Graphene Oxide를 필러로 사용한 PEO-LiTFSI 기반 고체 전해질의 특성평가

김서연, 김기출^{*} 목원대학교 도시환경화학공학과 *e-mail: kckim30@mokwon.ac.kr

Characterization of PEO-LiTFSI based Solid Electrolyte using Graphene Oxide as Filler

Department of Urban Environmental Chemical Engineering, Mokwon University

요약

리튬이온배터리에서 전해액의 문제를 해결하기 위해 고체 전해질이 주목을 받기 시작했다. 액체 전해질의 단점인 누액이 없고 다양한 형태로 제작이 가능한 polymer 전해질에서 우수한 이온전도도를 보이는 Poly(Ethylene Oxide)(PEO) 및 PEO 와 비교하여 상대적으로 높은 이온전도도 특성의 LiTFSI를 선택하여 가소제로 Graphene Oxide(GO)를 첨가하여 다양한 농도(0.0 %, 0.1 %, 0.3 %, 0.5 %)별로 이온전도도를 측정하였다. 고체 전해질인 PEO-LiTFSI의 전기화학적 특성은 EIS(Electrochemical Impedance Spectroscopy)를 이용하여 측정하였다. 가소제인 Graphene Oxide(GO)의 합성여부는 UV-visible spectroscopy를 이용하여 확인하였다. 분석결과 PEO-LiTFSI 고체전해질의 이온전도도는 4.04×10⁶ S/cm로 측정되었다. PEO-LiTFSI 고체 전해질에 가소제로서 높은 기계적 강도와 이온전도도 및 열전도도를 가지고 있으며, 나노 입자 크기의 절연체인 GO를 첨가함으로써 PEO-LiTFSI 고체 전해질의 이온전도도를 향상시키고, LiTFSI의 flocking과 응집 현상을 해결할 수 있을 것으로 기대한다.

1. 서론

리튬이온배터리(Lithium Ion Battery, LIB)가 고용량, 고출 럭 시스템에 활용되기 시작하면서 전지 내부에 있는 가연성, 부식성, 고휘발성의 유기용매기반 전해액으로 인한 위험성이 대두되고 있다. 여러 위험요소를 가지고 있는 기존의 액체전 해질이 고체전해질로 변경된다면, 외부 충격으로 인한 화재 및 폭발 위험성에서 자유롭고 분리막을 사용할 필요가 없어 전지의 에너지 밀도 향상이 가능하다. 이러한 배경에서 배터 리의 모든 구성요소가 고체로 이루어진 전고체 전지가 주목 을 받고 있다[1].

고체 고분자 전해질(Solid Polymer Electrolyte, SPE)은 사 슬을 통하여 이온을 전도하는 고분자 물질의 무용매성 염 용 액이다. 주로 용해 주조(solution casting)를 통해 제조 가능하 여 손쉽게 대면적 제조 공정에 적용할 수 있으며, 높은 탄성 과 가소성을 가진다. 따라서 계면의 안정성, 유연성 및 부피 변화에 저항성을 향상시켜주는 장점이 있다. 하지만 이온전 도도가 무기질 고체 전해질보다는 낮은 단점이 있는데, 이러 한 낮은 이온전도도는 고분자와의 결정화를 원인으로 꼽을 수 있다. 이를 해결하기 위한 방법으로 고분자 용액 내에 입 자를 첨가함으로서 복합 고분자 전해질(Composite Polymer Electrolite, CPE)를 만들어 고분자의 결정화를 억제하고 나아 가서 덴드라이트의 형성 또한 억제할 수 있다.

현재까지 개발된 다양한 형태의 고체전해질의 이온전도도 성능을 비교 하였을 때, ion conductivity가 10⁴ S/cm로 가장 우수한 polymer 타입의 Poly(Ethylene Oxide)(PEO)를 선택 하였다[2]. 또한 PEO를 기반으로 사용하고, 높은 이온전도도 (약 10^{-4~}10⁻⁵ S/cm)를 보이는 LiTFSI를 선택하여 사용하였 다[3]. 고체 고분자 전해질이 보다 높은 이온전도도 특성을 갖 게 하려면 SPE에 첨가하는 가소제(filler)는 나노 입자의 크기 이며 기계적 강도, 이온전도도 및 열전도도가 높은 절연체라 는 특성이 필요하다. 이외에도 가소제는 LiTFSI의 flocking과 응집현상의 해결을 필요로 한다[4]. 따라서 대량생산이 용이 하고 2차원 나노구조를 갖는 부도체인 Graphene Oxide(GO) 를 filler로 사용하였다[5].

본 연구에서는 고체 고분자 전해질인 PEO-LiTFSI에 가소 제로 GO를 첨가하여 농도별(0.0 wt%, 0.1 wt%, 0.3 wt%, 0.5 wt%)로 CPE를 제작, 균일하게 도포하여 이온전도도의 변화 를 확인한다.

