초미세기포 기술을 활용한 정수장 원수 오염물질 저감 평가

임병현*, 김환철*, 김동욱*, 이창협**
*공주대학교 환경공학과, **공주대학교 건설환경공학과
e-mail: dwkim@konju.ac.kr

Evaluation of Raw Water Pollutants Reduction in Water Purification Plant Using Ultra-fine Bubble Technology

Byung-Hyun Lim*, Hwan-Cheol Kim*, Dong-Wook Kim*, Chang Hyeob Lee**

*Dep. of Environmental Engineering, Kongju National University

**Dep. of Civil & Environmental Engineering, Kongju National University

요 익

대부분의 지방상수도는 지방자치단체에서 농업용 저수지를 정수장 원수로 이용하고 있으며 긴급상황에 대처 할 수 있는 광역상수도 공급 예방 대책으로서 지방상수도도 유지가 필요한 실정이다. 지방상수도의 주 상수도 공급원인 농업용 저수지는 구조적 특성, 농업용 저수지로의 관리되어 있어 수질악화 및 영양염류 물질에 대해 원수오염 농도증가 문제가 발생하고 있다. 본 연구에서는 초미세기포 발생장치를 이용하여 정수장 원수 수질개선 방법에 대한 연구를 진행하였다. 초미세기포 발생장치에 의해 생성된 OH*의 호소수 살균·정화 평가를 하기 위하여 초미세기포를 적용시킨 결과 비교군(대청호) 보다 2~3배 정도 높은 오염물질들은 20~40분 정도 초미세기포와 반응시킬 경우 비교군(대청호)과 비슷한 수준으로 낮아졌으며 pH/ORP는 실험 진행에 따라 중성으로 변화하는 경향을 보였다. 또한 미생물 대사물질(2-MIB, Geosmin) 등은 5분 안에 전체 제거되는 것으로 나타났다.

1. 서론

농업용 저수지는 농업용수 이용이 목적인 저수지가 대부분이나 일부 지방자치단체에서는 정수장 원수로 이용하고 있다. 일반적으로 저수지와 같이 정체된 물은 식물성 플랑크톤의 중식으로 인해 수질이 나빠지는 경향이 있대[1, 2]. 또한 저수지는 대부분 여름철 유입수 부족 및 하수의 유입, 강우시 비점오염원 등으로 인해 오염도가 급속도로 증가하고 대부분이 노후화되어 부영양화 발생가능성이 아주 높은 특성을 가지고 있는 저수지가 대부분이다. 그 결과 농업용수 이용 및 호소로서의 기능을 상실해 가는 저수지가 많고 저수지의 수질오염이 국가적으로 큰 문제이다.

현재 오랜 시간 방치된 농업용 저수지는 대부분 폐쇄성수역 공간이라는 구조적 특성으로 인해 자체정화 능력이 하천보다 떨어지며 영양염류의 축적이 빈번하여 2차 오염이 유발된다[3, 4]. 대부분의 식수를 광역상수도에 의존하고 있는데천재지변 재난, 재해 상황에 식수로 이용할 수 있는 지역 정수장운영을 대부분 하천 복류수, 저수지에 의존하고 있다[5, 6]. 저수지의 수질오염은 지역정수장의 폐쇄에 직접적인 영향을 미치며이는 광역정수장 의존도가 높아져 지역 주민들의 식수 확보및 다양성 측면을 확보하기 위해서는 지방상수도를 위한

농업용 저수지의 수질개선이 필요하다. 특히 고도처리 설비가 설치되지 않아 흔히 맛 • 냄새 물질이라고 불리우는 2-MIB (곰팡이냄새), Geosmin(흙냄새) 등의 냄새를 유발시키는 미생물 대사물질로 일반 정수처리공정으로는 처리되지 않아이 • 취미 민원이 자주 제기 되고 있는 상황이다.

이러한 문제점들을 해결하기 위하여 초미세기포를 활용 및 처리하는 방법을 연구되고 있으며 초미세기포가 생성되는 과정에서 Free 라디칼이 발생 되는데 이 라디칼이 수중에 존재하는 오염물질을 화학적으로 분해하고 살균시켜 조류 제어가 가능하다고 보고되고 있다!7, 81.

이에 본 연구에서는 초미세기포 발생장치를 이용하여 저수지로부터 유입되는 정수장 원수를 대상으로 수질오염 저감 평가를 수행하였다.

2. 실험재료 및 방법

실험재료는 정수장 유입수 수질을 정화하기 위해 초미세기포를 적용시켜 오염저감 실험을 실시하였다. 초미세기포 장치는 71L Bench Scale의 반응조 및 3.5L Lab Scale 반응조를 사용 하였다. 오염물질 분석은 수질오염공정시험법을 준수하여 수행 하였다.

3. 결과 및 고찰

3.1 초미세기포 적용 결과

OH*에 의한 호소수 살균·정화 평가는 초미세기포를 적용시켰으며 시간별로 오염물질을 구분하여 분석하였다. A 저수지 원수는 대청호 원수 보다 2~3배 높은 오염수준으로 확인되었으며, 전처리를 적용한 결과 20~40분 수준에서 대청호수질과 유사해진다. A 저수지는 전처리시설을 갖춤으로써 안정적으로 정수를 생산할 수 있는 것으로 판단된다.

