유체-구조 상호작용 해석을 통한 풍하중에 대한 온실 구조물 강도 평가

최모건*, 이희남**, 위환***, 위계대***
*순천대학교 우주항공공학과
**순천대학교 기계우주항공공학부
*** 에스지티(주)
e-mail:hnrhee@scnu.ac.kr

Evaluation of Agricultural Green House Strength against the Wind Loading by Fluid-Structure Interaction Analysis

Morgan Choi*, Huinam Rhee**, Whan Wie, Gye-Dae Wie
*Dept. of Aerospace Engineering, Sunchon National University

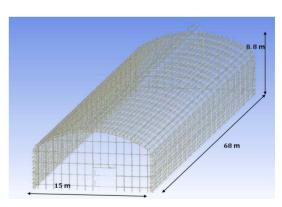
**Dept, of Mechanical and Aerospace Engineering, Sunchon National University

***SGT Research Lab

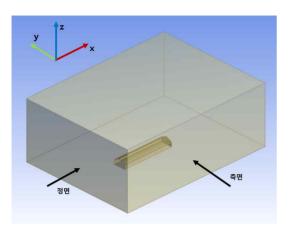
요 약

본 연구에서는 광폭 단동형 온실 구조물의 풍하중에 대한 강도를 유체-구조 상호작용 해석 기능을 통해 분석하였다. 일반적으로는 온실 설치를 하기 전에 풍하중에 대한 강도 평가를 관련 법규에 근거하여 간단하게 분석하여 인허가를 받지만, 본 연구에서는 전산구조해석 및 전산유체해석을 동시에 수행하여 보다 정밀한 구조 강도 평가를 수행한 연구 사례를 소개한다.

1. 서론


최신 온실 구조는 그림 1과 같이 너비가 15 m 이상 광폭 단동형으로 설계되며 길이는 70 m 이상에 달할 정도로 대형 화 되고 있다.

[그림 1] 에스지티(주)의 광폭 온실 구조물 예 [1]


온실 구조가 대형화 될수록 태풍 등 풍하중에 대한 보다 정밀한 구조 강도 평가 분석이 필요하다. 본 연구에서는 전산 구조해석 및 전산유체역학 전산프로그램을 이용한 유체-구 조 상호작용(FSI)해석을 통하여 풍하중에 대한 온실 구조물 강도 해석을 수행한 내용을 소개한다.

2. 온실 주변 유동장의 CFD 모델링 및 온실 구조 해석 모델링과 FSI 해석 본 연구의 대상인 온실은 크기가 그림 1 에 보여지는 바와 같으며 에스지티(주)에서 개발한 단동형 광폭 온실의 한 예이다. 그림 1은 구조해석 유한요소 모델이며 주요 프레임이트러스 구조 형태로 되어 있다.

[그림 2] 온실 구조해석 유한요소 모델

본 연구에서는 그림 3과 같이 온실 주변의 유동장 영역을 설정하여 작성한 전산유체해석을 위한 모델과 그림 2의 구조 모델을 결합하여 one-way 유체-구조상호작용 해석을 수행하였다.

[그림 3] 온실구조에 작용하는 풍하중 해석을 위한 전산유체해석 영역

바람의 방향은 정면, 측면 및 45도 각도 방향 모두를 고려하였고 풍속은 과거 태풍의 풍속 데이터를 조사하여 40 m/s 로 설정하였다. 일반적인 온실 설치 법규 만족 여부를 분석하는 강도 평가 방법은 간단하지만 그 보수성 여부에 여러가지 불확실성이 있으며 바람의 방향을 다양하게 가정하기가불가능하고 풍하중을 정확하게 고려할 수 없는 실정이다. 본연구에서의 방법은 상대적으로 정확하게 풍하중을 계산하고바로 연결하여 구조해석을 수행할 수 있으므로 매우 정확하고 효율적이라고 할 수 있다. 본연구를 통하여 그림 2의 트러스형 광폭 단동형 온실 구조는 40 m/s 의 여러 방향 풍하중에대해 충분한 강도를 가지고 있음을 확인하였다.

3. 결론

본 연구에서는 전산유체해석 및 전산구조해석을 결합한 one-way 유체-구조상호작용 해석을 통하여 본 연구의 대상으로 사용한 트러스형 광폭 단동형 온실 구조가 한반도에서 발생 가능한 최대 강도 수준의 태풍 하중에 대해서 충분한 구조적 강도를 가지고 있음을 확인하였으며 추후 온실 구조 설계 최적화에 효율적으로 사용가능하다.

사사

본 연구는 2020년도 교육부의 재원으로 한국연구재단의 지원을 받아 수행된 지자체-대학 협력기반 지역혁신 사업의 결과입니다.

참고문헌

[1] 에스지티(주) 웹사이트 https://sgtglobal.modoo.at/