2. 실험 방법

2-1. 고체 고분자 전해질(SPE)의 제조

PEO(M_V : ~300,000, Sigma Aldrich), Bis(trifluoromethan e)sulfonimide lithium salt(LiTFSI, M_W : 287.09 g/mol, Sigm a Aldrich)를 사용하였다. SPE는 용해 주조 방법으로 합성하 였다. [EO]/[Li⁺] 몰 비율을 20으로 하여 DI water에 시료를 넣은 뒤 용액을 밀봉하여 충분히 교반한다[6]. 이후 만들어진 용액을 Al foil 위에 균일한 두께로 casting 한 뒤, 상압에서 80 ℃의 온도로 3 hr 동안 건조한 뒤 보관한다.

2-2. Graphene Oxide(GO)의 제조

sulfuric acid(H₂SO₄, 95.0 %, SAMCHUN), hvdrogen pero xide(H₂O₂, 30 %, JUNSEI), potassium permanganate(KMnO 4, D.S.P. GR), graphite powder(flakes, 99 % Carbon, 100 me sh(≥80%), natural, Sigma Aldrich)를 사용하였다. GO는 Hu mmer's method를 통해 합성 되었다[7]. 1000 mL 용량의 비 커에 graphite powder 3.0 g을 H₂SO₂ 70 mL에 넣은 뒤 20 ℃ 이하의 ice bath에서 5 min간 교반 하였다. 그 후 KMnO4 9.0 g을 천천히 넣어 준 뒤 40 ℃의 bath에서 30 min동안 교반한 다. 그 후 bath의 온도를 95 ℃까지 올려준 뒤 DI water 150 mL를 천천히 넣고 15 min 교반한다. 마지막으로 DI water 50 0 mL를 넣고 1 min 후 H-Q 를 15 mL를 넣은 뒤 약 1 hr 정도 침전 시킨다. 이때 특징은 용액의 색깔이 초록색에서 노란색 으로 변화가 생긴다. 침전을 마친 용액은 체에 걸러준다. 걸러 진 용액을 마이크로 튜브와 원심분리기(12000 rpm, 5 min)를 이용하여 수득한다. 수득된 GO를 DI water와 원심분리기를 이용하여 세척한다. 세척을 할 때 마다 상등액의 pH를 확인 하며 중성(pH 7)이 될 때까지 세척한다. 그 후 진공오븐에서 60 ℃의 온도로 12 hr간 건조하여 수득하였다.

2-3. GO@PEO@LiTFSI 복합 고분자 전해질(CP E)의 제조

위에서 기술한 2-1절의 용해 주조 방법과 동일하며[6], 이 때 사용하는 DI water 용액에 미리 사용하고자 하는 GO(0.0 wt%, 0.1 wt%, 0.3 wt%, 0.5 wt%)를 첨가 후, 분산하여 교반 하였다. 교반을 마친 용액 또한 2-1절과 마찬가지의 방법으로 건조하여 보관하였다.

3. 실험결과 및 고찰

3-1. 고체 고분자 전해질의 전기화학적 특성 평 가

다양한 농도의 GO를 비교하기 위해 먼저 필러를 넣지 않은

PEO-LiTFSI의 impedance를 EIS(Electrochemical Impedance Spectroscopy)로 분석하였다. 측정 조건은 5 mV 의 전압을 흘려주며 20 Hz ~ 1000 kHz의 범위에서 측정하였 다. 측정 방법은 spacer disk(SUS) 사이에 전해질을 두고 측 정하였으며, 그 모식도는 [그림 1]의 (a)와 같다. 측정 결과로 얻어진 Cole-Cole plot을 [그림 1]의 (b)에 나타내었다. EIS 분석 결과를 통해 얻어낸 R₂값을 이용하여 필러를 넣지 않은 PEO-LiTFSI의 이온전도도의 값은 4.04×10^{-6} S/cm으로 계 산 되었다. 이때 이온전도도의 계산은 $\sigma = L/(A \times R)$ 의 식 에 의해 계산하였으며, σ 는 이온전도도, L은 전해질의 두께, R은 저항, A는 측정 면적이다[6].

[그림 1] (a)합성된 전해질의 측정 방법 모식도. 전해질의 위 아래로 SUS를 둔 뒤, 전압을 흘려주어 측정함. (b)필러를 넣지 않은 PEO-LiTFSI의 Cole-Cole 그래프이다.

