김서림 방지 및 자가세척 기능성을 갖는 양쪽성 이온 고분자 코팅 유리의 제조

김민서, 이윤주, 윤주연, 권호찬, 송기창 건양대학교 의료신소재학과 e-mail: songkc@konyang.ac.kr

Preparation of a zwitterionic polymer-coated glass with anti-fogging and self-cleaning

Minseo Kim, Yunju Lee, Juyeon Yun, Hochan Kwon, Gichang Song Department of Chemical Engineering, Konyang University, Korea

요 약

온도 변화 등에 의하여 투명도를 감소시키는 김서림 현상은 다양한 분야에서 불편함을 유발한다. 이러한 이유로 김서림 방지 코팅은 다양한 연구 분야에서 주목받고 있다. 본 연구에서는 기재의 표면을 양쪽성이온 고분자인 2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl) (SBMA)를 활용하여 김서림 방지 특성과 자가 세척 기능을 동시에 갖는 표면을 구현하고자하였다. 또한, FT-IR, 접촉각을 통해 SBMA가 유리 표면에 코팅되었음을 확인 하였으며, SBMA으로 코팅된 유리는 우수한 김서림 방지, 내오염성을 나타나냈으며, 장기지속성을 보였다.

1. 서론

김서림은 온도와 습도의 변화로 인해 기재 표면에 물방울이 불균일하게 응축되는 현상을 말한다. 이는 유리, 안경, 고글 및 내시경과 같은 투명 기재의 투명성을 감소시켜 일상생활 에서 불편을 초래할 뿐만 아니라 잠재적인 위험을 초래할 수 있다[1]. 그러므로 기재의 투명도를 유지할 수 있도록 김서 림 현상을 제어할 필요가 있다. 현재까지는 김서림 방지 특성 을 구현하는 두 가지 방법이 널리 알려져 있다. 첫 번째 방법 은 온도, 상대 습도 및 주변 공기 흐름과 같은 환경 변수를 조절하여 응결을 피하는 것을 목표로 하는 방법이다[2]. 두 번째 방법은 투명 기재 표면의 습윤 특성을 조절하며 투명 기 재 표면의 특성 (화학 및 거칠기)을 조절하거나 코팅 증착을 하는 방법이다[3,4]. 두 번째 방법은 기재의 표면 처리만 요 구되기 때문에 저렴한 비용, 조절 가능한 습윤성으로 인하여 널리 이용되고 있다. 표면 코팅 기술을 통한 김서림 방지 효 과는 소수성 및 친수성 표면 코팅을 통해 기재에 부여할 수 있다[5].

예를 들어, Zhao et al [6]는 유리 슬라이드 표면에 고분자 를 스핀 코팅하여 우수한 김서림 방지 및 항균 코팅을 동시에 적용하였다. 고분자가 코팅된 유리의 우수한 김서림 방지 성 능은 고분자의 친수성/소수성 균형에 기인하며 암모늄 화합 물에 의한 강한 항균 성능을 동시에 나타냈다[6].

또 투명성 소재에 발생하는 다른 문제점으로는 표면 오염이 있다. 이는 공기 중에 부유하던 이물질이 물체의 표면에 붙어 투명성을 떨어트리기 때문에 김서림 방지와 더불어 많이 요 구되는 해결 사항이다.

따라서, 본 연구에서 유리 표면 위에 김서림 방지 및 표면 세척 효과를 부여하고자 양쪽성 이온 고분자 중 하나인 (2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl) (SBMA)를 화학적으로 결합하여 다기능 코팅 표면을 구현했 다.

2. 실험방법

2.1 재료

본 실험에서 사용된 Ethyl alcohol (EtOH) Acetone, methanol (MeOH), Toluene은 삼전화학에서 구매하였으 며, 티올렌 반응을 위한 실란커플링제인 (3-mercaptopropyl)trimethoxysillane(MPS), Sulfobetaine methacrylate (SBMA)은 TCI에서 구매하였 다. 광개시제인 2,2-Dimethoxy-2-phenylacetophenone (DMPA)는 Sigma-Aldrich에서 구매하였다. 모든 시료는 추가 정제없이 받은 그대로 사용하였다.

