볼 엔드밀을 이용한 3 차원 가공에서 CFRP의 표면 거칠기 분석

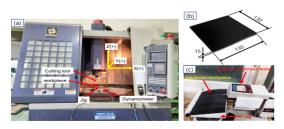
하이소팔*, 오성훈**, 유승현*, 강나루*, 박철완*
*전북대학교 기계시스템공학부
e-mail:khaisophal@naver.com

A 3-dimensional surface roughness analysis during machining process of CFRP using ball end mill

Sophal Hai*, Sung Hoon Oh*, Seung Hyeon You*, NaRu Kang*, Chul Wan Pak*

*Dept. of Mechanical System Engineering, Jeonbuk National University

요 약

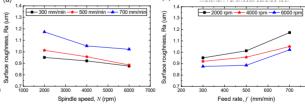

본 논문에서는 건식절삭 조건에서 볼 엔드밀을 사용하여 CFRP의 곡면 가공을 수행하였으며 표면 거칠기를 분석하였다. 표면 거칠기는 표면 조도 측정기(Surftest SJ-210)를 사용하여 측정하였다. 표면 거칠기는 스핀들 속도가 증가할수록 감소하고, 이송속도가 증가할수록 증가하였다. 따라서 CFRP의 곡면 가공 표면은 높은 스핀들속도와 낮은 이송 속도에서 최적 조건으로 나타났다.

1. 서론

탄소 섬유 강화 플라스틱 (CFRP)은 우수한 재료 특성으로 인해 자동차, 항공기, 항공 우주, 로봇 공학, 스포츠 용품, 건 설 및 군사 분야에서 사용하기에 매우 매력적이다. 그러나 CFRP 복합재는 절단하기 어려운 재료이다. 또한 다양한 산 업 분야에서 널리 적용하려면 가공 자유형 표면도 필요하다. 따라서 본 연구에서는 CNC 밀링 머신에서 건식 절삭 조건에 서 CFRP의 곡면 가공을 수행하고 다양한 조건에서의 표면 거칠기를 분석하고 평가했다.

2. 실험방법 및 결과 고찰

Fig. 1(a)는 실험에 사용된 CNC milling machine을 나타낸다. Fig. 1(b)는 실험에 사용된 섬유 배향 $[0/^{\circ}90^{\circ}]$ 의 CFRP Plate의 형상을 나타내며 Fig. 1(c)와 같이 표면 거칠기를 측정하였다. Table 1은 실험 조건을 나타낸다. 공구는 helix angle 30° , 직경 8mm, 비코팅 초경 2 날 볼 엔드밀을 사용하였다.



[Fig. 1] (a) Experimental set-up, (b) workpiece and (c) surface roughness measurement

[Table 1] The experimental conditions

No	Feed rate f(mm/min)	Spindle speed N(rpm)	Material
1	300	2000	
2	500	4000	CFRP[0/°90°]
3	700	6000	

Fig. 2는 스핀들 속도와 이송 속도의 변화에 따른 표면 거칠기의 변화를 나타낸다. 표면 거칠기는 스핀들 속도가 증가할수록 감소하였으며 이송속도가 증가할수록 증가하는 경향을 보인다. 표면 거칠기 값의 범위는 $0.876-1.173~\mu m로 측정 되었으며 실험결과 스핀들속도 <math>6000 rpm$, 이송속도 $300 mm/m in의 조건에 성 최소값인 <math>0.876~\mu m$ 의 표면 6000 rpm 등적 되었다.

[Fig. 2] Effect of spindle speed and feed rate on surface roughness

후기

본 연구는 한국연구재단 이공분야기초연구사업의 지원으로 수행되었음. (NRF-2018R1A2A3074758)

참고문헌

[1] M. Slamani, S. Gauthier, J.-F. Chatelain, Comparison of surface roughness quality obtained by high speed CNC trimming and high speed robotic trimming for CFRP laminate. Robotics and Computer-Integrated Manufacturing, 42 (2016) 63-72.