UV (275nm) LED를 이용한 대장균 (E.coli) 살균

김경래*, 장인성*, 유순재**
*호서대학교 환경공학과
**주식회사 라이트전자
e-mail:cis@hoseo.edu

Disinfection of E.coli using UV (275nm) LED

Kyeong-Rae Kim*, In-Soung Chang*, Soon-Jae Yu**
*Dept. of Environmental Engineering, Hoseo University
**LITE Electronics, LTD

요약

UV-LED (Light Emitting Diode)는 수은램프에 비해 작고 전력소비면에서 수은등보다 경제적이며 수명이 길고, 발광 파장을 자유롭게 선택할 수 있는 장점이 있다. 살균 장치는 1.7L의 용량을 갖는 원통 내부에 총 384개의 UV-LED를 삽입하여 제작하였다. UV-LED의 전력이 $0.58\,W/cm^2$, 90분 접촉 시간에서 $2\log$ 사멸율을 보였다. 전력이 1.74 W/cm^2 로 증가하면 90분 접촉시간에서 $4\log$ 사멸율을 보였다. 요약하면 275nm의 파장의 UV-LED를 이용하여 $0.58\,W/cm^2 \sim 1.74\,W/cm^2$ 의 전력으로 대장균을 살균하였을 때 $2-4\log$ 사멸율을 보이는 것을 확인할 수 있었다.

1. 서론

자외선 (UV)은 파장의 길이에 따라 크게 UV-A (315-400 nm), UV-B (280-315 nm), UV-C (100-280 nm)로 구분한다. 살균 및 소독에 주로 사용되는 것은 UV-C 영역의 파장으로 수은램프를 사용하고 있다. 그러나 수은램프는 소비전력 면에서 비효율적이며 수명이 다하여 폐기할 때 수은이 환경에 노출될 가능성이 있어서 위험하다. 반면에 UV-LED (Light Emitting Diode)는 수은램프에 비해 작고 소비전력 측면에서 수은등보다 경제적이며 수명이 상대적으로 긴 장점이 있다. 또한, UV-LED는 발광 파장을 자유롭게 선택할 수 있는 장점이 있다. 본 연구에서는 UV-C 영역의 275 nm 파장을 발광하는 UV-LED를 제작하여 대장균 (E.coli)을 살균하고 살균특성을 속도론적 관점에서 해석하였다.

2. 자료 및 방법

UV-LED를 이용한 살균 장치는 1.7L의 용량을 갖는 원통 내부에 총 384개의 UV-LED를 삽입게 제작되었다. UV-LED의 전류를 조절하여 살균력의 차이를 비교하였다. 전류 10mA로 조절된 램프의 단위면적당 전력이 $0.58\,W/cm^2$ 이었고, 30mA에서는 1.74

 W/cm^2 이었다. 살균대상 미생물은 대장균 (ATCC 8739, KCCM)을 Nutrient broth 배지에 접종하여 정온 배양기에서 37℃로 24시간 배양하여 살균 실험 직전에 필요한 초기 균체수로 희석하였다.

3. 결과 및 고찰

UV-LED의 전력밀도가 $0.58\,W/cm^2$, 90분 접촉 시간에서 $2\log$ 사멸율을 보였다. 전력밀도가 $1.74\,W/cm^2$ 로 증가하면 동일시간에서 $4\log$ 사멸율을 보였다. 또한, 동일 전력에서 초기균체량이 적을수록 더 짧은 시간에 대장균이 사멸하는 것을 확인하였다. 대장균의 살균 속도를 1차반응으로 해석하였다. 즉, UV-LED에 의한 대장균 사멸자료를 $\ln\frac{N_t}{N_0}=-kt$ 식을 이용하여 반응속도 상수, k를 구하였다. UV-LED의 전력밀도가 $0.58\,W/cm^2$ 에서 k=0.0384min $^{-1}$ 이었고, 전력밀도 $1.74\,W/cm^2$ 인 경우에는 k=0.0916min $^{-1}$ 로 2.4배로 증가하는 것을 확인하였다. 요약하면 파장 2.75nm를 갖는 UV-LED를 이용하여 $2.58\,W/cm^2$ ~ 2.75nm를 갖는 UV-LED를 이용하여 $2.58\,W/cm^2$ ~ 2.75nm를 갖는 2.75nm를 갖는 2.75nm를 살균하였을 때

2-4 log 사멸율을 보이는 것을 확인하였다.

Table 1. Summarized results of the disinfection by UV-LED

UV dose (W/cm^2)	Colony (CFU/ml)		Log removal
0.58	6.77×10^6	1.86×10^4	2
	7.20×10^{6}	2.40×10^{3}	3
1.74	3.04×10^{6}	2.50×10^{2}	4
	1.94×10^{5}	3.00×10^{1}	
	8.05×10^{2}	-	
	4.40×10^{1}	-	

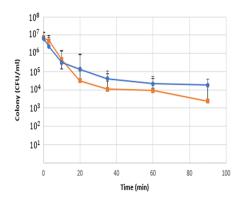


Fig. 2. Plot of the number of E. coli vs. contact time under the condition of 0.58 $W\!/cm^2$ UV- LED irradiation

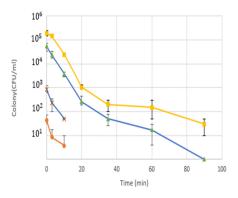


Fig. 3. Plot of the number of $\it E.~coli$ vs. contact time under the condition of 1.74 $\it W/cm^2$ UV- LED irradiation

참고문헌

[1] Alonso JM, Gacio D, Calleja AJ, Ribas J, Corominas EL. 2012. Astudy on LED retrofit solutions for low-voltage halogen cyclelamps. IEEE Trans. Ind. Appl. 48: 1673-1682.