2.2 유리 슬라이드의 전처리

표준 유리 슬라이드는 먼저 아세톤, 에탄올 및 증류수에서 각각 10분 동안 초음파 세척을 하였다. 진공 건조 후, 유리 슬라이드는 산소 플라즈마 처리를 통해 활성화시켰다. (Plasma Etch, PE-50. 시간 = 10분, 출력 = 100W, 산소 흐름 = 12 cc/min, 압력 = 150 mTorr)

2.3 SBMA을 이용한 표면 코팅

Fig. 1과 같이 비닐 기능기가 존재하기 때문에 SBMA는 티 올-에닌 반응을 통해 티올화된 표면에 공중합을 할 수 있다 [7]. 산소 플라즈마로 처리된 유리 슬라이드는 실온에서 12 시간 동안 톨루엔 내의 5 vol% 용액에 침지하여 표면에 티올 (-SH)기를 도입하였다[8]. MPS로 표면 개질된 유리 슬라 이드는 톨루엔, 톨루엔/에탄올 혼합물 (5:5, v/v%) 및 에탄 올에서 각각 15분 동안 순차적으로 초음파 처리되었으며, 이 후 질소로 건조되었다. SBMA를 MPS로 표면 개질된 유리 슬라이드에 도입하기 위해 먼저 1, 5, 10, 20 wt% SBMA와 0.3 wt% DMPA가 포함된 MeOH/DI 혼합 용액 (97:3 v/v%)에 침지하였다. 그 후 유리 슬라이드와 용액은 UVP (모델 CL1000, 8-W Hitachi F8T5)를 사용하여 20분 동 안 자외선 조사를 받아 티올엔 반응을 수행하였다. 결과적으 로 얻어진 SBMA으로 코팅된 유리 표면은 아세톤과 메탄올 로 철저히 세척하였다.

Fig. 1. schematic illustration of preparation of the SBMA-coated surface of slide glass.

2.4 물성 측정

푸리에 변환 적외선 분광법(FT-IR, Cary 630, Agilent Technologies)을 통해 화학적 결합을 관찰되었다. 코팅 도 막의 물 접촉각(water contact angle, WCA)은 카메라가 장 착된 접촉각 측정기(Phoenix 10, Surface Electro Optics) 를 사용하여 측정하였다. 한편 코팅 도막의 김서림 방지 특성 은 비이커에 담긴 80 ℃의 뜨거운 물의 표면 5 cm 위에 시 료를 올려 30초 후에 김서림 발생 여부를 관찰하여 평가하였 다. 또한 antifogging이라고 인쇄된 종이를 비이커 아래에 놓 아 뜨거운 물에 의한 김서림 발생으로 인한 코팅 도막의 투 명도 변화를 관찰하였다. 내오염 시험은 흑연과 미네랄 오일 이 혼합된 용액을 기재 표면에 떨어트린 후, 오염 물질이 붙 은 기재의 표면에 증류수를 떨어트려 관찰하였다.

3. 결과 및 고찰

3.1 FT-IR 측정

코팅의 화학 조성을 조사하기 위해 유리에 적용된 코팅을 신중하게 제거하고 FTIR 스펙트럼을 사용하여 특성을 분석 했다. Fig. 2에서 볼 수 있듯이, SBMA의 C-H 진동 피크는 3040 cm⁻¹에서 나타났지만, MPS와 반응시킨 코팅 쾰름에 서는 사라졌으며 SBMA 단량체에서 C=O 신장 진동 피크는 1722 cm⁻¹에서 관찰되었다. SBMA의 C=C 신장 진동 피크 와 CH₂=C의 C-H 굽힘 진동은 1635 cm⁻¹ 및 1300 cm⁻¹ 에서 관찰되었지만, SBMA가 코팅된 필름에서는 사라졌다. S=O의 비대칭 및 대칭 신장 진동 피크는 각각 1169 cm⁻¹와 1034 cm⁻¹에서 관찰되었다. 이러한 피크의 변화를 통해 SBMA가 성공적으로 기재의 표면에 도입되었음을 알 수 있 다.

3.2 접촉각 측정

SBMA 코팅의 표면 접촉각 (WCA)을 분석을 통해 코팅 표 면의 친수성을 그림 Fig. 3을 통해 확인하였다. MPS로 개질 된 표면은 약 53°의 접촉각을 나타냈다. 반면, SBMA로 코팅 된 기재의 표면의 접촉각은 매우 감소하였다. 1wt% 농도의 SBMA 수용액을 사용하여 코팅된 기재 표면의 접촉각은 26.5°로 친수성을 나타냈으며, SBMA의의 농도가 증가함에 따라 접촉각이 감소하는 경향을 나타냈다. 특히, SBMA 수용 액의 농도가 20 wt%일 때, 9.5°로 접촉각이 가장 낮았으며, 우수한 친수성을 나타냈는데, 이는 SBMA가 기재의 표면에 도입되는 양이 증가하기 때문에 물과의 높은 상호작용으로

인하여 우수한 친수성을 나타낸 것으로 판단된다[36,37].

