바나나원사의 경편을 위한 정경시 해사장력 유지 연구

길경택*, 노동현*, 김은경**,백성찬**
*㈜우주글로벌
**한국섬유소재연구원
e-mail:scbaik7@koteri.re.kr

Study on the maintenance of unwinding tension for the banana varn knitting

Gyeong-Tek Gil*, Dong-Hyeon-Han Noo** ,Eun-Gyeong Kim**,Sung-Chan Baek**
*WoojooGlobal
**KOTERI

요 약

본 연구에서는 바나나 원사의 경편 적용시 정경에서 나타나는 모우날림 현상과 사절 발생으로 인한 생산성 문제를 개선하기 위해 장치(비닐, 해사장력 CAP, 매쉬, 바에 대한 비닐 씌우기) 및 공정조건(정경속도, 장력 등)을 개선하여 생산성을 확보하고자 한 결과 일정 무게의 바가 걸려있는 비닐 씌우기 및 이와 동일한 형태를 원단으로 구현한 형태가 현장 작업자들의 효율성과 해사가 진행됨에 따라 감소되는 원사 콘의 부피에도 불구하고 일정한 장력을 부여하기에 용이한 것으로 나타났음

1. 서론

글로벌 섬유기업의 친환경 규제는 강화되고 있어 천연섬유 인 면이나 린넨을 사용하나 이러한 섬유 역시 수입에 의존적 이고 고가의 가격으로 형성되어 있기에 대체소재를 활용한 제품연구가 이루어지고 있기에 여러 가지 대나무, 바나나, 대 마 등을 통해 원사로 의류를 개발하고 있으나 이러한 원사는 공통적으로 신축성이 부족하여 활동성 의류에는 사용이 적합 하지 못하여 카펫, 가방, 끈 등의 부자재로 사용되고 있음. 따 라서 본 기술개발에서 바나나 섬유를 통해 방적사가 가지는 경편상의 문제 중 정경공정에서의 문제를 해결하기 위한 장 력유지 문제를 해결하고자 함

2. 본문

바나나 원사는 BANFAB社의 원사를 사용하고자 하며 일반 면원사와의 물성 비교를 통해 편직성을 비교해보고자 함

[표 1] 표면과 바나나 원사의 물성 비교제목

TEST 항목	banana 20's	banana 30's	cotton 20's
실의 강도	540 cN	360 cN	400 cN
실의 신도	5.7%	5.0%	4.8%
균제도(U%)	9.44	10.38	8.81
꼬임수	735.1 TPM	900.1 TPM	624.9 TPM

Banana 20's와 Cotton 20's를 비교하면 강도는 강하나, 균제도는 좋지 못함. 특히 꼬임수 T/M이 높아 해사시 균일한 해사를 위해서는 일정 수준의 해사장력이 필요하며, 이는 경편의 정경성에 영향을 미칠 것으로 판단됨. 또한 Banana 20's가 Banana 30's 대비 물성에서 드러나지는 않으나 외관상 모우가 많고 균제도가 떨어져 정경성 및 편직성이 떨어질 것으로 판단되어 30's를 통해 경편을 진행하고자 함

이를 위해 정경시 모우(Staple fiber)의 날림 현상으로 인해 먼지가 많이 끼어 정경시 사절과 정경 속도 RPM이 저하되는 문제와 단섬유의 방적에서 발생하는 꼬임(TWIST)으로 인해 해사장력이 일정치 못하고 SNARL현상이 발생하여 원활히 정경 작업을 할 수가 없는 문제를 개선하고자 함

[사진 1] 모우날림으로 인한 먼지(좌), 꼬임으로 인한 Snarl(우)

(1) 비닐 씌우기

(2) 해사장력 컨트롤 CAP

(3) 매쉬망 씌우기

(4) 일정 무게의 바가 걸려있는 비닐 씌우기

[사진 2] 정경시 해사장력 유지를 위한 장치

3. 결론

4가지 해사장력 유지장치를 시도한 결과 일정 무게의 바가 걸려있는 비닐 씌우기 및 이와 동일한 형태를 원단으로 구현한 형태가 현장 작업자들의 효율성과 해사가 진행됨에 따라 감소되는 원사 콘의 부피에도 불구하고 일정한 장력을 부여하기에 용이하였으며 정경 RPM을 200정도로 진행한 결과 제품의 생산 시 불량률이 적고 작업의 효율성이 높아지는 것을 알 수 있었음

본 연구는 중소벤처기업부 수출지향형 기술개발사업(과제번호:RS-2023-00273499)의 지원으로 수행되었음