열전도성 고분자 복합소재를 적용한 LED 헤드램프 히트싱크 방열효과 해석

김기용*, 나승준**, 전의식***
*공주대학교 기전공학과, (주)제이티
**공주대학교 미래융합공학과
#e-mail:osjun@kongju.ac.kr

Analysis of Radiation effect of LED headlamp heat sink using thermally conductive polymer composite material

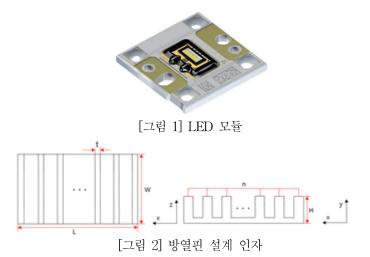
Kee Yong Kim*, Seung Jun Na**, Euy Sik Jeon**

*Department of Mechanics Engineering, Kongju national university, JT Co., Ltd.

**Department of Future Convergence Engineering, Kongju National University

요 약

본 논문에서는 ANSYS Fluent 프로그램을 이용하여 효과적인 방열구조를 가지는 히트싱크 설계 및 열 해석을 진행하였다. 열 해석을 통하여 최적의 온도특성을 보이는 히트싱크 구조를 기반으로 열전도성 고분자 복합소재를 적용하여 자동차 LED 헤드램프 히트싱크의 온도를 비교 분석하여 방열성능을 해석하였다.


1. 서론

최근 LED를 자동차 전조등에 적용 중이며 이에 발생되는 높은 열로 인해 광원 및 수명에 큰 영향을 미쳐 방열에 대한 연구가 활발하다. 이에 최적화 및 경량화 설계가 요구된다. 금속 히트싱크로 인한 무게로 인해 방열소재에 대한 관심이 급증하고 있다. 금속소재보다 가벼우며 제조하기 쉬운 방열소재로 카본 파이버를 필러로 한 고분자 복합재료의 방열소재가 연구되고 있다. 기존 LED 산업에서 쓰이고 있는 알루미늄, 구리 등의 열전도도 효율이 좋은 금속재료의 히트싱크는 중량, 부식, 가공성 등 해결해야 할 과제들이 많다. 이러한 단점을 극복하기 위해 방열 고분자 복합소재를 이용한 다양한 연구들이 진행되고 있다.

본 논문에서는 LED 헤드램프의 히트싱크를 설계 및 열 해석을 수행하여 대표 모델을 설정 후 열전도성 고분자 복합소재를 적용하여 히트싱크의 방열효과를 해석하였다.

2. 연구 내용 및 해석

히트싱크 설계에 적용된 LED Module은 자동차 전조등에 적용된 OSARAM사의 LE UW U1A3 모델이다. 최대 접합온도인 Junction Temperature는 150℃로 히트싱크 설계 시 이를 감안하였다. Ansys 프로그램을 사용하여 히트싱크를 설계하였다. 히트싱크 외각 크기는 폭 50mm, 깊이 100mm, 높이 100mm로 설정하였다[1]. 핀 두께 및 수는 설계 인자로 설정하여 방열 해석을 수행하였다.

본 논문에서는 열전도성 고분자 복합소재를 적용하여 히트 싱크의 방열성능을 향상시키기 위해 최적의 구조 설계 및 열 해석을 수행하였다. 도출된 결과값을 바탕으로 히트싱크의 방열성능을 분석하였다.

3. 결론

참고문헌

[1] 김형진, "열전도성 플라스틱을 적용한 자동차 LED 전조 등 방열구조 연구", 한국전기전자재료학회, pp.544-549, 2015년