3.3 김서림 방지

우수한 김서림 방지는 투명성을 유지하는데 중요한 요소중 하나이다. Fig. 4는 1, 5, 10, 20 wt%의 다양한 SBMA 농 도로 코팅된 유리 슬라이드를 80℃ 의 수증기에 10초간 노 출시켜 김서림 방지 효과를 나타낸 사진이다. Fig. 4 (a-c) 에서 나타낸 바와 같이 1, 5, 10 wt%의 SBMA 농도로 코팅 된 유리 슬라이드는 김서림 현상이 나타났으나, Fig. 4 (d)에 서와 같이 20 wt% 농도의 SBMA으로 코팅된 유리 슬라이드 에서는 김서림이 방지되는 것을 알 수 있다. 이는 PSBMA이 유리 슬라이드에 충분히 코팅되어 표면에서 물방울이 응축되 기 전에 빠르게 얇은 수막을 형성하기 때문에 빛 산란을 줄이 고 김서림을 방지하지되는 것으로 판단된다.

Fig. 4. Exposing the pure glass slide and the modified glass slide to about 5 cm above the hot water vapor of 80 $^\circ$ C for 10 s (a) 1 wt% (b) 5 wt% (c) 10 wt% (d) 20 wt%

3.4 자가 세척

Fig. 5는 미네랄 오일과 흑연이 혼합된 오염 물질을 투명 유 리 슬라이드와 SBMA 20 wt%로 코팅된 유리 슬라이드 표면 에 떨어트리고, 증류수로 세척 과정을 후에 표면에 잔여하는 오염물질 잔여물을 관찰한 사진이다. Fig. 5(c))에서 나타낸 바와 같이 코팅되지 않은 유리 슬라이드 표면에는 상당량의 오염 물질이 잔존하는 것을 알 수 있다.반면, Fig. 5(d)에서 와 같이 SBMA으로 코팅된 유리 슬라이드 표면에는 잔존하 는 오염물질 잔여물이 없는 것을 알 수 있다, 이를 통해 SBMA로 코팅된 표면은 우수한 자체 세척 능력을 나타냄음 확인하였다. 이러한 결과는 SBMA가 물 분자를 끌여들여 얇 은 수막을 형성하여 오염 물질이 쉽게 흘려나갈 수 있 던 것 으로 판단되다.

Fig. 5. Evaluation of self-cleaning performance on untreated glass and glass coated with pSBMA.(a) and (b) depict untreated glass before and after being rinsed with water, respectively; (c) and (d) show glass coated with pSBMA before and after rinsing with water, respectively. The dark droplets represent contaminants consisting of graphite and Mineral oil.

4. 결론

본 연구에서는 SBMA을 유리 슬라이드에 코팅하여 우수한 김서림 방지 및 자가 세척 기능을 가진 다기능 코팅 표면을 구현하였다. SBMA의 함량이 증가함에 따라 코팅 표면의 친 수성이 증가하는 경향을 나타냈다. 또한 김서림 방지 시험을 진행한 결과, 1, 5 10 w%의 SBMA 농도로 코팅된 유리 슬 라이드의 표면에서는 김서림 방지 효과를 나타내지 못하였으 나, 20 wt%의 SBMA 농도로 코팅된 유리 슬라이드 표면에 서 김서림 방지 효과가 나타났다. 또한, 20 wt% 농도의 SBMA으로 코팅된 유리 슬라이드는 오염 물질을 증류수 세 척으로 쉽게 제거하는 자가 세척 기능을 나타냈다.

참고문헌

- Di Mundo, R., d'Agostino, R., & Palumbo, F. (2014).
 Long-lasting antifog plasma modification of transparent plastics. ACS applied materials & interfaces, 6(19), 17059–17066.
- [2] Zhang, G., Zou, H., Qin, F., Xue, Q., & Tian, C. (2017). Investigation on an improved heat pump AC system with the view of return air utilization and anti-fogging for electric vehicles. Applied Thermal Engineering, 115, 726–735
- [3] Shibraen, M. H., Yagoub, H., Zhang, X., Xu, J., & Yang, S. (2016). Anti-fogging and anti-frosting behaviors of layer-by-layer assembled cellulose derivative thin film. Applied Surface Science, 370, 1–5.
- [4] Tanaka, C., & Shiratori, S. (2013). Fabrication of the durable low refractive index thin film with chitin-nanofiber by LBL method. In MATEC web of conferences (Vol. 4, p. 05006). EDP Sciences.
- [5] Xu, F., Li, X., Li, Y., & Sun, J. (2017). Oil-repellent antifogging films with water-enabled functional and structural healing ability. ACS Applied Materials & Interfaces, 9(33), 27955–27963.
- [6] Zhao, J., Ma, L., Millians, W., Wu, T., & Ming, W. (2016). Dual-functional antifogging/antimicrobial polymer coating. ACS applied materials & interfaces, 8(13), 8737–8742.
- [7] Zhou, J., Liu, Y., Jiao, T., Xing, R., Yang, Z., Fan, J., ... & Peng, Q. (2018). Preparation and enhanced structural integrity of electrospun poly (ε-caprolactone)-based fibers by freezing amorphous chains through thiol-ene click reaction. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 538, 7-13.