3.2 수질오염물질 제거능 평가

pH/ORP는 실험진행에 따라 중성으로 변화하는 경향을 나타냈다. EC는 OH라디칼 발생으로 소폭 증가하였다. COD/BOD 농도는 고분자에서 저분자 물질로 분해되면서 20분 동안 증가하였다가 다시 감소(분해)하게 되었다(60분동안 50% 저감).

T-P 농도는 20분 가동으로 비교군(대청호) 수질 수준으로 50% 저감되었다. T-N 농도는 원수에서 암모니아성 질소가 검출되지 않고 질산성 질소만 높게 검출되었다. A 저수지는 질소 오염원 유입은 높은 편이고 질산화만 이루어지고 있으며 탈질은 진행되지 못하고 있는 것으로 판단된다.

원수의 질산성 질소는 높게 검출되었으나 40분 초미세기포 실험에서 비교군(대청호) 수질의 50% 수준으로 저감되었다. 원수의 용존산소는 부족한 편인데 이에 따라 하절기에 녹조현상이 우려되고 초미세기포 주입으로 상승 시킬 수 있을 것으로 판단된다. SS 농도는 30분 가동으로 SS 60% 이상 제거함으로써 비교군(대청호) 수질 수준으로 정화 가능 하였다.

3.3 유해세균 제거능 평가

대장균군(CC, 오염지표)은 1분 동안 50% 살균, 2분 안에 전체 사멸시켰다. 장내세균(EB, 병원성)은 1분 안에 전체 사멸시킬 수 있는 것으로 나타났다. 일반세균(AC, 유해세균): 1분 동안 70% 이상 살균, 2분 동안 90% 이상 살균, 5분 안에 전체 사멸시켰다. 1~2분 가동으로 비교군(대청호) 수질 수준으로 유해세균을 살균시킬 수 있었다. 또한 맛·냄새 유발물질인2-MIB와 Geosmin은 5분 접촉으로 모두 제거된 것으로확인되었다. 이는 A 저수지의 수원을 사용하는 D 정수장에초미세기포 전처리시설을 갖춤으로써 안정적으로 정수를생산할 수 있을 것으로 사료되며 현재 맛·냄새 물질로 인한간헐적 가동중단을 예방할 수 있을 것으로 판단된다.

4. 결론

본 연구에서는 정수장 품질 개선을 위하여 저압발생기반 초미세기포를 활용한 저수지 수질 원수개선 대책에 관한 기초연구를 수행하였고 다음과 같은 결론을 도출할 수 있었다.

- 1. 초미세기포에 의해 생성된 OH*에 의한 호소수 살균· 정화 평가는 비교군(대청호)보다 2~3배 높은 오염수준인 A 저수지 원수를 대상으로 초미세기포를 이용하여 20~40분 전처리 후 수질이 비교군(대청호)과 유사해지는 것으로 분석되었다.
- 2. 저수지 원수의 질산성 질소는 비교군 보다 높게 검출되었으나 40분 초미세기포 실험에서 대청호 수질 수준으로 50% 저감되었으며. T-P 농도는 20분 가동으로 비교군 (대청호) 수질 수준으로 50% 저감되었다.
- 3. 2-MIB(곰팡이 냄새)와 Geosmin(흙냄새)를 유발시키는 미생물 대사물질은 초미세기포에 의한 OH라디컬 5분 접촉으로 모두 제거된 것으로 나타났으며 이는 여름철 간헐적 맛냄새로 인한 정수장 가동중단 예방이 가능하고 초미세기포장치의 전처리로 인해 안정적으로 정수를 생산할 수 있을 것으로 판단된다.

참고문헌

- [1] 박준대, "다단 부상분리 공정을 이용한 저수지 수질개선에 관한 연구", 경희대학교 대학원, 2015년
- [2] Dae Kyun Park, "Effect of selected environmental factors on the production of geosmin in Phormidium sp", The Korean Journal of Microbiology, 36. pp.52 57, 2000
- [3] 남귀숙, "농업용저수지의 생물학적 수질정화 및 미생물 군집동태", 부산대학교 대학원, 2002
- [4] 유선아, "이동 저수지의 수질특성 분석과 수질모델링의 적용 연구", 아주대학교 대학원, 2015
- [5] 최동현, "정수장 처리단계별 조류에 기인된 냄새물질 측정 및 처리효율 조사연구", 공주대학교 대학원, 2004
- [6] 방우혁, "산화 전처리 방법에 따른 대수층함양관리에서의 미량유기오염물질 거동 연구" 세종대학교 대학원, 2020
- [7] Liu, Shu, et al. "Identification of ROS produced by nanobubbles and their positive and negative effects on vegetable seed germination." Langmuir 32.43 (2016): 11295–11302.
- [8] 정호진, 김종규. "초미세기포를 이용한 저수지 내의 조류 및 원인물질 제어." 한국수처리학회지 30.2 (2022): 11-20.