고율 충전 대응 배터리 냉각시스템에 대한 해석적 연구

강현성*.**, 신윤혁*, 신동현*, 이홍종*, 최재영* *한국자동차연구원 **고려대학교 기계공학과 e-mail:yhshin@katech.re.kr

A Numerical Study of Battery Cooling System for High Rate Charging

Hyun Sung Kang^{*,**}, Yoon Hyuk Shin^{*}, Dong Hyun Shin^{*}, Hong Jong Lee^{*}, Jae Young Choi^{*} ^{*}Korea Automotive Technology Institute ^{**}Department of Mechanical Engineering, Korea University

요 약

본 논문에서는 기존의 배터리 냉각루프가 적용된 시스템 모델을 구현하고 고율 충전 시 냉각 모드 알고리즘에 따른 배터 리 온도를 산출하였으며, 충전 C-Rate에 따른 적정 배터리 온도 유지가 가능한 열저항을 제시하였다. 해당 시스템 모델에 1D 배터리 모델을 적용하기 위해 3D 해석을 통한 대상 배터리 셀의 열저항을 산출하였으며, 발열 및 전기적 특성을 반영 하기 위해 평가 데이터 기반 ECMs 파라메터를 적용하였다. 또한, 냉각시스템을 구성하기 위해 냉매 사이클의 성능맵 모델을 시스템 모델에 적용하였으며, 배터리 온도 및 냉각수 온도를 제어변수로 하는 냉각모드 알고리즘을 구현하여 실제 배터리 충전 시 냉각시스템의 운전 환경을 모델화하였다. 이를 바탕으로 향후, 고율 충전용 배터리 셀/모듈 개발 시 해당 시스템 모델을 통해 냉각시스템 운전환경이 반영된 냉각설계가 가능할 것으로 기대된다.

1. 서론

지속적인 기후변화 대응과 탄소중립 달성을 위해 다양한 산업분야에서 많은 노력과 투자가 이루어지는 가운데 수송분 야에서는 점차 전력기반 차량으로의 전환이 활발히 진행되고 있다. 대표적으로 리튬이온 배터리를 적용한 전기자동차(EV) 가 기존 내연기관 자동차의 대안으로 관심이 높아지고 있으 며 높은 에너지 밀도와 긴 수명으로 각광받고 있다[1]. 그러 나, 내연기관에 비해 긴 충전시간과 충전 인프라로 인해 고율 충전에 대한 연구 역시 활발히 이루어지고 있다.

리튬이온 배터리는 작동 온도에 민감하여 한계 온도 범위 를 벗어날 경우 높은 성능 저하를 갖는다[2-3]. 또한, 충전과 방전 시 배터리 내부의 반응열에 의해 운전 조건에 따라 배터 리 온도가 급격하게 상승된다. 이러한 문제를 해결하기 위해 대부분의 배터리 시스템에는 배터리 온도를 제어하기 위한 배터리 열관리 시스템이 구성되어 있으며 해당 시스템에 적 합한 배터리 셀 냉각설계가 개발되어 왔다[4]. 그러나, 고율 충전에 따른 배터리 셀의 발열량 대응이 가능한 냉각 설계는 냉각 매체와 배터리 셀 간의 냉각 효율을 반영한 개발이 주를 이루었으며, 실제 배터리 열관리 시스템의 냉각루프의 운전 범위가 반영된 설계가 이루어지지 않았다. 이에 본 논문에서는 기존의 배터리 냉각루프가 적용된 시 스템 모델을 구현하고 고율 충전 시 냉각 모드 알고리즘에 따 른 배터리 온도를 산출하여 고율 충전 C-Rate에 따른 적정 배터리 온도 유지가 가능한 열저항을 제시하여 실제 냉각 시 스템이 반영된 냉각설계의 가이드라인을 제시하였다.

2. 모델 구성

2.1 1D 배터리 모델

배터리 냉각루프가 반영된 시스템 모델에 1D 배터리 모 델을 적용하기 위한 모델화를 진행하였다. 그립 1 (a)와 같 이 고율 충전용 대상 배터리 셀의 형상정보를 반영하여 배 터리 셀에서 냉각 채널 범위의 열저항을 산출하기 위해 3D 모델을 구현하였다. 또한, 표 1의 각 파트 별 물성 정 보를 반영하여 해당 모델에 대한 CFD 해석을 진행하였다. 배터리 셀에서 냉각채널 전단까지의 열저항 산출을 위해 배터리 셀에 발열량 3.93W를 인가하여 각 파트의 표면 온 도 결과를 바탕으로 열저항을 산출하였으며, 파트 별 열저 항은 그림 1 (b)와 같이 나타났으며 총열저항은 1.926 K/W 로 산출되었다.

