Journal of the Korea Academia-Industrial http://dx.doi.org/10.5762/KAIS.2014.15.9.5652

cooperation Society ISSN 1975-4701 / ¢ISSN 2288-4688
Vol. 15, No. 9 pp. 5652-5659, 2014

Performance Evaluation of Multi-Module Software System
with Imperfect Debugging and Module Dependency

U-Jung Kim', Chong Hyung Lee”
'College of General Education, Hallym University
Department of Hospital Management, Konyang University

BENEYS 2L BHA5Y FPRE 2T EH o))
A5l e AT

O X! =54
aRy, 0l5d
srthstm 7|Z DK, HYTHsm HHHY st}

Abstract The purpose of this study was to introduce a software task processing evaluation model that considers the
following situations: i) a software system is integratedly composed of several number of modules, ii) each modules
has its corresponding module task, iii) all module tasks are tested simultaneously, and iv) the processing times of
the module tasks are mutually dependent. The software task completion probability with the module dependency was
derived using the joint distribution function of Farlie [11]. The results showed that the task completion probability
of software increases with increasing module dependency parameter.

Key Words : Module dependency, Module task, Multi-module software, Software task, Task completion probability

1. Introduction When a software failure occurs, the restoration action

with the debugging activity is performed with

Many researches for software performance probability p, and the restoration action without the
evaluation have proposed software availability models debugging activity is performed with probability 1—p.
based on the Markov process which can represent Lee and Park [3] have proposed a Markovian
software debugging times as software failures occur. imperfect debugging model for which the software
Shooman and Trivedi [1] propose a software failure is caused by two types of faults, one which is
availability model assuming that software failures are easily detected and the other which is difficult to
perfectly debugged. Tokuno and Yamada [2] derive an detect. Tokuno and Yamada [4] consider a model for
availability model with two kinds of restoration actions: the multi—task processing system and provides a task

*Corresponding Author : Chong Hyung Lee(Konyang Univ.)
Tel: +82-42-600-6525 email: chlee@konyang.ac.kr
Received June 5, 2014 Revised (Ist July 28, 2014, 2nd August 6, 2014) Accepted September 11, 2014

5652

Performance Evaluation of Multi—Module Software System with Imperfect Debugging and Module Dependency

completion probability, which is the probability that the
process of a task arrived up to a time period is
completed. But, these researches have considered the
one-module software whereas the software used in real
fields consist of several modules to execute complex
demands.

The structure-based software evaluation considers a
software as a collection of several modules, and module
coupling and module dependency represent the degree
of interaction among multiple modules. Gokhale and
Lyu [5] develope the simulation procedures to assess
the impact of individual module on the reliability of a
structure-based software. Recently, Yu et al [6]
analyze the difference between module coupling and
module dependency and introduces the metrics to
quantify both notions regarding the module. Melo et al
[7] present a dependability model based on stochastic
Petri nets for probabilistic evaluation of risks regarding
the turnover of team members and requirement
implementation in software development projects. Also,
Pitakrat et al [8] propose an architectural model which
captures relevant properties of hardware and software
components as well as dependencies among them and
analyze impacts of architectural system changes for
proactive failure management.

Lee et al [9] suggest the concept of module
dependency that the processing times of module tasks
in a software task are mutually dependent and extends
the task processing model of Tokuno and Yamada [4]
to the model of a structure-based software with perfect
debugging. The result shows that the task completion
probability with positive(negative) module dependency
is larger(smaller) than the task completion probability
without module dependency when the number of
modules within software is even. But, the result is
reversed when the number of modules within the
software is odd. Therefore, it is difficult to use the
result of Lee et al [9] when software developers newly
upgrade the software by adding a new module with the
module dependency that is the same as that of the

existing software.

5653

In this paper, we propose a task processing
evaluation model for the software system with module
dependency and imperfect debugging. Throughout this
model, we can provide the consistent result that
regardless of whether the number of modules is even
or odd, the task completion probability with
positive(negative) module
larger(smaller) than the completion probability without

dependency is always

module dependency.

2. Notations and Assumptions

2.1 Notations

r number of modules in a software

N number of initial faults

i number of removed faults

P probability of perfect debugging

J fault type, j=1,2.

« module dependency parameter, —1 < a <1
Prap(t) probability that the process of a

software task is completed

2.2 Assumptions

1. Software testing period is classified as two
periods, module testing period and multi-module

software testing period.

2. During a module testing period, each of modules
is separately developed and tests given module
tasks repeatedly until a required performance
level is satisfied. The modules satisfying the level
are integrated as a multi-module software.

