상변화물질을 활용한 건물에너지효율화 방안 연구

강혜진 서울기술연구원 e-mail:hjkang@sit.re.kr

Feasibility Study to use phase change materials as energy storage for the building energy efficiency

Haejin Kang Seoul Insitute of Technology

요 약

서울시는 건물 부문이 서울시 온실가스 배출량의 68.7% 차지, 감축전략에서 우선순위를 차지한다. 따라서 열 수요가 적은 기간동안 열을 저장했다가 열 수요가 많은 기간에 필요한 비싼 열을 대체하기 위해 사용하는 열저장시스템의 필요성 증가하고 있다. 본 논문에서는 건물에서 난방열 저장에 효율적 시스템 개발의 중요성이 증가하는 시점에서 상변화물질의 활용가능성 검토한다.

1. 서론

최근 상변화물질을 이용한 열에너지저장시스템은 상용화 및 실제 건물 적용이 늘면서 건물의 에너지효율화에 기여할 수 있는 기술로 주목받고 있다. 그러나 한국에서는 건물에서 상변화물질을 활용한 열에너지저장시스템을 활용한 사례는 없어 기술의 활용성 검토 및 제품의 국산화를 통한 한국형에너지저장기술로의 개발이 필요하다. 따라서 본 연구는 국산화 단계에 앞서 열에너지저장시스템의 에너지효율화 효과, 적용수준을 분석함으로써 활용가능성을 분석하고 빠르게 적용할 수 있는 활용기술을 제안한다.

2. 서울시 온실가스 감축목표 및 현황 분석

2.1 서울시 온실가스 감축목표

서울시는 2050년까지 탄소중립을 발표했다. '서울시 기후변화대응 종합계획'에는 온실가스 연간 배출량을 3,500만 톤으로 2005년 대비 30% 감소목표를 제시하고 있다. 서울시는 건물부문이 서울시 온실가스 배출량의 68.7% 차지, 감축전략에서우선순위를 차지한다. 그 전략으로 제로에너지 건물 의무화조기 추진과 친환경적이고 지속가능한 재생에너지 발전 비중의 확대를 제시하고 있다.

2.2 서울시 온실가스 감축현황 서울시 건물에서 사용하는 도시가스량의 약 56.6%가 주거건

물의 난방 및 급탕용으로 사용되며 이는 서울시에서 사용하 는 전체 에너지의 34%로 추정된다. 만약 화석연료(천연가스) 가 단계적으로 중단되고 난방이 전기에너지로 사용될 경우가 증가한다면 난방(열)부하로 인한 전력망에 대한 수요가 극적 으로 증가할 것으로 예상된다. 증가하는 전력수요를 기존 에 너지 공급시스템에만 의존하기에는 전기에너지 요구량이 너 무 크므로 난방(열)에너지를 전력에너지로 전환하기 전에 열 에너지 효율화가 선행되어야 한다. 이러한 열에너지 효율화 는 유럽 및 미국에서도 활발하게 진행되고 있다. 유럽에서는 최근 "Heat Roadmap Europe 2050(유럽 열 로드맵 2050)"을 발표하고 지역난방, 폐열활용 등의 활용으로 2050년까지 난 방수요를 2005년 대비 62%까지 줄인 이후, 전기난방으로의 대규모 전환을 통해 온실가스 배출량을 추가적으로 줄일 수 있을 것으로 전망하고 있다. 미국은 난방을 전기에너지로 전 환하여 공급된다면 겨울철 전기에너지 피크부하의 75%는 난 방이 차지할 것으로 예상하고 있어 이를 대비하기 위한 기술 개발에 박차를 가하고 있다.

3. 상변화물질 활용한 건물에너지효율화 기술분석

3.1 서울시 온실가스 감축목표열에너지 저장시스템 기술에너지 배터리 시장에서 열에너지 저장시스템은 전기화학 배터리 기술보다 저렴한 비용으로 적용될 수 있는 잠재력이 있지만 열에너지 저장시스템의 시장은 배터리보다 뒤처져 있다. 예측에 따르면 건물에 대한 전 세계 열에너지 저장시스템

용량은 향후 6년 동안 약 600MWh에서 약 3,300MWh로 증가할 것으로 예상된다. 오늘날 대부분의 열에너지 저장 기술이 완전히 개발되어 상용화되었거나, 데모 및 개발 단계에 있다. 몇 가지 핵심 기술은 관련 초기 자본 투자 요구 사항과 관련하여 표시 및 기술 위험 대 현재 개발 단계(즉, R&D, 실증 및 배포 또는 상용화 단계)이다.

