3차원 모델링을 활용한 드론 기반 교량 점검을 위한 교량 라이브러리 구축 연구

김지은, 윤준희 한국건설기술연구원 미래스마트건설연구본부 e-mail: jekim@kict.re.kr

A Study on the Construction of Bridge Library for the Inspection of Drone-Based Bridges Using 3D Modeling

Ji-Eun Kim, Jun-Hee Youn

Dept. of Future and Smart Construction Research, KICT

요 약

기존 교량의 하부점검 시 육안 확인이나 교량 점검차 활용 방식의 물리적 한계를 개선하기 위해, 인력이 최소화로 개입되는 드론 기반 교량 점검방식이 대두되고 있다. 본 연구는 드론을 활용한 교량 하부점검 무인화 지원 기술을 개발하고자 한다. 현장 작업지시서 내용 기반으로 드론 라우팅을 위한 3D 교량 라이브러리를 설계하고, 효과적 운영관리를 위한라이브러리 조합을 제시, 구축하였다.

1. 서 론

기존 교량의 하부점검 시 사람이 교각 밑에서 육안으로 확인하거나 교량 점검차를 사용하는 방식이 주로 수행된다. 낮은 교량은 큰 무리 없이 수행되나, 교각 높이가 높을 경우 점검차로 인한 교통 방해, 육안 거리 미확보, 주변 환경에 의한 위험성 등 여러 한계가 존재한다. 최근 이에 대한 해결방안으로 대두되고 있는 드론을 활용한 교량점검 연구들이 활발하게수행 중이다. 대부분 드론 기반 교량 점검 시스템 구축, 교량점검 시 효율적 드론 비행경로 산정, 드론 촬영 자료처리 등전문가가 직접 운전하는 드론 활용 사례이다.[1-2] 그러나수동 기반의 드론 비행 또한 제한적 시야 확보로 다소 어려움이 있어, 이러한 물리적 한계를 극복하기 위해서는 교량 하부점검을 위한 드론의 무인화 지원 기술이 필수적이다.[3-4]

한국건설기술연구원은 효과적 드론의 자율비행을 위해 기수행한 3차원 격자 기반 드론 자율비행 기술을 토대로 시설물-드론의 3차원 위상관계 분석을 위한 지구좌표 기반 3차원 교량 모델링 기술과 드론 3D 라우팅 기술 개발을 연구 중에 있다. 본 연구는 3D 라우팅 정보 제공을 위한 3D 모델링 데이터 구축을 위한 시스템 개발 가운데 교량 라이브러리 구축을 대상으로 한다. 교량 3D 라이브러리 구축을 위한 프로세스는 그림 1과 같다.

[그림 1] 교량 3D 라이브러리 구축 프로세스

2. 드론 교량점검을 위한 교량 3D 모델링 라이브러리 설계 및 구축

2.1 개요

본 연구에서 개발하는 교량 3D 모델링 데이터는 크게 1) 해당 교량의 포인트 클라우드 연계하여 교량 3D 모델링 구축 후점검을 위한 3D 라우팅 경로 산정과 2) 드론 3D 가시화 시스템 내 라이브러리 기반 드론 점검영상 위주의 교량 운영관리의 주 활용을 목적으로 한다. 본 기술의 효율적 활용을 위해교량 3D 모델링 데이터의 요건을 다음과 같이 정의하였다.

- 교량 및 주변 환경 변경 시 유지관리 담당자가 직접 신규 제작/수정이 사용 방법이 용이할 것
- 교량 3D 모델링 방법이 쉽고 데이터가 가벼울 것
- 사용자를 고려한 현장 작업지시서 기반 교량 관리 단위로 구성할 것

교량 대상은 국내 주요 교량형식 가운데 RC슬래브교, PSCI형교, 라멘교, 강박스형교 4개를 선정하고, 육안으로 쉽게 확인이 가능한 교량 상부는 제외하고 옆면부터 하부를 범위로 설정하였다.

2.2 교량 3D 모델링 라이브러리 대상 설계

우선적으로 실제 교량 점검 현황파악을 위해 「시설물의 안전 및 유지관리 실시 세부지침 해설서」,「안전점검 및 정 밀안전진단 세부지침해설서(교량)」,「제3종시설물 안전등급 평가 매뉴얼」 등을 참고하여 현장 작업지시서 내 교량 안전 점검/정밀안전진단 내용 대상으로 점검 사항을 조사하고(A), 이를 토대로 교량 하부 안전점검 부위를 정리하였다(B).

