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Abstract

Estimating a predictive model from a dataset is best initiated with an unbiased estimator. However, since the unbiased estimator
is unknown in general, the problem of the bias-variance tradeoff is raised. Aside from searching for an unbiased estimator, the
convenient approach to the problem of the bias-variance tradeoff may be to use the clustering method. Within a cluster whose
size is smaller than the whole sample, we would expect the simple form of the estimator for prediction to avoid the overfitting
problem. In this paper, we propose a new method to find the optimal cluster for prediction. Based on the previous literature,
this cluster is considered to exist somewhere between the whole dataset and the typical cluster determined by partitioning data.
To obtain a reliable cluster size, we use the bootstrap method in this paper. Additionally, through experiments with simulated
and real-world data, we show that the prediction error can be reduced by applying this new method. We believe that our proposed
method will be useful in many applications using a clustering algorithm for a stable prediction performance.

1. Introduction

When analyzing relationships among variables, including
random variables with an equation of y = f(x) + e, where e is
a random vector of a certain distribution with zero mean and
preset covariance, two main problems are generally encountered:
one is related to f(x) and the other to e. The latter mainly includes
heteroscedasticity and serial correlation problems, which induce
efficiency of the estimator to decrease, thereby hindering rigorous
hypothesis testing. The former, which is related to the
misspecification problem leading to biased estimator, frequently
presents a critical problem. In numerous applications, unless an
underlying theoretical foundation for an approximation model has
been rigorously established or is widely acknowledged in a
related area, one is prone to obtaining a biased estimator.

Using a biased approximation model, the more instances we
use, the greater the predictor bias we obtain. Therefore, with a
biased approximation model, a subsampling approach could yield
a more accurate performance up to the point where the gain from
the reduced bias exceeds the loss from the increased variance [1].

Conversely, the subsampling approach could have serious
drawbacks when the increased variance considerably exceeds the
reduced bias because variance generally is inversely proportional
to the sample size.

Moreover, searching for every neighbor reference of a target
point, such as the k-nearest neighbor and moving average
methods, is computationally expensive. Considering these factors,
a more efficient method would be to partition the data into
clusters.

Clustering methods are easy to implement and extensively used
as one of the unsupervised learning methods. However, in
general, the number of clusters is not analytically obtained, but
numerically searched in a set of candidate numbers. Thus,
determining how to adequately adjust the size of the cluster
would be a key approach to overcome the high variance and the
overfitting problem. In particular, to adjust the size of the cluster
for prediction, we may consider the cluster close to a prediction
target, unlike the usual clustering method fitting a whole dataset.
In the current study, the term last cluster indicates the cluster
located closest to a prediction target after partitioning the data
into clusters using a method such as k-means clustering because
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considering only the last cluster in a prediction problem can be
an efficient way to achieve accurate prediction.

The bootstrap method is well-known for reducing the bias [2]
and variance [3] of an estimator. This method allows us to
approximate an underlying functional form of a given dataset by
averaging the noise of different bootstrapped samples out, thereby
reducing bias. Also, the bootstrap method would be useful in
balancing bias and variance, thus improving model prediction
accuracy. Additionally, because a data-fitting-oriented model
often leads to overfitting in many applications, it would be more
efficient to adjust the size of the last cluster rather than to fit the
entire dataset. In this study, the size-adjusted last cluster is termed
as an adjusted last cluster (aCL), which has a size that falls
between the size of the entire dataset and that of a last cluster
by partitioning data.

2. Methods

A linear estimator applied to the whole dataset depends on the
too strong assumption; hence, this predictor produces a vulnerable
prediction performance depending on the shape of the true
function. Consider a linear estimator applied to a dataset
generated from a quadratic functional form, the value predicted
by this estimator over the whole dataset would be quite distant
from the prediction target as shown in Fig. 1. However, the
predicted value from a subsample of the given dataset achieves
a more accurate prediction.
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[Fig. 1] Prediction when using the whole dataset (whole, solid line) and
a subsample (subsample, dashed line).

