혜테로고리계 부식 억제제를 함유한 부동액에서 알루미늄 및 구리이온이 철의 부식에 미치는 영향

소순영*, 전용진*, 이주희**, 장희진**
*청운대학교 화학공학과, **조선대학교 신소재공학과
e-mail: sysohhot@chungwoon.ac.kr

Effects of Al and Cu Ions on the Corrosion of Fe in the Antifreeze with Heterocyclic-type Corrosion Inhibitors

Soon-Young Soh*, Yong-Jin Chun*, Ju-Hee Lee**, Hee-Jin Jang**

*Dept. of Chemical Engineering, Chungwoon University

**Dept. of Materials Science and Engineering, Chosun University

요 약

본 연구에서는 헤테로고리 화합물 계열인 트리아진(triazine) 및 벤조트리아졸(benzotriazole)계 화합물을 부식억제제로 첨가한 부동액에 알루미늄, 철, 구리를 함께 침지하여 3주간 경과시킨 용액에서 철의 부식 특성을 검토하였다.

1. 서론

자동차 엔진의 온도를 일정하게 유지하기 위하여 사용하는 부동액은 순환시스템 내부의 부식을 방지하는 역할도 동시에 수행한다. 일반적으로 부식에 따른 가속화 정도는 부식조건에 따라 큰 차이가 나타난다. 이 때 부식억제제는 금속 표면에 균일한 피막을 생성하여 금속표면의 전기화학적 반응성을 변화시켜 부식속도를 감소시키는 작용을 하는 것으로 알려져 있다[1]. 최근에는 방식 성능이 우수하고 환경에 유해하지 않은 부식억제제의 개발이 관심을 받고 있다[2-4]. 부동액이 흐르는 배관은 주로 구리로 만들어지나, 실제 순환계 부품들에는 구리 뿐 아니라 알루미늄과 철 등 다른 소재들이 포함되므로 장시간 사용 시 부동액 내에는 이들 이온이 녹아 있게 된다. 따라서 부동액에 의한 부식 평가할 때 타 금속 이온의 영향 또한 고려할 필요가 있다.

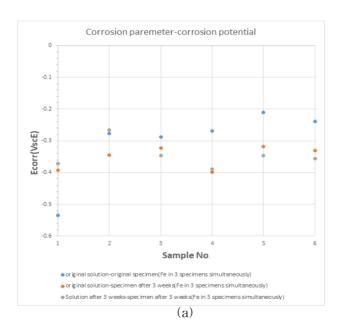
본 연구에서는 헤테로고리 화합물 계열인 트리아진 (triazine) 및 벤조트리아졸(benzotriazole) 계 화합물을 부식억제제로 첨가한 부동액에 알루미늄, 철, 구리를 함께 침지하여 3주간 경과시킨 용액에서 철의 부식 특성을 연구하였다.

2. 실험

트리아진 및 트리아졸 계열의 부식억제제 4 중을 합성하고 배합을 달리하여 부동액에 첨가하여 모두 6 가지의 실험용액을 제조하였다. 여기에 구리, 알루미늄, 철을 함께침지하여 120℃를 유지한 상태로 3 주가 지난 후 금속 시편을꺼내고 그 용액을 전해질로 하여 동전위 분극시험을실시하였다. 분극시험을 위한 작동전극은 철로 하고,대전극은 탄소봉, 기준전극은 포화칼로멜전극(SCE)으로하였다. 철 시편은 연마 후 그대로 사용하거나 또는 120℃의용액에 3 주간 침지했던 것을 사용하였다. 3 주간의 침지 후에철 시편 표면을 AFM(Atomic-Force Microscopy) 및 XPS(X-ray Photoelectron Spectroscopy)으로 분석하여 부식후의 표면 형상과 거칠기, 부식생성물의 조성을 조사하였다.

3. 결과 요약

3.1 전기화학 분석


철 시편과 함침액의 조합에 따른 명명을 Table 1처럼 하였을 때, Fig. 1은 부동액과 철 시편을 조합하여 전기화학 특성 값을 분석한 3가지 경우의 분극 부식시험 결과를 종합한 것이다.

부식 전위의 경우 sample 1과 sample 2를 제외한 다른 4개 sample에서 E00 >> E33 ≥ E03으로 나타났다. 이것은 3주

동안 함침액 속에 부식된 철의 이온이 증가하지 않았음을 의미하므로 ICP 상에서 1주/2주/3주 경과된 함침액에서 Fe 성분이 검출되지 않은 것과 일치하는 결과라고 판단된다. 아울러 철 시편 표면에 부동태 피막도 형성되지 않았다고 여겨진다. Sample 2는 특이하게 E33 ≈ E00 >> E03으로 나타났는데, 이는 앞선 4개의 sample과 비교할 때 미약하지만 부동태 피막이 일부 형성된 것처럼 보인다. 반면에 sample 1은 E33 > E03 >> E00으로 나타나 부동태 피막이 3주 동안 형성되었음을 의미한다고 판단된다. 부식율의 경우 sample 1에서는 i00 > i03 = i33으로 나타났는데, 이는 부식율이 용액 조건에 의해 결정된다는 것을 의미하므로 침지 시간에 따라 용액의 부식성 변화가 있는 것으로 추정된다. Sample 2부터 sample 6까지는 동일하게 i33 ≈ i03 >> i00으로 나타났는데 이는 부식율이 용액 조건이 아닌 철 시편의 조건에 의해 결정됨을 의미하며, 이러한 경향은 편차가 큰 sample 3, 5, 6에서 더 크게 나타날 것으로 보인다.