[A. 교량 안전점검/정밀안전진단 대상]

구분	시설물명	점검부위
		바닥판
	상부구조	거더
		교대
	하부구조	교각
		주탑
		기초
	받침	교량받침
주요부재		케이블
구요구세	케이블	정착구
		행어밴드
		새들
		신축이음
		배수시설
	기타부재	난간
		연석
		교면포장
нтни	O-LIHTII	가로보
보조부재	2차부재	세로보
		출입계단
부속시설	점검로	출입사다리
		기타

[B. 교량 하부 안전점검 대상]

구분	시설물명	점검부위
	철근 콘크리트 거더	받침부(지점부)
	일은 본그러도 거나	중앙부
		받침부
	PSC 거덕	중앙부
		강선정착부
		강연선
		보호관
	강 거더	받침부
하부	6717	중앙부
점검	콘크리트 가로보	철근 콘크리트 가로보
주요	근그러드 기포エ	PSC 가로보
시설	강 가로보와 세로보	강 가로보
		강 세로보
	교대	두부(Coping)
		벽체
		날개벽(옹벽 포함)
	콘크리트 교각	두부(Coping)
	L 47 = 47	벽체(기초 포함)
	교량받침	본체
	-050	받침콘크리트
		바닥판
하부	교량 상면시설	신축이음
점검		교면포장
보조	OCAE	난간 및 연석
		점검로
시설	배수시설	배수구(유입구)
	31742	배수관

[그림 2] 교량 3D 라이브러리 1차 대상 선정

상기 내용을 토대로 효율적 3D 모델링 기반 드론 교량 점 검 및 관리를 위해 개별 점검부위를 필수 구축해야 하는 최소 단위로 1차 그룹핑하고 이를 개별 컴포넌트화 하였다(C→D). 또한 드론의 안전비행을 위해 교량 시설과 함께 주변 장애물 (가로등, 가로수)를 추가하였다(D).

[C. 교량형식별 하부 안전점검 대상]

구분	교량형식	시설물명
하부 점검 주요 시설	RC 슬래브교	철근 콘크리트 거더
		콘크리트 가로보
		교대
		콘크리트 교각
		교량받침
	PSC I형교	PSC 거덕
		콘크리트 가로보
		교대
		콘크리트 교각
		교량받침
	라멘교	라멘상부
		교각+철근 콘크리트 거더
		교대
	강박스교	강 거덕
		강 가로보/세로보
		교대
		콘크리트 교각
		교랑받침
하부 점검 보조 시설	종	교량 상면시설
	공통	배수시설

[D. 교량형식별 하부 안전점검 라이브러리 구축 대상]

구분	교량형식	라이브러리
하부 점검 주요 시설	RC슬래브교	교각 1~3
		교대
		상부 슬래브
	PSCI형교	교각 1~3
		교대
		상부포장 슬래브
		상부 l형 1~2
	라멘교	교대
		모듈 l형
		모듈 V형
	강박스교	교각 1~3
		교대
		상부포장 슬래브
		상부 박스 1~2
	ZH TMP	가로등 1~2
주변 장애물		가로수

[그림 3] 교량 3D 라이브러리 최종 대상 선정

2.3 교량 3D 모델링 라이브러리 구축

앞서 정리한 라이브러리 설계내용을 바탕으로, RC슬래브 교, PSCI형교, 강박스형교는 개별 교량의 특성을 반영하여 구현하고, 라멘교는 일체형 교량의 형식상 큰 덩어리 형태로 총 28개 라이브러리를 다음과 같이 구현하였다.

[그림 4] 교량 3D 모델링 라이브러리 구축 결과(일부)

3. 결 론

본 연구결과는 드론 교량점검을 위한 3D 라우팅 시스템 구축에 활용될 기반기술이다. 실제 테스트베드(한강교량)를 대상으로 라이브러리 기반 교량 3D 모델링 데이터를 작성하여 지구좌표와 매핑시키고, 드론 3D 자율비행을 위한 라우팅 생성 및 비행결과를 검증할 계획이다.

감사의 글

본 논문은 한국건설기술연구원 주요사업 "DNA 기반 노후 교량 구조물 스마트 유지관리 플랫폼 및 활용기술 개발 (2/3)" 과제 (20220217-001)를 통해 수행되었으며, 이에 감사드립니다.

참고문헌

- [1] 이래철, 손호웅, 김래현, "드론을 활용한 안전진단 현장 사례', KSCE Magazine 기술기사, 제65권, 제5호, pp.75-79, 2017.
- [2] 오택준, 정성욱, 송승원, 명현, 김형석, 진정회, "교량 진단을 위한 무인체의 성능 개선", 한국콘크리트학회지, 제29권, 제6호, pp.31-35, 2017.
- [3] 윤준희, "가상현실 기반 UAV 경로 계획 및 모니터링 시스템의 설계 및 구현", 산학기술학회논문지, 제 22권, 12호, pp.144-151, 2021.
- [4] J. Paterson, J. Han, T. Cheng, P. Laker, D. McPherson, J. Menke, A. Yang, "Improving Usability, Efficiency, and Safety of UAV Path Planning through a Virtual Reality Interface", SUI '19: Symposium on Spatial User Interaction, No.28, 2019.