LMPET/PET Sheath-core 소재의 열처리 조건에 따른 Linen-like 특성 연구

김경미*, 조성훈*, 오재영**, 김태호**
*한국섬유소재연구원
***창의물산
e-mail:gm_kim@koteri.re.kr

A Study on the Linen-like Characteristics According to the Heat Treatment conditions of LMPET/PET Sheath-core Fiber

Kyung-mi Kim*, Seong-hun Cho*, Jae-young OH**, Tae-ho Kim**
*Korea High Tech Textile Research Institute

**Changyi Mulsan Co.,Ltd

요 약

본 논문에서는 기존 Linen소재의 단점을 보완하고 장점을 극대화하기 위하여 LMPET/PET Sheath-core 소재를 활용하여 Linen-like소재를 개발함에 있어, 열처리 조건(온도, 시간)에 따른 원사간 결착정도를 분석하고 소재의 Stiffness 등을 고려하여 Linen-like효과 발현을 위한 최적 처리공정을 확립하였음

1. 서론

1.1. 이론적 배경

린넨은 피부에 밀착되지 않고 바람이 잘 통하며, 방열성능이 양모의 5배, 실크의 19배에 이를 뿐만 아니라 땀 흡수가뛰어나고 민감한 피부에도 비교적 안전한 소재로 알려져 있어 S/S 시즌에 각광받는 소재임. 특히 린넨 소재의 자연스러운 외관과 편안한 느낌, 다른 소재에 비해 오염이 잘 생기지않고, 세균번식을 억제하는 항균성 등의 특징이 있어 패션업계 뿐만 아닌 인테리어 패브릭으로도 활용도가 높은 소재이다.

그러나 Linen 소재는 잦은 구김과 낮은 드레이프성 및 염색가공시 과도한 표백으로 인한 강도저하 등의 단점을 가지고 있어 이러한 문제점을 개선하기 위한 연구가 지속되고 있으며, 주로 Cotton, PET와 같은 섬유를 혼방하거나 면 방적시불순물로 취급되는 Waste Noil을 활용하여 방적사를 개발하거나 린넨 자체의 강도저하, 표백의 문제점을 개선하기 위해물리화학적 가공을 통해 린넨 자체의 물성을 변형시키는 등의 방법이 사용되고 있다.

이에, 본 연구에서는 별도의 가공공정 없이 Linen특유의 장점을 발현하면서 단점을 보완할 수 있도록 저용점 Polyester (LMP) 및 Polyeter Sheath-core 소재를 활용함으로써 단-단섬유를 활용하여 방적(MVS)하여 고이섬도, 이형, 이수축 성능을 부여하고 더불어 이지케어성이 우수한 복합소재를 개발하고자 하며, 이러한 Linen-like 특성 발현을 위한 최적 열처

리 조건에 대해 연구하였다.

2. 실험

2.1 시료

Linen-like 소재 개발을 위해 Low melting PET 및 Regular PET를 방적하여 MVS 방적사 4종을 개발하였으며, 개발한 방적사 4종의 혼용율은 아래와 같다.

[표 1] 개발 원사적용 소재 Spec.

구분	원사 혼용율		, J
	Low melting PET	Regular PET	섬도
#1	10	90	20's
#2	10	90	30's
#3	20	80	20's
#4	20	80	30's

열처리에 따른 Linen-like 특성을 확인하기 위해 위의 샘플 편직기(Lab.knitter, GTK-578)를 이용하여 원사 4종에 대한 편직물을 확보하고 이를 시료로 활용하였다.

2.2 실험방법

2.2.1 LMP 복합소재의 열적거동 분석

Regular PET와 저온융착 PET사의 열적특성은 DSC (Differential Scanning Calorimeter, Q200)를 이용하여 승온 속도 10℃/min 로 하여 50℃~300℃까지 열적거동을 측정하였다.

2.2.2 LMP 복합소재의 열처리

시험용 증열보온시험기(Steam Heat Insulation Tester, AM-8000K)를 활용하여 LMP복합소재를 시료걸이 철망대에 핀으로 확보 고정하여 130℃, 140℃, 150℃, 160℃, 170℃, 180℃, 190℃에서 1분, 2분간 고온증열처리(High temperature steaming:이하 HTS) 하였다.

2.2.3 열처리 원사의 단면 분석

SEM(Scanning electron microscope, S-3000N)을 사용하여 HTS조건에 따른 LMP 복합소재의 단면형상 변화를 확인하였다.

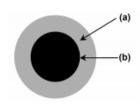


Fig1. Sheath-core Structure of the LM PET yarn;(a)LM PET part, (b)Regular PET part.

2.3 실험결과

2.3.1 LMP 복합소재의 열적거동 분석

LMP복합소재의 열적거동 분석결과, Regular PET의 Melting Point(Tm)는 250~260℃ 부근에서 확인되는 반면, Sheath부의 구성성분인 LM PET의 용융점은 아주 미세하게 나타났으며, 이는 LM PET 제조시 테레프탈산과 에틸렌글리콜 외에 디카르복실산 성분으로서 아디프산, 이소프탈산, 디올 성분으로서 1,4-부탄디올, 폴리에틸렌글리콜 등의 제 3성분을 공중합 시킬 때 융점이 저하되는데 이 때 폴리에틸렌 테레프탈 레이트 주쇄에 Kink구조나 Defect의 영향을 초래하여 열결정화와 배향결정화가 방해받기 때문이다

2.3.2 HTS 원사의 단면 분석

미처리 시료의 경우 LM PET사의 표면이 그대로 나타나는 반면, HTS 온도가 증가함에 따라, 시간이 증가함에 따라 융착되는 거동이 뚜렷하게 확인되었으며, 190℃에서 2분간 처리한 시료는 거의 모든 융착이 이루어짐을 확인할 수 있다. 그러나 일정범위에서는 열고정 효과에 의한 형태안정성, 열융착에 의한 경, 위사간 결속 등의 영향으로 품질 개선의 중요한 요소인 고급스러운 표면 평활화가 향상되었으나, 융착이 너무 많이 일어난 경우에는 원단의 Stiffness라 강해져 Linen-like소재로 활용이 어려움에 따라 원단의 Stiffness를 고려하여 HTS 적정범위에 대한 처리조건을 확립하였다.

3. 결론

Linen-like 소재의 단점을 보완하고 장점을 극대화하기 위해 LMPET/PET Sheath-core 소재를 활용하여 Linen-like소

재를 개발하였으며, 열적거동 및 열처리에 따른 소재의 특성을 분석함으로써 Linen-like특성 발현을 위한 최적조건을 확립하였다.

감사의 글

본 연구는 중기부 구매조건부 신제품개발사업(과제번호 : S2785346)의 연구비로 수행되었으며, 이에 감사드립니다.