3. During a multi-module software testing period,
each of modules has its corresponding module
task, and all the module tasks are tested
simultaneously. A software task, a set of all the
module tasks tested simultaneously, is completed
if all module tasks are successfully executed.

4. The number of software tasks that a software
system can process are sufficiently large and
follows a homogeneous Poisson process with A.

5. The processing times of module tasks in a

FFAE & =B Al5A A9B, 2014

software task are assumed to be dependent.
6. When a software failure occurs, a processed
software task is cancelled and a software system
starts to be restored. After the debugging is
complete, software system can operate and

process another software task.

3. Imperfect debugging models

‘We briefly describe the LP model in subsection 3.1
and extend LP model to incorporate a number of

modules in a software in subsection 3.2.

3.1 LP model

Consider a stochastic process {X(¢),t > 0} which
represents both the total number of removed faults up
to time ¢ and the state of software at a time ¢, which
is classified as working or nonworking during its
testing and operation period. Nonworking state can be
further classified into two types. One type is caused by
a fault that is easily detected and the other is caused
by a fault that is difficult to detect. The former type is
referred to as fault type 1 and the latter is referred to
as fault type 2. Debugging process starts immediately
when a failure occurs and the perfect debugging with
probability p removes exactly one fault for either fault
type. When an imperfect debugging for a fault of type
1(2) is performed, the fault of type 1(2) remains the
same type. The probability that two or more software
failures occur simultaneously is negligible. Then, the
state of software is defined by X(¢) = (x,(¢), z,(t)),
where w,(¢) is a total number of faults removed
during a time interval (0,¢] and at time ¢, x,(¢) has
0 if working, 1(2) if nonworking by fault type 1(2). Let
T;, and T, be the random variables of the waiting
times elapsed for the occurrence of fault types 1 and 2,
respectively, for the software system which is just
returned to the working state after removing the ¢th
fault. We assume that 7;, and 7}, follow the

exponential distributions with means, 1/, and
1/ 1.9, Tespectively, and they are mutually independent.
Let 7}, j=1,2, be the random variable representing

the lengths of time needed to remove a fault of type j
faults removed
previously. We assume that they follow the exponential

from the software, which had i

distributions with means of 1/6;, ;- For each j, p; ; and
9, ; are assumed to be the decreasing and increasing
functions of 4, the number of removed faults,
respectively. Let F, 5(t) be one step transition
probability that {X(¢),t = 0} in state A4 will be in
state B after time ¢ and F, 5 (t) be the F; 5(¢) that
represents a perfect debugging with p. Then, the

probabilities are obtained as

. lh:.j(l —exp(— (/tz,l +N¢,2)t))
; Hin T o

Fi 0yt =gq(1—exp(=6; 1)),

— p(1—exp(—0, 1))

F(w:o),(iu‘) (t)

I

Fi i +1.009(0)

where £, ;) (;.0),,(t) represents the imperfect transition
probability with 1—p.

Let Gi;) (n.0),(t) be the distribution function of the
first passage time of the software with 7 faults already
removed until the number of faults removed reaches n,
1 <n. The

where distribution function can be

expressed as

+ 22 Fioi0) Fligi+100 G101,y ()5

i=1

i=0,1,-,n—1, n=1,2,---, N and =
symbolizes the Stieltjes convolution. Also, the working
probabhility that the software is in state (n,0) at time

t on condition that the software was in state (i,0) at

where

time O can be obtained as

5654

Performance Evaluation of Multi—Module Software System with Imperfect Debugging and Module Dependency

P.,0).(n,0),p (t) = CYY(i,(]),(n,()).p*p(nJ)),(n,()),p (t))

where i,n=0,1,...,N, i < n and

p(n,O),(n,l})Ap(t) = exp(— (un,l +p’n,2)t)
2
+ ZF(n.o).,(n‘,j)*F(n,j).(n.o).,p*p(n,o).(n.0),p(t)7

j=1

for n=0,1,,N=1. As n=2N, p(yg) v,) =1.
Observe that p() (v, (t) is simply equal to
Glo0).(n0),(t) forall ¢ = 0 and thus, it is obvious that
P0.0).(n0)p (1) =1 as t— oo, More discussions for
Gli0).(n0)p (1) and p) .0, () can be found in [4].