Furthermore, as more samples are used, the bias of the
predictor increases but its variance decreases, as shown in Fig 2.
In general, an estimator from a subsample suffers from high
variance, whereas the estimator from a whole dataset suffers from
high bias. Therefore, a size-adjusted subsample optimal for

prediction should exist based on the balance between bias and
variance [4]. For example, the size of such a subsample would
be approximately 26, as seen in Fig 2.

MSE
1

[Fig. 2] Change of MSE (Mean squared error) according to the number
(n) of samples used in estimation.

To obtain the optimal subsample for prediction, first it is
necessary to partition a given dataset using a method such as
k-means clustering. However, determining the size of the last
cluster for prediction may not be easy. To reliably determine the
size of the last cluster, knowing the change points, structural
breaks and local extrema of the given DGP (Data Generating
Process) can be useful. In practice, such values are not known a
priori; one must guess the size of the last cluster by simply
observing a graph of the DGP in an exogenous manner. However,
partitioning the dataset in such a manner might be unreliable
because the dataset observed is only a single realized sample
among all the possible samples generated by the DGP. Thus, to
obtain the size of the last cluster reliably, we would need to
consider as many realized samples as possible, which would be
unfeasible in practice. As an alternative, the bootstrap method
used in [5] can be useful for virtually mimicking these samples
to obtain the reliable last cluster. We summarize the aCL method
based on the bootstrap method as below.
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Algorithm Prediction (one-step ahead) using the aCL,

O

14

1: GivenasetZy = {Z,,: Z, = (X, ) € R™n=1,..,N}
2:fori €{1,..., m} do
3:  Reproduce the i:th bootstrap dataset,
Zh = {Z4: 2} = R yn) € R™n =1, N}
4: Obtain a last cluster by partitioning the dataset (such as k-means clustering),

and denote the size of the last cluster as L'

w

Let the size of gCLbe C* = L' + (1 — )N, 0 <a; =1

6:  Estimate ¢! by minimizing the value of the risk function,

€t =arg min iZN (v — f(X;n))Z
LiscisN C' Ly —cigr
7. end for
8: Calculate the average of the C''s, € = ﬁ):f’;l ct
10: Estimate the regression coefficient using C,

! (.Vn - f(xn))z

ﬁc =arg min =

BeER™ C dmip=N-C+1

11: Using f. construct the predictor f(Xy+1) for yys1

[Fig. 3] Algorithm of aCL method

3. Results

To examine whether the aCL method applies well to various
functional forms, we conducted Monte Carlo simulations over
four types of DGPs. We can observe that prediction based on
some last clusters results in lower prediction error than does
prediction using the entire dataset. Nevertheless, there exist other
last clusters that yield higher prediction error than using the
whole dataset. Therefore, selecting a last cluster of adequate size
is important and so using the aCL method can be useful for
obtaining the last cluster.
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[Fig. 4] Change of the prediction error based on the size of the last

cluster.

Table 1. shows the prediction errors of the methods used in this

study. The results in Table 1. indicate that the three aCL methods
outperform other different prediction methods under different

DGPs.

[Table 1] Comparison of prediction error

DGP 1 2

Variance 1 2 3 1 2 3

OLS 245.019 348.978 342525 1312 1.262 3423
OLSaCL 11.608 14307 17.168 0313 1.162 3.69
(p-value) (=0.00n)| (=0.00D)| (=0.001)| (=0.001) 0.4 -0.599
LSPD 246.171 346.157 340.285 2421 2.595 4.819
LSPDaCL 20.039 27.033 281 0571 1.661 4.098
(p-value) (=0.001)| (=0.001)] (=0.001)| (=0.001) 0.039 -0.302
LASSO 243.205 341.971 339.174 1.287 1.175 327
LASaCL 12.787 19.905 18.788 0.424 1.354 4.409
(p-value) (=0.001)| (=0.001)] (=0.001)| (=0.001) 0.406 -0.563
Kmeans 31.493 57.695 56.587 1.108 2673 7.525
(p-value) -0.002 (<0.001) (<0.001) -0.001 0.051 -0.014
Bootstr 242343 346.982 341.665 1308 1314 3334
(p-value) (=0.00n)| (=0.00D)| (=0.001)| (=0.001) 0349 -0.638
Comb 176.012 274.632 282323 0.895 1.201 3.818
(p-value) (=0.001)| (=0.001)| (=0.001) -0.002 0.461 -0.457
DGP 3 4

