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1. Introduction

When analyzing relationships among variables, including

random variables with an equation of y = f(x) + e, where e is

a random vector of a certain distribution with zero mean and

preset covariance, two main problems are generally encountered:

one is related to f(x) and the other to e. The latter mainly includes

heteroscedasticity and serial correlation problems, which induce

efficiency of the estimator to decrease, thereby hindering rigorous

hypothesis testing. The former, which is related to the

misspecification problem leading to biased estimator, frequently

presents a critical problem. In numerous applications, unless an

underlying theoretical foundation for an approximation model has

been rigorously established or is widely acknowledged in a

related area, one is prone to obtaining a biased estimator.

Using a biased approximation model, the more instances we

use, the greater the predictor bias we obtain. Therefore, with a

biased approximation model, a subsampling approach could yield

a more accurate performance up to the point where the gain from

the reduced bias exceeds the loss from the increased variance [1].

Conversely, the subsampling approach could have serious

drawbacks when the increased variance considerably exceeds the

reduced bias because variance generally is inversely proportional

to the sample size.

Moreover, searching for every neighbor reference of a target

point, such as the k-nearest neighbor and moving average

methods, is computationally expensive. Considering these factors,

a more efficient method would be to partition the data into

clusters.

Clustering methods are easy to implement and extensively used

as one of the unsupervised learning methods. However, in

general, the number of clusters is not analytically obtained, but

numerically searched in a set of candidate numbers. Thus,

determining how to adequately adjust the size of the cluster

would be a key approach to overcome the high variance and the

overfitting problem. In particular, to adjust the size of the cluster

for prediction, we may consider the cluster close to a prediction

target, unlike the usual clustering method fitting a whole dataset.

In the current study, the term last cluster indicates the cluster

located closest to a prediction target after partitioning the data

into clusters using a method such as k-means clustering because
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considering only the last cluster in a prediction problem can be

an efficient way to achieve accurate prediction.

The bootstrap method is well-known for reducing the bias [2]

and variance [3] of an estimator. This method allows us to

approximate an underlying functional form of a given dataset by

averaging the noise of different bootstrapped samples out, thereby

reducing bias. Also, the bootstrap method would be useful in

balancing bias and variance, thus improving model prediction

accuracy. Additionally, because a data-fitting-oriented model

often leads to overfitting in many applications, it would be more

efficient to adjust the size of the last cluster rather than to fit the

entire dataset. In this study, the size-adjusted last cluster is termed

as an adjusted last cluster (aCL), which has a size that falls

between the size of the entire dataset and that of a last cluster

by partitioning data.

2. Methods

A linear estimator applied to the whole dataset depends on the

too strong assumption; hence, this predictor produces a vulnerable

prediction performance depending on the shape of the true

function. Consider a linear estimator applied to a dataset

generated from a quadratic functional form, the value predicted

by this estimator over the whole dataset would be quite distant

from the prediction target as shown in Fig. 1. However, the

predicted value from a subsample of the given dataset achieves

a more accurate prediction.

[Fig. 1] Prediction when using the whole dataset (whole, solid line) and

a subsample (subsample, dashed line).

Furthermore, as more samples are used, the bias of the

predictor increases but its variance decreases, as shown in Fig 2.

In general, an estimator from a subsample suffers from high

variance, whereas the estimator from a whole dataset suffers from

high bias. Therefore, a size-adjusted subsample optimal for

prediction should exist based on the balance between bias and

variance [4]. For example, the size of such a subsample would

be approximately 26, as seen in Fig 2.

[Fig. 2] Change of MSE (Mean squared error) according to the number

(n) of samples used in estimation.

To obtain the optimal subsample for prediction, first it is

necessary to partition a given dataset using a method such as

k-means clustering. However, determining the size of the last

cluster for prediction may not be easy. To reliably determine the

size of the last cluster, knowing the change points, structural

breaks and local extrema of the given DGP (Data Generating

Process) can be useful. In practice, such values are not known a

priori; one must guess the size of the last cluster by simply

observing a graph of the DGP in an exogenous manner. However,

partitioning the dataset in such a manner might be unreliable

because the dataset observed is only a single realized sample

among all the possible samples generated by the DGP. Thus, to

obtain the size of the last cluster reliably, we would need to

consider as many realized samples as possible, which would be

unfeasible in practice. As an alternative, the bootstrap method

used in [5] can be useful for virtually mimicking these samples

to obtain the reliable last cluster. We summarize the aCL method

based on the bootstrap method as below.
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[Fig. 3] Algorithm of aCL method

3. Results

To examine whether the aCL method applies well to various

functional forms, we conducted Monte Carlo simulations over

four types of DGPs. We can observe that prediction based on

some last clusters results in lower prediction error than does

prediction using the entire dataset. Nevertheless, there exist other

last clusters that yield higher prediction error than using the

whole dataset. Therefore, selecting a last cluster of adequate size

is important and so using the aCL method can be useful for

obtaining the last cluster.

[Fig. 4] Change of the prediction error based on the size of the last

cluster.

Table 1. shows the prediction errors of the methods used in this

study. The results in Table 1. indicate that the three aCL methods

outperform other different prediction methods under different

DGPs.

[Table 1] Comparison of prediction error

Fig 5. depicts the histograms of estimated change points by

aCL and Kmeans through 100 Monte Carlo iterations. We can see

that the histogram of aCL shows a central tendency similar to a

normal distribution, unlike Kmeans.

[Fig. 5] Histograms of change points estimated by aCL and Kmeans.

We also tested the prediction power of the aCL method using

two real-world datasets, stock market index and home price

index. The prediction results also showed that the aCL method

can improve prediction performance compared to other competing
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methods (In this version of paper, the results are omitted for the

page limit).

4. Conclusion

Partitioning data produces a more accurate prediction than

using a whole dataset when a true function is not known or when

setting an estimator for the whole dataset is difficult. Meanwhile,

the small-sized cluster produced by simply partitioning data

causes high variance problems, which leads to high prediction

errors. In this study, we showed that adjusting the size of the last

cluster avoids high prediction error. To adjust the size of the last

cluster between the whole dataset and the last cluster, we applied

the bootstrap method, which has the effect that a given model is

trained multiple times by different bootstrapped samples

generated from a certain DGP; hence, the model can estimate the

reliable location of the last cluster that is optimal for prediction.

Therefore, we believe that this paper contributes to understanding

that the adjusted last cluster could be optimal for prediction based

on the balance between bias and variance by the bootstrap

method.

As a result, the aCL method was shown to reduce prediction

errors using the numerical results of both simulated and real data.

Notice that the aCL method is not for establishing a complete

model fitting a whole dataset but for selecting an optimal

subsample for prediction. Therefore, an estimator of simple

functional form such as a linear function can be easily used with

the aCL method for prediction, and this advantage of the aCL

method would serve a practical use in research or application. In

addition, the aCL method yielded the size-adjusted last cluster by

the bootstrap method, which is easy to be adopted in studies

using a clustering algorithm, and thus produces a more reliable

subsample for prediction.
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