생분해에 따른 PCL 봉합사의 질량 변화에 대한 연구

시에위잉*, 강순국*
*선문대학교 환경생명화학공학과
e-mail:kskang@sunmoon.ac.kr

Study on Weight Change of PCL Sutures with a Biodegradation

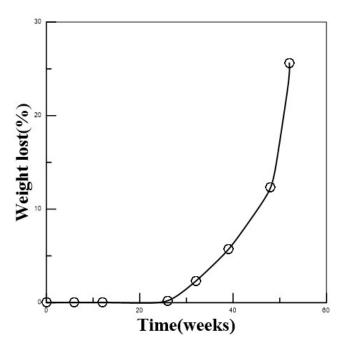
Yuying Xie*, Soon-Kook Kang*
*Dept. of Environmental Eng., Sunmoon University

요 약

봉합사는 처음에 수술이나 다친 부위를 봉합하는 데에 많이 사용해왔지만 최근에 한방 다이어트나 성형용으로도 많은 인기를 끌고 있다. 이는 봉합사 재료들은 미국 FDA 허가를 획득한 안전성 재료뿐만 아니라 흡수성, 생분해성 및 생체적합성 같은 성질이 있어서 더 안심하게 사용하게 되었다. 원료는 주로 PDO로 사용하고 있지만 PDO 봉합사는 분해기간에 비교적으로 짧아서 자주 시술해야 한다는 단점이 있다. 그래서 본 논문에서는 분해기간을 더 긴 재료인 PCL로 봉합사를 제조하여 체외 생분해성 특성을 확인하였다. 봉합사의 생분해 특성을 알기 위해 PCL 봉합사의 질량 변화, 인장강도 및 연신율 측정하였다. 그리고 잔류 용액의 pH 값을 분석을 하였다. 시간 지날수록 PCL 봉합사의 질량이 서서히감소하고 어느 순간부터 급격히 감소하는 것을 확인할 수 있다. 그리고 봉합사의 인장강도도 약해지는 것을 확인할 수 있다.

1. 서론

최근에 경제 발전을 되면서 사람들은 성형에 대해 관심이 많아지고 있다. 또한 고령화 더 발전되면서 주름개선이나 처진 피부를 리프팅 하는 시술에 더 많은 관심을 갖게 됐다.[1, 2] 시술은 여러 가지 방법이 있지만 사람들은 봉합사로 실리 프팅 하는 게 더 선호하는 것을 확인할 수 있었다. 실리프팅 시술은 특수 제조한 실로 피하조직에 삽입하고 처진 조직을 땅기면서 피부를 팽팽하게 하는 기술이다. 다른 시술보다 효과 더 빠르게 확인할 수 있고 부작용도 적다는 장점이 있다.[3] 이전에 PDO로 재료를 만이 사용하고 있는데 PDO실은 체내에 분해 속도 빠르고 지속 가간이 짧다는 지적이 많았다.[4] 그래서 본 연구에 PDO를 대체하는 원료를 개발하기위해 PCL 실을 제조하여 이 PCL 실의 생분해 특성을 연구하였다.


2. 실험재료 및 벙법

원료는 Polycaprolactone(PCL)를 이용하였으며, 자체 제작한 압출기로 봉합사를 제조하였다. 원료를 0.5~1mm의 지름

으로 넣고 입력속도는 25mm/min, 압출기의 온도는 80℃, take-up speed는 70M/min으로 하여 봉합사를 제조하였다. 후에 질소분위기 하에서 10분 동안 넣어두고 마지막으로 PCL 봉합사를 얻었다.

위 봉합사들을 건조기에 12시간 건조하고 사용하였다. 봉합사를 1m를 자르고 시편을 제조하였다. PCL 봉합사 샘플을 각각의 질량을 측정하고, PCL봉합사의 직경, 인장강도, 연신율도 측정하였다. 그 다음에 25ml 바이알 안에 넣은 후 버퍼용액(pH = 7.4, PBS) 15ml을 채웠다. PBS (Phosphate Buffered Solution)는 137mM/L NaCl, 2.7mM/L KCl, 4.3mM/L Na₂ HPO₄, 1.4mM/L KH₂ PO₄)으로 구성되어 있다. 37℃로 유지되는 항온수조에시료가 들어있는 바이알을 넣고 반응시간(0주~52주)에 따라PCL 봉합사의 생분해 실험을 실시하였다. 일정 기간 경과 후 5개의 바이알에서 시료를 꺼내어 증류수로 몇 번씩 세척한 다음에 24시간 건조 후 각각의 질량을 측정하여 평균값을 계산하였다. 봉합사의 직경, 인장강도, 연신율도 측정하였다. 잔류용액의 pH 농도도 측정해서 평균값을 계산하였다.

3. 결과 및 토론

[그림 1] 생분해 시간에 따른 PCL 봉합사의 질량변화

3.1 PCL 봉합사의 질량변화

그림 1는 생분해 시간에 따른 PCL 봉합사의 질량 변화를 나타나고 있다. 그림에서 보듯이 PCL 봉합사의 질량이 0주부터 26주까지 거의 변화가 없는 것을 확인할 수 있다. 26주부터 48주까지 질량 감소하는 것을 쉽게 확인할 수 있고 48주이후에 급격히 감소하는 것을 확인할 수 있다. 이는 26주부터 PCL 봉합사 본격적으로 가수분해를 시작하는 것을 사료된다.

4. 결론

체외 생분해성 시험을 통해서 PCL 봉합사는 26주부터 가수분해를 서서히 시작하는 것을 확인할 수 있었다. 48주 이후에 급격히 감소하는 것은 이 시기에 실이 가수분해 활발하게 진행된 것을 확인할 수 있다. 또한 48주 이후 실 형태는 육안으로 거의 확인할 수 없을 정도로 부서진 것을 확인할 수 있었다. 이는 48주 이후 PCL 봉합사가 가수분해로 인해 구조파괴된 것을 사료된다. 또한 39주부터 봉합사의 인장강도를 크게 감소하는 것을 확인할 수 있다. 그리고 48주 이후 PCL 봉합사의 인장강도는 측정불가하고 봉합사도 절단되기 시작된 것을 확인할 수 있었다.

참고문헌

[1] 하영인, 쥐 모델에서 PDO, PCL 조직 반응, 박사 학위논문, 순천향대학교 대학원 의학과, 2019

- [2] S. R. khiabanloo, R. Jebreili, E. Aalipour, H. Eftekhari, N. Saljoughi, A. Shahidi, Innovative techniques for thread lifting of face and neck. Journal of cosmetic dermatology. 2019.
- [3] J. Kim, Z. L Zheng, H. Kim, K. A Nam, and K. Y. Chung, Investigation on the Cutaneous Change Induced by Face-Lifting Monodirectional Barbed Polydioxanone Thread. Dermatologic surgery: official publication for American Society for Dermatologic Surgery [et al]. 2017;43(1):74–80.
- [4] J. N. Im, J. K. Kim, In vitro and in vivo degradation of synthetic absorbable bicomponent monofilament suture prepared with poly(p-dioxanone) and its copolymer. Polymer Degradation and Stability. 92(4), 667–674. 2006