Variance 1 2 3 1 2 3
OLS 11.451 14.406 20.64 7.727 7.565 7.016
OLSaCL 1.264 2792 6.841 0.752 1.609 3.186
(p-value) (<0.001)| (=0.001)| (=0.001) (=0.001)[ (=0.001) -0.001
LSPD 11.537 14.523 20.668 7.645 7.669 7.386
LSPDaCL 1.933 341 7432 1.492 2.258 3612
(p-value) (<0.001)| (=0.001)| (=0.001) (=0.001)[ (=0.001) -0.001
LASSO 10.674 13.425 20.546 7.798 8.409 7.049
LASaCL 1.463 2781 5935 0.888 1.239 2.863
(p-value) (<0.001)| (<0.001)| (=0001)| (=0001)| (<0.001) -0.001
Kmeans 2.563 7.893 10.698 1.822 4.847 13.545
(p-value) -0.004| (<0.001) -0.018 -0.001| (<0.001)| (<0.001)
Bootstr 11.041 14.159 20.696 7.654 7.491 7.192
(p-value) (<0.001)| (=0.001)| (=0.001) (=0.001)[ (=0.001) -0.001
Comb 10.029 12.552 15.673 5.273 5.866 6.986
(p-value) (<0.001)| (=0.001)| (=0.001) (=0.001)[ (=0.001) -0.001

Fig 5. depicts the histograms of estimated change points by
aCL and Kmeans through 100 Monte Carlo iterations. We can see
that the histogram of aCL shows a central tendency similar to a

normal distribution, unlike Kmeans.

[Fig. 5] Histograms of change points estimated by aCL and Kmeans.

We also tested the prediction power of the aCL method using
two real-world datasets, stock market index and home price
index. The prediction results also showed that the aCL method
can improve prediction performance compared to other competing
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methods (In this version of paper, the results are omitted for the Berkeley, CA, USA, 1996.
page limit). [4] Kim JW, Kim JC, Kim JH, "Adjusted k-nearest neighbor
algorithm”, Journal of the Korean Society of Marine

4. Conclusion Engineering, Vol. 42, No. 2, pp. 127-135, 2018,
[5] Diebold FX, Chen C. "Testing structural stability with
Partitioning data produces a more accurate prediction than endogenous breakpoint a size comparison of analytic and
using a whole dataset when a true function is not known or when bootstrap procedures", Journal of Econometrics, Vol. 70, No.
setting an estimator for the whole dataset is difficult. Meanwhile, 1, pp. 221-241, 199.

the small-sized cluster produced by simply partitioning data
causes high variance problems, which leads to high prediction
errors. In this study, we showed that adjusting the size of the last
cluster avoids high prediction error. To adjust the size of the last
cluster between the whole dataset and the last cluster, we applied
the bootstrap method, which has the effect that a given model is
trained multiple times by different bootstrapped samples
generated from a certain DGP; hence, the model can estimate the
reliable location of the last cluster that is optimal for prediction.
Therefore, we believe that this paper contributes to understanding
that the adjusted last cluster could be optimal for prediction based
on the balance between bias and variance by the bootstrap
method.

As a result, the aCL method was shown to reduce prediction
errors using the numerical results of both simulated and real data.
Notice that the aCL method is not for establishing a complete
model fitting a whole dataset but for selecting an optimal
subsample for prediction. Therefore, an estimator of simple
functional form such as a linear function can be easily used with
the aCL method for prediction, and this advantage of the aCL
method would serve a practical use in research or application. In
addition, the aCL method yielded the size-adjusted last cluster by
the bootstrap method, which is easy to be adopted in studies
using a clustering algorithm, and thus produces a more reliable
subsample for prediction.

References

[1] Dietterich TG, Kong EB. "Machine learning bias, statistical
bias, and statistical variance of decision tree algorithms",
Technical report, Department of Computer Science, Oregon
State University, 1995,

[2] Horowitz JL, Handbook of econometrics, p. 3163, 2001.

[3] Breiman L. Bias, variance, and arcing classifiers, Technical
report, 460, Statistics Department, University of California,

- 396 —