3.2 Imperfect debugging model of a

multi—-module software

Let %k represent kth module in a multi- module
software system and A4, be the total number of faults
removed from the kth module during the module
testing period. Also, let Ty k=1,2,---,r, be the
random variable representing the waiting time to the
failure of kth module after removing ¢ faults and
follow the exponential distributions with means of
1/ ;- Then, the last failure rate of kth modules,
1y, » becomes the initial failure rate of kth module in
a software when a software is integrated with the
modules. We consider that the waiting time to the first
failure of the software is equal to the the minimum of
the first failure times of all modules. Thus, the waiting
time to the first software failure with a fault type j

follows an exponential distribution with a mean of
T

1/ Euw under the assumption that the waiting
k=1 7

time to the first type j failure of the kth module in a

software follow the distribution of 7} ,, .

Let s; be the decreasing amount of failure rate of
software whenever a fault is removed from software,
and we assume that the failure rate of software is

geometrically decreased by as the number of fault

5655

removals is increased[10]. Then, if n is the number of
faults removed from the software, the type j failure
rate of the software, denoted by o, js has the form of

,
J— n
Hnj = ;1Nk,114._/ X 8; Sy

for 0<s; <1 and j=1,2.

The imperfect debugging model of multi-module
software can be obtained when the rate in equation (1)
is considered as the type j failure rate of LP model and
the same procedures for obtaining G) (,.0),,(t) and

p(i,(])‘(n‘()),p (t) iS apphed

4. Task processing evaluation model

Let {M(t),t >0} be the random variable re-
presenting the number of tasks arriving at the
integrated software system up to time ¢, and let
{Z(t),t = 0} denote the cumulative number of tasks
which can be completed out of N(¢) tasks. Then, the
distribution function of Z(t) can be written as

Pr{Z(t) = 2} = SIPe{A0) == | Mt)=1)
=0

X Pr{MN(t)=1}. 2
The probability that z out of I tasks is completed by
the kth module can be calculated as
Pr{Z(t) =2z | Nt) =1}

= (i)[pru,p(tﬂz[l—prﬂ’p(t”lfz (3)

is the module
—1<a <1, pis a perfect debugging probability, and

where « dependency parameter,

Drap (t) is the probability that the process of a task is
completed by the software system with » modules.
To incorporate the concept of dependency among the
module processing times, we adopt the following type
of dependency discussed in [11]. Let ¥, be the length
of processing time for a module task by kth module
and F, (t) be the distribution function of ¥;. Also, let

Y, be the length of processing time for the task by the

software system. Then, Y, is equal to the maximum

Aty &etsi=2 2] A5E A9Z, 2014
of Y,,Y,-,Y. The joint probability density I\t - ., @)
. ‘ :exp(—/\t . pma_p(t))i"" .
function(pdf) of ¥;,Y,,---, Y, is assumed to be as z!

T

Ty sy i)

=II7, (el -2, ()

dFy, (y,)/dy;.

When a =0, the joint pdf indicates that the processing

4

where 0 <y, <oo and fy(y,)=

times of module tasks by r modules are mutually
independent. Based on the joint pdf of (3), the pdf of
Y, can be expressed as

}][fn II y y”

j=1
j=k

fy Yir, &

r

~25,6) I 17, (- F

Jj=
ji#=k

Let X, denote the elapsed time of the software

system between the nth and the (n+1)th fault. The
probability that the process of an arbitrary task is

+a2£f y (y)]l-

j

completed on condition that {X(¢) =(n,0)} can be
calculated as
Bora =Pr{Y, <X, | X(t)=(n,0)}

=Pr{¥, <min(7,,7,,) | X(t)=(n,0)}

/ fy yir,a)exp(— EZMM J y)dy, ()

where [, =1 for n=N. Note also that the arrival

n,r,o

times of all tasks up to time ¢ for the software system
are distributed uniformly over the time intervall12]. It
follows that p, , ,(t) can be written as

f ZPr{X

On=

n,0)

phap

dy

< Pr{Y, <X, | X(t) = ;

—Z[ﬂm/

n=0

(n,0)} ==

(m.0). ()dy). 6)

Let [be the total number of tasks being arrived for
processing by the software. Then, similar to equation
(2), the distribution function of Z(¢) can be obtained as

Pr{Z(t) ==z}

=3[t

M=py 0, (W77 T

(/\t)lcxp(—/\t)

5656

This equation is equivalent to the NHPP with the
mean value function, A - ¢ - p,, (t). Therefore, the
expected number of tasks which can be completed out
of the tasks arriving up to time ¢ can be obtained as

t
/Up(().(]) (n,0),p (y)dy].

N

EZ0)]=2Y18,,.4
n=0

5. Numerical examples

In this section, we compare the patterns of working
probability, availability and completion probability of
software for various choice of p, r and a. When the
ith perfect debugging is completed, we assume that
0;.; is geometrically increasing in 4 and the debugging
time to remove the fault of type j decreases as the
number of previous fault removals gets larger. Under
this 0. 0

0. 141 —exp(— \/;)]ZJ] where 6, ;, 1;> 0. Here, I;

assumption, we choose as

i5J

is a learning factor which affects the probability of
perfect debugging.

