] Completion probability of multi-module
 software,  , for various 's.

the software during the initial testing period which

needs to remove the smaller number of faults is

smaller. Also, software availability, defined as

  




 , decreases initially and then

increases to 1 monotonically as  increases. This

means the fact that the availability tends to decrease

fast initially because the software failures may occur

more frequently during the initial testing period.

However, the perfect debugging is performed for the

software failure detected in the early stage, the

availability gradually increase later.

Fig. 2 considers the completion probability of a

software system for      when   and

  . It shows that the completion probability

increases as a debugging probability, , increases. This

is the reason that the larger  comes to have the

shorter debugging period, and the longer operation

period.

Fig. 3 illustrates the behaviors of the completion

probability for     when   and

  . It is shown that the completion probability

decreases for a initial period and then increases

monotonically after the period. Also, the completion

probability with   (  ) is higher than the

completion probability with   ( ). That is,

task completion probability increases monotonically as

 increases.

Fig. 4 compares the completion probabilities of

one-module software and multi-module softwares with

  . It is shown that the completion probability

decreases as the number of modules increases.

Table 1 considers the completion probability of a

software task for        when

한국산학기술학회논문지 제15권 제9호, 2014

5658

Software Testing Period (t)

　 　 0+ 1 3 5 30 100 300 700

　 0.9 0.4943 0.4437 0.4109 0.4114 0.5594 0.7288 0.8574 0.9096

　 0.5 0.4858 0.4362 0.4043 0.4052 0.5546 0.7257 0.8557 0.9083

2 0 0.4752 0.4268 0.3961 0.3975 0.5487 0.7218 0.8535 0.9068

　 -0.5 0.4646 0.4173 0.3878 0.3898 0.5428 0.718 0.8513 0.9052

　 -0.9 0.4561 0.4098 0.3812 0.3836 0.5381 0.7149 0.8495 0.904

　 0.9 0.4186 0.3764 0.3516 0.3554 0.5139 0.6974 0.8387 0.8959

　 0.5 0.4169 0.3749 0.3502 0.3541 0.5129 0.6967 0.8384 0.8956

3 0 0.4147 0.3729 0.3485 0.3525 0.5117 0.6959 0.8379 0.8953

　 -0.5 0.4125 0.3709 0.3468 0.3509 0.5104 0.6951 0.8375 0.895

　 -0.9 0.4107 0.3694 0.3454 0.3496 0.5095 0.6945 0.8371 0.8947

[Table 1] Completion probability of multi-module software,  , for various  's and 's.

the number of modules in software system has 2 and

3. Lee et al [9] presents the result that the completion

probability increases (decreases) as  increases from

 to  if  is even(odd), regardless of the

value of . However, throughout Table 1, we show the

consistent result that the task completion probability

with a positive  is always higher than the probability

with a negative  in all 's.

6. Conclusion

We consider the multi-module software with

module dependency and suggest a software task

processing evaluation model which derives the

availability of the software and the software task

completion probability with module dependency. As the

results of this paper, it is shown that the task

completion probability of a software increases as 

increases. Also, task completion probability with a

positive  is always higher than the probability with a

negative  in all 's.

References

[1] M.L. Shooman and A.K. Trivedi, “A many-state Markov

model for computer software performance parameters”,

IEEE Transactions on reliability, R-25, pp. 66-68, 1976.

 DOI: http://dx.doi.org/10.1109/TR.1976.5214978

[2] K. Tokuno and S. Yamada, “Markovian software

availability measurement based on the number of

restoration actions”, IEICE Transactions on

Fundamentals, E83-A, pp. 835-841, 2000.

[3] C.H. Lee and D.H. Park, “Markovian imperfect software

debugging model and its performance”, Stochastic

Analysis and Applications, 21(4), pp. 849-864, 2003.

 DOI: http://dx.doi.org/10.1081/SAP-120022866

[4] K. Tokuno and S. Yamada, “Stochastic performance

evaluation for multi-task processing system with

software availability model”, Journal of Quality in

Maintenance Engineering, 12, pp. 412-424, 2006.

 DOI: http://dx.doi.org/10.1108/13552510610705964

[5] S. Gokhale and M.R. Lyu, “A simulation approach to

structure-based software reliability analysis”, IEEE

Transactions on Software Engineering, 31(8), pp. 643-656,

2005.

 DOI: http://dx.doi.org/10.1109/TSE.2005.86

[6] L. Yu, K. Chen and S. Ramaswamy, “Multiple- parameter

coupling metrics for layered component based software”,

Software Quality Journal, 17, pp. 5-24, 2009.

 DOI: http://dx.doi.org/10.1007/s11219-008-9052-9

[7] A. Melo, E. Tavares, M. Marinho, E. Sousa, B. Nogueira

and P. Maciel, “Development Risk Assessment in

Software Projects Using Dependability Models”, IEEE

16th International Conference on Computational Science

and Engineering, pp. 260-267, 2013.

 DOI: http://dx.doi.org/10.1109/CSE.2013.49

[8] T. Pitakrat, A.V. Hoorn and L. Grunske, “Increasing

Dependability of Component-Based Software Systems by

Online Failure Prediction”, 2014 European Dependable

Computing Conference, pp. 66-69, 2014.

[9] C.H. Lee, Y.H. Kim and D.H. Park, “Evaluation of

multi-tasking software system performance with

consideration of module dependency”, Journal of Software

Maintenance and Evolution: Research and Practice, 23(5),

Performance Evaluation of Multi-Module Software System with Imperfect Debugging and Module Dependency

5659

pp. 361-374, 2011.

 DOI: http://dx.doi.org/10.1002/smr.514

[10] P.B. Moranda, “Event-altered rate models for general

reliability analysis”, IEEE Transactions on Reliability,

R-28(5), pp. 376-381, 1979.

 DOI: http://dx.doi.org/10.1109/TR.1979.5220648

[11] D.J.G. Farlie, “The performance of some correlation

coefficients for a general bivariate distribution”,

Biometrika, 47, pp. 307-323, 1960.

 DOI: http://dx.doi.org/10.2307/2333302

[12] S.M. Ross, Introduction to probability models(11th

Edition), San Diego: Academic press, 2014.

U-Jung Kim [Regular member]

•Feb. 1994 : Dept. of Statistics

Hallym Univ., MS

•Feb. 2005 : Dept. of Statistics

Hallym Univ., PhD

•Sep. 2007 ～ current : Hallym

Univ., College of General

Education, Assistant Professor

<Research Interests>

Information, Design and Culture, General education

Chong Hyung Lee [Regular member]

•Feb. 2001 : Dept. of Statistics

Hallym Univ., PhD

•Feb. 2001 ～ Feb. 2002 : SRCCS,

Seoul National Univ., Post-Doctor

•Mar. 2002 ～ current : Konyang

Univ., Dept. of Hospital

Management, Professor

<Research Interests>

Software evaluation, System reliability, Hospital information

and management