[그림 1] 배터리 열저항 산출을 위한 CFD 해석 (a) 배터리 셀 3D 모델링 (b) 배터리 셀 파트별 열저항 결과

Parameters	Fin plate	Battery cell	TIM
Mass [kg]	0.04	0.89	0.13
Thermal conductivity [W/m-K]	170	0.25/25 (cross/in-plane)	1.6
Specific heat [J/kg-K]	917	1000	1000
Density [kg/m3]	2698	2374	1780

[표 1] 배터리 구성 파트별 재료 물성 정보

3D 모델링을 통해 산출된 열저항을 1D 시스템 모델에 반 영하기 위해 등가열전도를 환산하여 적용하며 선행 연구를 통해 계측된 ECMS 파라메터의 맵핑 데이터를 모델에 반영 하여 고율 충전 배터리 셀 모델을 구성하였다. 냉각판과 유체 간의 열저항은 온도, 유량 및 운전 범위에 따른 열저항 변화 를 반영하기 위해 Dittus-Boelter Correlation을 적용하였다.

2.2 배터리 냉각시스템 모델

배터리팩 냉각시스템에 적용되는 칠러의 성능맵 모델화 를 위해 그림 2와 같이 냉매 사이클을 증발기, 압축기, 메 인/서브 응축기, 전자식 팽창밸브를 적용하여 구성하였다. 냉매 사이클에 작동유체는 xEV 차량의 냉매로 사용되는 R1234yf의 물성치를 적용하였으며, 사이클의 운전 압력은 저압부 3bar, 고압부 15bar를 적용하였다. 또한, 냉매와 냉각 수 간의 분석적 열교환기 모델 적용을 위해 Travis&Rohsenow correlation을 적용하였으며 압축기 모델은 Clearance/Swept를 파라메터로 사용하는 Polytropic compression 열역학적 모델을 적용하였다.

모델화된 냉매 사이클의 냉각 모드는 표 2와 같이 세 가지 모드로 구성하였으며, 각 모드에 따른 성능 맵은 그림 3과 같 이 유량과 냉각 유체의 온도 특성을 한 가지 인자로 모두 반영 되도록 Reynolds 수에 따른 열교환 성능과 COP로 구성하였다.

[그림 2] 배터리 냉각용 칠러 냉매 사이클 모델화

[표 2] 칠러 냉각 모드 종속 열관리 부품

냉각 모드	워터펌프 유량 (증발기 냉각수 측) [LPM]	워터펌프 유량 (메인 응축기 냉각수 측) [LPM]	압축기 회전수 [RPM]
Mode-1			2000
Mode-2	15	15	4000
Mode-3			6000

[그림 3] 냉각 모드에 따른 칠러 냉각 성능 및 COP (a) Mode-1 (b) Mode-2 (c) Mode-3

[그림 4] 칠러 냉각 모드 알고리즘 및 작동 조건 (a) 상태 조건 알고리즘 (b) 냉각 모드 작동 예시 (c) 상태 조건에 따른 작동 모드

배터리 모듈의 온도에 따라 칠러의 냉각 모드를 구현하 기 위한 알고리즘을 그림 4와 같이 구성하였으며, 상기 알 고리즘은 온도 조건에 따라 상태 조건을 판단하고 상태 조 건에 맞는 냉각 모드를 선정하여 칠러에 냉각 부하를 적용 하도록 설계하였다.

배터리 팩 모델 구성을 위해 대상 배터리 모듈의 전압(50.4 V) 과 전류량(52.6 Ah)을 고려하여 상용 전기차에 적용되는 벤치 마킹 배터리 팩과 유사한 전압과 전류량을 구현하기 위해 8개 의 직렬 모듈과 3개의 병렬 모듈로 구성하여 배터리 팩 최대 전압 403.2 V, 전류량 157.8 Ah인 모델을 그림 4와 같이 구현 하였다.