As a distribution of the processing time for each
software task, we consider a gamma distribution with
shape parameter of 2 and scale parameter of 0.5. That
is, the pdf of Y, be
f(y,) =0.5%,exp(—0.5y,) for k=1,2,--,r. Also,
we suppose that the fault of type 2 occurs less
frequently than the fault of type 1, and the mean
debugging time is shorter for the fault of type 1 than
for the fault of type 2. Thus, we set N=10, py, =

0.2, py,=01, 0,,=08, 6,,=05, 1,=02, [,
=0.1, s, =0.8, s,=0.5, A=0.99, and «=0.9.

is assumed to as

Fig. 1 shows the working probability and the
availability of the software, py) (..0),(t) and A,(¢),
for various n's with p=0.9 and r=2. The working
probability of the software during the initial testing
period which needs to remove the greater number of
faults is smaller. On the other hand, the probability of

Performance Evaluation of Multi—Module Software System with Imperfect Debugging and Module Dependency

P Availability
z 3
£ 4
<
[0} 50 100 150 200
time
[Fig. 1] Working probability and availability of
multi-module software, p(y.¢).(n.0).09 (t) and
Ayo(t), for m's with r=2.
S
a © _|
é =
@
g - 4 P2,0.9.0.9(t)
© S 7 4 p2,0,0.9(t)
P2-0.9,0.9(t)
3w
T T T T T
(o] 50 100 150 200
time
[Fig. 3] Completion probability of multi-module

software, p, , o(t), for various a's.

the software during the initial testing period which
needs to remove the smaller number of faults is
smaller. Also,

software availability, defined as

N
A, (1) = D 3D.0).n0), (1), decreases initially and then
n=0

increases to 1 monotonically as ¢ increases. This
means the fact that the availability tends to decrease
fast initially because the software failures may occur
more frequently during the initial testing period.
However, the perfect debugging is performed for the
software failure detected in the early stage, the
availability gradually increase later.

Fig. 2 considers the completion probability of a
software system for p=0.9, 0.6, 0.3 when =2 and
a=0.9. It shows that the completion probability
increases as a debugging probability, p, increases. This

is the reason that the larger p comes to have the

Completion Probability
0.6 0.7 0.8
]] 1

0.5
1

04

time
[Fig. 2] Completion probability of multi-module

software, pQ.OAQ,p(t)’ for various p's.

0.8

0.7

0.6

Completion Probability

P1.0.0.9(t)
p2,029,0.9(t)
P3.0.9.0.9(t)

0.4

(0] 50 100 150 200
time
4] Completion probability of multi-module
software, Pr,u.g‘o.g(t), for various 7's.

[Fig.

shorter debugging period, and the longer operation
period.

Fig. 3 illustrates the behaviors of the completion
probability for «=0.9,0,—0.9 when r=2 and
p=0.9. It is shown that the completion probahility
decreases for a initial period and then increases
monotonically after the period. Also, the completion
probability with « =0.9(a=0) is higher than the
completion probahility with o =0(ac =—0.9). That is,
task completion probability increases monotonically as
« increases.

Fig. 4 compares the completion probabilities of
one-module software and multi-module softwares with
a=0.9. It is shown that the completion probability
decreases as the number of modules increases.

Table 1 considers the completion probability of a

software task for a=0.9,0.5,0,—0.5,—0.9 when

5657

FFAE & =B Al5A A9B, 2014

[Table 11 Completion probability of multi-module software, p, , 4(t), for various r's and o's.

Software Testing Period (t)

r « 0+ 1 3 5 30 100 300 700
09 0.4943 0.4437 04109 04114 05694 0.7288 0.8574 0.9096
05 0.4858 0.4362 0.4043 0.4052 05646 0.7257 0.8557 0.9083

2 0 04752 0.4268 0.3961 0.3975 05487 0.7218 0.8535 0.9068
-05 0.4646 04173 0.3878 0.3398 05428 0.718 08513 0.9052
-09 0.4561 0.4098 0.3812 0.3336 05381 0.7149 0.849% 0.904
09 0.4186 0.3764 0.3516 0.3554 05139 0.6974 0.8387 0.8959
05 0.4169 0.3749 0.3502 0.3541 05129 0.6967 0.8384 0.8956

3 0 0.4147 0.3729 0.348 0.3525 05117 0.6959 0.8379 0.8953
-05 04125 0.3709 0.3468 0.3509 05104 06951 08375 0.89%
-09 0.4107 0.3694 0.3454 0.349% 05095 0.6945 0.8371 0.8047

the number of modules in software system has 2 and
3. Lee et al [9] presents the result that the completion
probability increases (decreases) as « increases from
—0.9 to +0.9 if r is even(odd), regardless of the
value of ¢t. However, throughout Table 1, we show the
consistent result that the task completion probability
with a positive « is always higher than the probability

with a negative « in all r's.