[표 1] 열저장기술(TES, Thermal Energy Storage) 비교 표

구분	현열 저장 Sensible Heat Energy Storage	잠열 저장 Latent Heat Energy Storage	열화학 저장 Thermochemical Energy Storage	
개요	온도변화 상변화 시 열에너지 저장	큰 온도 변화 없이 상변화 시 열에너지 저장	화학 반응을 일으키고 안정적인 화학 결합에 열에너지 저장	
높은 저장 온도에서 재료 안정성(저경 매체와 식물 성분: 균형 모두)이 문제		현열 저장에 비해 상대적으로 낮은 온도 범위와 더 높은 에너지 밀도에서 에너지를 저장	높은 에너지 밀도와 훨씬 더 장기적인 에너지 저장 가능	
재료	매우 저렴한 재료(예: 물, 광유, 암석, 콘크리트, 강철)	상변화물질(PCM)의 안정적, 장수명	재료 안정적, 에너지 손실 및 더 복잡한 시스템 설계 필요	
기술수준	_	상용화 (일부 파일럿프로젝트)	실험실 단계	
구분	고온물	상변화물질(PCM)	열화학 물질 120~250 0.01~1.0	
용량(kWh/t)	10~50	50~150		
Power(MW)	0.0001~10.0	0.001~1.0		
효율(%)	50~90	75~90	75~100	
저장기간	일/월	시간/월	시간/일	
비용 (유로/kWh)	0.1~10	10~50	8~100	

3.2 건물 활용성 증가

잠열 저장은 저장 시 열 흡수 또는 방출을 기반으로 한다. 열 축열 시스템은 상변화의 에너지 저장을 포함하며 상(고체액체, 액체→고체) 변화 시 잠열의 형태로 열저장하는 것으로서 건물 적용을 위하여 BASF, Dupont, Henkel, National Core 社 등에서 다양한 캡슐형 PCM 제품을 개발하였다. 독일에서는 축열건자재를 적용한 패시브 하우스 보급호가 추진되고 있으며, 중국에서도 최근 제품화 개발이 추진 중이다. 이중에서도 신재생에너지와 연계한 열저장시스템으로서의 활용성이 가장 높다.

[표 2] 상변화물질(PCM, Phase Change Materials)의 건물적용 수준

E B B B C P E E C C P I P I RECE C P C P E							
	패시브기술요소				액티브·신재생에너지		
구분	콘크리트	석고보드 바닥재	단열재	창호	바닥난방 설비시스템	PCM 탱크 (열저장시스템)	
기술적 완성도	•	•	•	0	0	•	
산업화 진척도	•*	•*	•*	0	0	•	
시공성	O**	O**	O**	•	0	• •	
경제성	O***	O***	O***	0	•	•	

⊗ Not Available / ○ Low / ◎ Middle / ● High / ● ● Very High * 독일, 영국, 미국, 스위스 등에서 제품 상용화하여 판매 중

- ** 일반자재 내 혼합된 캡슐이 시공 시 찢어지면서 성능 감소
- *** 자재혼합 시 콘크리트강도 확보, 내구성 확보를 위한 제품처리에 비용 상승

(콘크리트 25kg 약 49,000원, 단열재 약 35만원/㎡, 창호 약 71~125만원/㎡)

4. 상변화물질 활용한 건물열저장시스템 기술분석 선진사례를 살펴보면 태양열 공기 히터, 온수난방·급탕, 히트 펌프에는 상변화물질 - 열저장시스템이 상용화되어 사용하 는 사례가 늘고 있다. 서울에서의 상변화물질 - 열저장시스 템의 활용을 위해서는 서울 기후조건(온도, 습도, 일사량 등) 에 필요한 가능성 검토(Feasibility)가 이루어진 후 기술의 국 산화가 필요하다. 기술의 국산화 이후에도 실제 건물단위에 적용하는 파일럿 프로젝트가 반드시 수행되어야 하며 이는 공공건축물에서 진행할 수 있다. 소규모 난방 위주의 건물, 대 규모 냉방 위주의 건물에서 활용 가능할 것으로 판단된다. 또 한 장기적으로 아파트단지가 전체 주거세대의 약 55% 이상 차지하는 서울시에서 2050년 탄소중립을 달성하기 위해서는 장기적으로 공동주택 단지의 상변화물질 - 열저장시스템을 활용한 난방시스템에 대한 활용을 적극 검토할 필요가 있다.

[표 3] PCM 열저장시스템을 사용할 수 있는 건물설비에 따른 분석

구분	기술수준	주요사례 위치	경제성	에너지 종류	건물용도
태양열 공기히터 (국산화 실험)	상용화	-	경제성 높음	난방	대공간
태양열 온수난방·급 탕	상용화	유럽	경제성 확보	난방, 급탕 (독립 설치)	단독주택 (소규모주택)
중앙냉난방 히트펌프	상용화	유럽 및 중동	고비용 단가 낮출 필요 있음	냉방	상업용 건물
대단위단지 난방	저장장치 물질 PCM 활용 필요	유럽	경제성 확보	난방, 급탕	공동주택

참고문헌

- [1] 이영우 외 3인, PCM 소재 특성 측정, 한국교통대학교 융· 복합기술연구소 논문집, 4(2), 2014, pp.51-54
- [2] 방선규, 도시열섬효과 저감을 위한 PCM의 열성능 축소모 형 실험, 중앙대학교 석사학위 논문, 2016
- [3] 이효은 외 3인, 도시열섬현상 저감을 위한 PCM(Phase Change Material)의 단열성능 시뮬레이션 분석, 대한건 축학회 논문집(구조계), 33(6), 2017, pp.79-86

이 연구는 2021년도 서울기술연구원 고유연구에 의한 결과의 일부임. [과제번호 서울기술연구원 2022-AC-014]