그림 4와 같이 구성된 배터리 냉각 시스템에서 칠러 작동 모드에 적용되는 제어 인자 중 배터리 모듈 온도는 직렬 구성 배터리 모듈 중 끝단의 배터리 모듈의 온도를 설정값으로 정 의하였으며, 냉각수 온도와 유량에 따라 칠러 성능은 앞서 구 성된 성능 맵에 따라 부하가 결정되도록 구성하였다. 또한, 칠 러 냉각 모드 알고리즘 내 배터리 냉각수 온도의 과도한 하락 을 방지하기 위해 배터리 냉각수 허용 온도 20~35℃ 내에서 작동하도록 구성하였다.

[그림 4] 칠러 적용 배터리 냉각 시스템 모델화

3. 시스템 해석 결과

배터리 냉각시스템의 운전환경에서 배터리 충전에 따른 온 도변화를 확인하기 위해 1C-Rate, 3C-Rate 충전 조건에서 완 전 충전 시 최종 배터리 온도를 시스템 해석을 통해 그림 5와 같이 확인한 결과, 1C-Rate 충전 조건에서 그림 5 (a)와 같이 최종 배터리 온도 36.8℃로 배터리 한계 온도인 45℃이하를 만족하였다. 그러나, 3C-Rate 충전 조건에서 그림 5 (b)와 같 이 최종 배터리 온도 57.9℃로 배터리 한계온도 이상의 온도 를 형성하는 것을 확인할 수 있었다.

배터리 셀에서 냉각플레이트 전단까지의 열저항의 감소에 의한 개선이 필요함에 따라, 3C-Rate 충전 조건, 배터리 셀 에서 냉각플레이트까지의 열저항을 기존(1.926 K/W) 대비 1/2, 1/3, 1/4로 감소하여 배터리 냉각시스템에 의한 배터리 모듈의 온도를 확인하였다. 그림 6과 같이 3C-Rate 충전 시 배터리 모듈의 온도가 45℃ 이하를 유지하기 위한 최소 배터리 내부 열저항은 기존의 1/3의 열저항인 0.642 [K/W] 수준으로 확인되었다.

[그림 5] 고율 충전 적용 배터리 열관리 시스템 해석 결과 (a) 1C-Rate (b) 3C-Rate

[그림 6] 배터리 내부 열저항 축소 모델에 따른 배터리 냉각시스템 해석결과 (a) 1.926 [K/W] (b) 0.963 [K/W] (c) 0.642 [K/W] (d) 0.4815 [K/W]

4. 결론

본 연구에서는 기존의 배터리 냉각루프가 적용된 시스템 모 델을 구현하고 고율 충전 시 냉각 모드 알고리즘에 따른 배터 리 온도를 산출하여 충전 C-Rate에 따른 시스템 해석을 진행 하였다. 냉각모드 알고리즘이 적용된 시스템 해석 결과 IC-Rate 충전 조건에서 완전 충전 시 배터리 한계온도 이하 의 온도를 만족하였으나 3C-Rate 충전 조건에서 한계 온도 이상의 온도를 나타내었다. 배터리 셀에서 냉각플레이트 간 의 열저항을 기존 대비 일정 수준 감소시켜 냉각 모드 알고리 즘 구동 시 3C-Rate 충전 조건에서 한계 온도 이하의 온도를 갖는 열저항을 확인하였다. 이를 통해 고율 충전용 배터리 셀/ 모듈 개발 시 실제 적용되는 냉각시스템이 반영된 냉각설계가 가능할 것으로 예상된다.

5. 사사

본 연구는 2023년도 산업통상자원부의 재원으로 한국산업 기술평가관리원(KEIT)의 연구비 지원을 받아 수행한 연구결 과입니다.(No.20011906)

참고문헌

- Jaguemont, J., Boulon, L., & Dubé, Y., "A comprehensive review of lithium-ion batteries used in hybrid and electric vehicles at cold temperatures.", Applied Energy, 164, 99–114, 2016.
- [2] Pesaran, A., Santhanagopalan, S., & Kim, G. H., "Addressing the impact of temperature extremes on large format li-ion batteries for vehicle applications"

National Renewable Energy Lab.(NREL), Golden, CO (United States), 2013.

- [3] Teng, H., Ma, Y., Yeow, K., & Thelliez, M., "An analysis of a lithium-ion battery system with indirect air cooling and warm-up.", SAE International Journal of Passenger Cars-Mechanical Systems, 4(2011-01-2249), 1343-1357, 2011.
- [4] Tete, P. R., Gupta, M. M., & Joshi, S. S., "Developments in battery thermal management systems for electric vehicles: A technical review.", Journal of Energy Storage, 35, 102255, 2021.