6. Conclusion

We consider the multi-module software with
module dependency and suggest a software task
processing evaluation model which derives the
availability of the software and the software task
completion probability with module dependency. As the
results of this paper, it is shown that the task
completion probahility of a software increases as «
increases. Also, task completion probability with a
positive « is always higher than the probability with a

negative « in all r’s.

References

[1] M.L. Shooman and A.K. Trivedi, “A many-state Markov
model for computer software performance parameters’,
IEEE Transactions on reliability, R-25, pp. 66-68, 1976.
DOL http://dx.doi.org/10.1109/TR.1976.5214978

[2] K Tokuno and S. Yamada, “Markovian software

availability measurement based on the number of
restoration actions”, IEICE Transactions on
Fundamentals, E83-A, pp. 835-841, 2000.

[3] CH. Lee and D.H. Park, “Markovian imperfect software
debugging model and its performance”, Stochastic
Analysis and Applications, 21(4), pp. 849-864, 2003.

DO http://dx.doi.org/10.1081/SAP-120022866

[4] K Tokuno and S. Yamada, “Stochastic performance

evaluation for multi-task processing system with

software availability model”, Journal of Quality in
Maintenance Engineering, 12, pp. 412-424, 2006.
DOL: http://dx.doi.org/10.1108/13552510610705964

[6] S. Gokhale and MR. Lyu, “A simulation approach to
structure-based software reliability analysis”, IEEE
Transactions on Software Engineering, 31(8), pp. 643-636,
2005.
DOI http://dx.doi.org/10.1109/TSE.2005.86

[6] L. Yu, K. Chen and S. Ramaswamy, “Multiple- parameter
coupling metrics for layered component based software”,
Software Quality Journal, 17, pp. 5-24, 2009.
DOL: http://dx.doi.org/10.1007/s11219-008-9052-9

[7] A. Melo, E. Tavares, M. Marinho, E. Sousa, B. Nogueira
and P. Maciel, “Development Risk Assessment in
Software Projects Using Dependability Models”, IEEE
16th International Conference on Computational Science
and Engineering, pp. 260-267, 2013.
DOL http://dx.doi.org/10.1109/CSE.2013.49

[8] T. Pitakrat, A.V. Hoorn and L. Grunske, “Increasing
Dependability of Component-Based Software Systems by
Online Failure Prediction”, 2014 European Dependable
Computing Conference, pp. 66-69, 2014.

[9] CH Lee, YH Kim and DH. Park, “Evaluation of
multi-tasking software system performance with

consideration of module dependency”, Journal of Software

Maintenance and Evolution: Research and Practice, 23(5),

5658

Performance Evaluation of Multi—Module Software System with Imperfect Debugging and Module Dependency

pp. 361-374, 2011.
DO http://dx.doi.org/10.1002/smr.514

[10] P.B. Moranda, “Event-altered rate models for general
reliability analysis”, IEEE Transactions on Reliability,
R-28(5), pp. 376-381, 1979.
DOL http://dx.doi.org/10.1109/TR.1979.5220648

[11] DJ.G. Farlie, “The performance of some correlation

coefficients for a general bivariate distribution”,
Biometrika, 47, pp. 307-323, 1960.
DOI: http://dx.doi.org/10.2307/2333302

[12] SM. Ross, Introduction to probability models(11th
Edition), San Diego: Academic press, 2014.

U-Jung Kim [Regular member]

eFeb. 1994 : Dept. of Statistics
Hallym Univ., MS
eFeb. 2005 : Dept. of Statistics
Hallym Univ., PhD
eSep. 2007 ~ current : Hallym
Univ.,, College of General

“ Education, Assistant Professor

<Research Interests>
Information, Design and Culture, General education

Chong Hyung Lee [Regular member]

eFeb. 2001 : Dept. of Statistics
Hallym Univ., PhD

eFeb. 2001 ~ Feh. 2002 : SRCCS,
Seoul National Univ., Post-Doctor
eMar. 2002 ~ current : Konyang
Univ., Dept. of Hospital
Management, Professor

<Research Interests>
Software evaluation, System reliability, Hospital information
and management

5659

