# 3D Space Fabric 니트 소재의 친환경 염색 공정에 개발에 관한 연구

김은경\*, 황창순\*, 김대선\*\*
\*한국섬유소재연구원, \*\*지비전인터내셔널(주)
e-mail: ekkim@koteri.re.kr

## A Study on the Development of 3D Space Fabric Knit Materials for eco-friendly dyeing process

Eun-kyoung Kim\*, Chang soon Hwang\*, ,Dae-seon Kim\*\*
\*Korea High Tech Textile Institute, \*\*G.Vision international Co.LTD

요 약

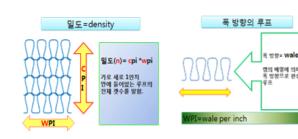
본 연구에서는 3D Fabric knit 소재의 친환경 염색공정 개발에 관한 연구를 진행하였으며 그 결과를 확인하였다

#### 1. 서론

새로운 표현주의를 지향하면서 편안하고 기능성, 고품질 제 품을 원하는 소비자의 니즈를 장기적으로 겨냥하며, 다양한 활용도를 갖춘 업데이트되고 세련된 원단에 포커스를 맞추어 천연 및 합성 요소가 어우러진 복합적인 차이프 스타일을 지 향함과 동시에 개성있는 표현주의 소비자를 겨냥하여 다지안 감성을 살린 소재들이 다분화 되고 있다. 또한 코로나 19 펜 데믹 위기는 이미 세계 경제를 불황으로 이끌었고 소비자의 생활방식, 소비방식 심지어 옷을 입는 방식에 대한 눈에 띄는 변화를 남길 것으로 보이며 재택근무와 외출자제 등으로 생 활패턴의 변화로 집에서 보내는 시간이 길어짐에 따라 '집콕' 등의 라이프 스타일이 하나의 트렌드로 자리잡고 있다. 현재 의류 시장에서 제품화 되어 스펀지 양면에 원단을 본딩 처리 한 일반 쿠션지와 니트 조직으로 하나의 짜임으로 짜여지면 서도 공기층을 가진 입체 원단인 3D 에어쿠션지로 분류할 수 있으며 이러한 소재는 탠션감 및 내구성이 좋아 의류 소재로 급부상하고 있다. 그러나 내마모성이 약해 뜨김 현상이 쉽게 발생하여 오래 입기에는 어렵다는 단점을 가지고 있고 드레 이프성이 좋지 않아 착용성과 활동성에 좋지 않은 단점이 있 다. 이에 본 연구에서는 기존의 본딩 및 이중 쿠션지가 가지 고 있는 한계점을 개선하기 위하여 3D Space Fabric 니트 소 재를 개발하고 Snag성을 향상을 위한 친환경 염색공정을 개 발하고자 진행하였다.

#### 2. 실험

### 2.1 소재 선정


3D Space 니트 소재 개발을 위하여 천연 및 복합소재를 선정하였으며 단면 또는 양면 편조직 베이스의 형태 안정화를 위한 소재 선정을 진행하였다.

[표 1] 소재 선정

| 사용 소재                    |                                       |               | 편조직                                                                 |
|--------------------------|---------------------------------------|---------------|---------------------------------------------------------------------|
| FASE                     | Middle                                | Back          | - 번조석                                                               |
| TR 60<br>Cotton<br>Modal | PET30분사<br>PET30/12DTY<br>PET50/36DTY | TR<br>PET DTY | <ul><li>Single</li><li>Twill</li><li>Waffle</li><li>Crown</li></ul> |

## 2.2 3D Fabric 니트 편직공정 개발

Middle 층 길이를 1.8mm로 진행하기 위하여 실린더 및 전용 캠 제작을 통하여 편직조건을 확립하였으며 급사장력 개선 및 원사 유연성 부여를 위한 설비개선 등을 진행하였으며 항필링 개선을 위하여 저장력, 마찰 최소화 등의 시스템을 적용한 편직공정 개발을 진행하였다.



## 2.2 3D Fabric 니트 소재의 친환경 염색 공정 개발

개발된 3D Fabric 니트 소재의 표면 물성과 친환경 확보를 위한 염색공정 개발을 위하여 CPB 염색공정을 진행하였다. 균염성 확보를 위한 염료/조제 선정 및 공정설계를 진행하여 친환경 상온염색공정 개발을 진행하였다.



[그림 1] 친환경 상온염색공정 모식도

## 2.3 물성분석

3D Fabric 니트 소재의 물성을 확인하기 위하여 염색견뢰도 및 snag, 필링성을 JIS규격을 통하여 분석을 진행하였다.

## 3. 결과 및 고찰

3D Fabric 니트 소재 개발을 위하여 최적의 소재 선정을 진행하였으며 표면의 물성 확보를 위한 조직 설계 및 편직공정을 위하여 편성속도, 장력조건, 편성량의 공정조건을 설정하였다. 표면 물성확보 및 친환경성을 위하여 상온염색 공정 조건을 개발을 위하여 염료 선정 및 시간등의 공정 조건을 설계하였다. 개발된 3D Fabric 니트 소재의 4급 이상의 염색견뢰도 및 3급 이상의 snag성, 필링성을 가지는 소재 개발을 진행하였다.

## 4. 감사의 글

본 연구는 중소벤처기업부 구매조건부기술개발사업 지원으로 수행되었습니다.