Table 1. The corrosion potential and corrosion rate by the polarization test

	manufactured antifreeze	Antifreeze after 3 weeks in the oven
Using original Fe plate	E00, i00	-
Fe plate impregnated 3 weeks in the oven	E03, i03	E33, i33

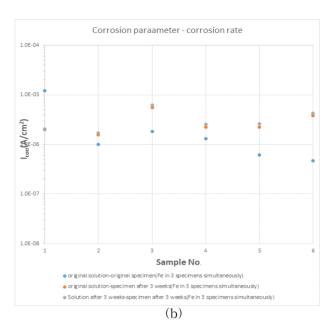
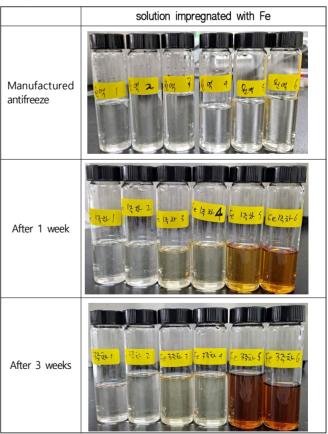



Fig. 1 The corrosion parameters on corrosion potential and corrosion rate in case of three types (Cu/Al/Fe) specimens at the same time (a) corrosion potential of iron, (b) corrosion rate of iron

한편, 제조한 부동액에 철 시편을 함침시킨 후 120℃오븐에서 경과시켰을 때 시간에 따른 함침용액의 Color가 Sample에 따라 변색되는 정도를 Table 2에 수록하였다.

Table 2. Color discoloration of the cast iron(Fe) specimen impregnation solution over time

3.2 XPS 분석

각각의 부동태 피막의 형성 조건이 다르므로 부동태 두께 및 표면 상태 또한 차이를 보이게 된다. 이러한 차이를 알아보기 위하여 XPS를 이용하여 표면 분석을 실시하였다. Fig. 2는 6개의 철 시편 표면에서의 survey spectrum이다.

XPS 상에서는 6개 sample 모두 비슷한 피크 형태를 보였으나, 6개 sample의 core XPS peaks에 부속되는 satellite spectrum(Fe metal; 706.7 eV, FeO 709.6 eV, Fe₂O₃; 710.8 eV)에는 약간의 차이를 보였다[5].

Sample 3과 sample 6의 경우 intensity ratio가 Fe₂O₃ peak를 나타내는 710.8 eV 값이 FeO peak를 나타내는 709.6 eV 보다 크게 나타났다. 따라서 비록 Fe₂O₃ satellite peak가 718 eV 부근에 나타나지 않았지만 Fe₂O₃ 성분이 더 많다고 판단된다. 한편 sample 1 과 sample 4의 경우 상대적 satellite peak가 Fe₂O₃에서 나타나는 형태를 보이고 있으며 intensity ratio가 Fe₂O₃ peak를 나타내는 710.8 eV 값이 FeO peak를 나타내는 709.6 eV 과 비슷한 intensity를 보임으로서 FeO뿐 만아니라 Fe₂O₃ 성분이 포함되어 있다고 판단된다. 나머지 sample 2 및 sample 5는 intensity ratio가 Fe₂O₃ peak를 나타내는 710.8 eV 값이 FeO peak를 나타내는 710.8 eV 값이 FeO peak를 나타내는 709.6 eV 보다 작게 나타났고 715 eV부근의 Fe₂O₃ satellite peak가 명확하지 않아 FeO 성분이 보다 많은 것으로 추정된다.

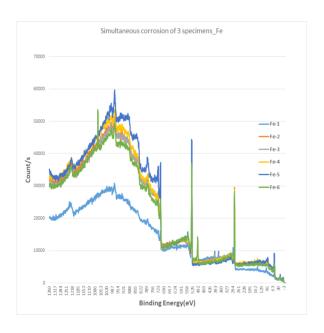


Fig. 2 XPS spectra at the surface of iron specimen impregnated with copper and aluminum in antifreeze for 3 weeks

References

- [1] C. G. darivaand A. F. Galio, "Corrosion inhibitors principles, mechanisms and applications", Nova Science Publishers, Feb. 2014, pp. 365–379
- [2] G. L. F. Mendonça, S. N. Costa, V. N. Freire, P. N. S. Casciano, A. N. Correia, and P. Lima-Neto, "Understanding the corrosion inhibition of carbon steel and copper in sulphuric acid medium by amino acids using electrochemical techniques allied to molecular modelling methods", *Corrosion Science*, Vol. 115, pp. 41–55, Feb., 2017.
- [3] B. Jegdić, B. Bobić, and S. Linić, "Corrosion behaviour of AA2024 aluminium alloy in different tempers in NaCl solution and with the CeCl3 corrosion inhibitor", *Materials and Corrosion*, Vol. 71, No. 3, pp.352–364. Mar. 2020.
- [4] S. Liu J. Dong W. W. Guan J. M. Duan R. Y. Jiang Z. P. Feng and W. J. Song, "The synergistic effect of Na₃PO₄ and benzotriazole on the inhibition of copper corrosion in tetra n-butylammonium bromide aerated aqueous solution", *Materials and Corrosion*, Vol. 63, pp. 1017–1025, Jan., 2012.
- [5] https://xpssimplified.com/elements/iron.php