3-2. Graphene Oxide의 전기화학적 특성 평가

GO의 합성여부는 UV-visible spectroscopy를 이용하여 흡 광도를 분석하였다. 측정 방법은 Quart cell을 사용하였으며 DI water를 baseline으로 사용하였다. 측정 파장은 200 ~ 800 nm 범위에서 측정하였으며, interval은 1.0 nm이다. GO는 DI water 20 mL에 0.001 g을 30 min 동안 분산 시킨 용액을 이 용하여 측정하였다. GO의 흡광도 측정 결과를 [그림 2]에 나 타내었고, 전형적인 GO의 흡광도 그래프임을 확인하였다[8].

[그림 2] Hummer법으로 합성된 GO의 UV-visible 흡광도 그래프

3-3. GO@PEO@LiTFSI 복합 고분자 전해질 (CPE)의 전기화학적 특성 평가

SPE의 측정과 마찬가지로 SUS 전극 사이에 전해질을 두 고 EIS를 측정하였으며, 측정 조건 또한 동일하게 측정하였 다. GO의 농도(0 wt%, 0.1 wt%, 0.3 wt%, 0.5 wt%)에 따른 전해질의 두께는 Al foil의 두께인 23 µm를 제외하고 전해질 자체의 두께로만 측정한다. GO는 filler로서의 바람직한 특징 인 나노입자의 크기와 높은 기계적 강도, 열전도도와 절연체 라는 특징을 가지고 있다. 따라서 적당량의 농도의 GO가 혼 합되었을 때 필러가 첨가되지 않은 PEO-LiTFSI의 이온전도 도보다 더욱 좋은 이온전도도를 보일 것으로 예상된다.

4. 결론

본 연구에서는 유기용매기반 전해액이 가지는 단점을 보완 하는 고체 전해질 중 polymer 타입의 PEO와, polymer에서 높은 이온전도도 특성을 갖는 LiTFSI를 사용한 고체 고분자 전해질에 가소제로 넣는 GO 농도에 따른 이온전도도에 대하 여 조사하였다. 필러를 넣지 않은 PEO-LiTFSI의 이온전도 도는 4.04 × 10⁻⁶ S/cm이며, 가소제로 사용하기 위한 GO도 신뢰도 있는 범위 내에서 합성 되었다. 이렇게 합성된 GO를 다양한 농도(0.0 wt%, 0.1 wt%, 0.3 wt%, 0.5 wt%)로 첨가하 여 이온전도도를 비교한다. GO는 높은 기계적 강도와 이온전 도도 및 열전도도를 갖는 절연체이며, 나노 입자의 크기라는 특성을 고려하였을 때, PEO-LiTFSI의 가소제로서의 바람직 한 특징을 가지고 있으므로 GO의 농도에 따라서 이온전도도 의 향상이 있을 것으로 기대된다. 또한 LiTFSI에서 나타나는 flocking과 응집현상은 일정량의 가소제로 개선될 것으로 예 상할 수 있으며, 이러한 연구 결과는 리튬이온배터리 뿐만 아 니라, 고체 전해질을 사용하는 다양한 유연전자소자 및 에너 지장치에 활용될 것으로 기대한다.

Acknowledgement : 이 논문은 정부(과학기술정보통신부) 의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2022R1F1A1074745).

참고문헌

- Jong Ho Won et al, "A study on the use of various additives to polymer-based solid electrolytes for all-solid-state batteries", *Ceramist*, Vol. 24, No. 1, pp. 185–202, May, 2021.
- [2] Arumugam Manthiram et al., "Lithium battery chemistri es enabled by solid-state electrolytes", *Nature Review s Materials*, Vol. 2, pp. 1–16, February, 2017.
- [3] Zhigang Xue et al, "Poly(ethylene oxide)-based electroly tes for lithium₁ ion batteries", J. Mater. Chem., Vol. 3, pp. 19218–19253, May, 2015.
- [4] R. F. Samsinger et al, "Influence of the Processing on the Ionic Conductivity of Solid–State Hybrid Electrolyt es Based on Glass–Ceramic Particles Dispersed in PEO with LiTFSI", *Journal of The Electrochemical Society*, Vol. 167, pp. 120538, June, 2020.
- [5] Jie Wen el al, "Graphene Oxide Enabled Flexible PEO-B ased Solid Polymer Electrolyte for All-Solid-State Lith ium Metal Battery", ACS Appl. Energy Mater, Vol. 4, pp. 3660–3669, March, 2021.
- [6] Qiwei Pan et al, "2D MXene-containing polymer electrolytes for all₁ solid-state lithium metal batteries", *The Royal Society of Chemistry*, Vol. 1, pp. 395–402, September, 2019.
- [7] Ji Chen et al, "An improved Hummers method for eco-friendly synthesis of graphene oxide", *Journal of The Electrochemical Society*, Vol. 64, pp. 225–229, June, 2013.
- [8] Sheng Yang et al, "A facile green strategy for rapid red uction of graphene oxide by metallic zinc", *The Royal Society of Chemistry*, Vol. 2, pp. 8827–8832, July. 2012.